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ABSTRACT 

Some new oscillation criteria are given for forced second order differential equations with mixed nonlinearities by using 
the generalized variational principle and Riccati technique. Our results generalize and extend some known oscillation 
results in the literature. 
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1. Introduction 

The oscillatory behavior of second order differential 
equations has a major role in the theory of differential 
equations. It has been shown that many real world 
problems can be modelled, in particular, by half linear 
differential equations which can be regarded as a na- 
tural generalization of linear differential equations [1- 
14]. A considerable amount of research has also been 
done on quasi-linear [15-18] and nonlinear second order 
differential equations [19-23]. 

In this paper, we investigate the oscillatory behavior 
of second order forced differential equation with mixed 
nonlinearities. 
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     are real numbers,  

, jp q   and e  might alternate signs.   1 j m 
By a solution of Equation (1), we mean a function 

, where 0xT  depends 
on the particular solution, which has the property that  
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  and satisfies Equation 
(1). We restrict our attention to the nontrivial solutions 
x t  of Equation (1) only, i.e., to solutions  x t  
such that  sup : > 0x t t T   for all xT  T . A non- 
trivial solution of (1) is oscillatory if it has arbitrarily 
large zeros, otherwise, it is called non-oscillatory. 

Equation (1) is said to be oscillatory if all its nontrivial 
solutions are oscillatory. 

Equation (1) and its special cases such as the linear 
differential equation 
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have been extensively studied by numerous authors 
with different methods (see, for example, [1-5,15-19] 
and the references quoted therein). 

In 1999, Wong [1] proved the following theorem by 
making use of the “oscillatory intervals” of e(t) and 
Leighton’s variational principle (see [10]) for (2). 

Theorem 1.1. Suppose that for any , there 
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If there exist  ,i iu D s t  such that 
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then Equation (2) is oscillatory. 
Afterwards, in 2002, the authors of [2] extended 

Wong’s results, using a similar method, to Equation (3) 
as follows. 
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for i = 1, 2, where    1
= 1 1K





 , then (3) is oscil- 

latory. 
Later, in 2007, Zheng and Meng [16], considering a 

more general Equation (4), improved the paper [2] and 
showed that the results obtained in [2] for Equation (3) 
can not be applied to the case > 1 . The main result 
of Zheng and Meng [16] is the following. 

Theorem 1.3. Assume that for any 0T , there exist t
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for i =1, 2. Then Equation (4) is oscillatory, where 
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with the convention that  00 = 1.

Also, in [2009], Zheng et al. [17] extended the 
results obtained for Equation (4) to Equation (1) as 
follows. 
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for i = 1, 2. Then Equation (1) is oscillatory, where 
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with the convention that  00 = 1.

Recently, Shao [15] generalized the results of Zheng 
and Meng [16] by using the generalized variational 
principle due to Komkov [24] and gave the following 
result for Equation (4). 
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for i = 1, 2, then Equation (4) is oscillatory, where 
 Q t  is the same as (9). g u t G u t
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Motivated by the above theorems we propose some 
new oscillation results by employing the generalized 
variational principle and Riccati technique for Equation 
(1). Our results extend and generalize some known 
results in the literature. We now state our main results 
and several remarks. 

2. New Oscillation Results  

In order to prove our results we use the following well- 
known inequality which is presented by Hardy et al. 
[25]. 

Lemma 2.1. (see [25]). If X  and  are non- 
negative, then 

Y
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t t r t

t w t
g u t u t G u t w t dt G u t t

t t r t

t
G u t u t G u t w t t G

t

 



 



 






 




 


 

 







 
 

 

 
   

  

 
   

  

 
    

  



 

 

      

    
1 1

1 1

1 /

1 1/
d .

t t

s s

w t
u t t

t r t

 






 

       (21) 

Let 

    

 

               
      
   

/ 1
1/ 1

/ 1 1/ 1
11/

1
= , = , =

1

G u t t
X G u t w t Y t r t u t

tt r t

 

.


  



  
 





 



    
     

 

According to Lemma 2.1, we obtain for  1 1,t s t  

             
            

    

      
      
         

      
   

1 /

/ 1
1 1 1 1/

1 1
1/ 1 1/ 1
1 1

1
1

1
= .

1 1

t w t
G u t u t G u t w t G u t

t t r t

G u t t G u t t
t r t u t t r t u t

t t

 

 


  


 

  

 
 

   







  

 
   

  

    
      

       

 

Therefore, (21) yields 

              
      
   

1 1

1 1

1
1/ 1
1

1
=1

d d
1

t tm

j
js s

G u t t
t p t Q t G u t t t r t u t t

t

 
 

 

  
         

  ,  

 
which contradicts the assumption (14) for . = 1i

When  x t  is a negative solution for , 
we may employ the fact that 

0 0>t T t
  0e t   on  2 2= , 2I s t  

to reach a similar contradiction. Therefore, any solution 
 x t  can be neither eventually positive nor eventually 

negative. Hence, any solution is oscillatory. This com- 
pletes the proof of Theorem 2.1. 

If   0p t   and , then Equation (1) reduces 
to Equation (4). Thus by Theorem 2.1, we have the 
following oscillation result: 

= 1m
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Corollary 2.1. Assume that, for any 0 , there 
exist such that (5) holds. Let  

T t
1 1 2< <T s t s t 


2

1 ,i iu C s t , and nonnegative functions  satis- 
fying 

1 2,G G
     = =i i i is G u t 0,   i iG u  =g u G  u  are  

continuous and         1 1
1i ig u t G u t

  
     

for  ,i it s t  for i =1, 2. If there exists a positive 
function   1

0 , ,C t R   such that 

          
      
   

1
1/ 1

d > 0
1

i

i

t
i

i
s

G u t t
t Q t G u t r t u t t

t

 


 

     
     

 


                    (22) 

 
for i = 1, 2, then Equation (4) is oscillatory, where 

 is the same as (9).  Q t
Remark 1. Corollary 2.1 shows that Theorem 2.1 is 

a generalization of Theorem 1.5. 
Remark 2. Let     1

1 2= =G u G u u   in Corollary 
2.1, then our main Theorem 2.1 reduces to Theorem 
1.3. 

Remark 3. If we choose     1
1 2= =G u G u u   in 

Theorem 2.1, then we obtain Theorem 1.4. 
Remark 4. If we choose     1

1 2= =G u G u u   and 
 in Theorem 2.1, then we obtain Corollary 2.3 

of Paper [17]. 
  1t 

Remark 5. If we choose     1
1 2= =G u G u u   and 

 in Corollary 2.1, then we obtain Corollary 
2.3 of paper [1
  1t 

6]. 
Remark 6. Let  

     1
1 2= = , 0,1jG u G u u q t j m     

and   1t   in Theorem 2.1, then Theorem 2.1 is a 
generalization of Theorem 1.1. 

Remark 7. Let    0, 1 .jq t j m    If we choose 
   =G u G u 1= u

1 2
  in Theorem 2.1, then Theorem 

2.1 improves Theorem 1.2, since the positive constant 
  in Theorem 2.1 can be chosen as any number lying 
in  0, . 

Remark 8. If the condition (5) in Theorem 2.1 and 
Corollary 2.1 is replaced by  

   
 

1 1

2 2

0, ,

0, ,

t s t
e t

t s t

  
 

 

then the results given in this paper are still valid. 

3. Examples 

Example 3.1. Consider 

            1 1 1/3 /3 3= sin ,t x t x t t x t x t t x t x t t
    
      

0

                    (23) 

 
for , where 1t  ,    are constants. Let 1    

and 3  , so     /3 23= 3 / 4 sinQ t t t . The zeros of  

forcing term  are . For any , we 
choose  sufficiently large so that ,  

3sin t πn 1T 
= 2 πn kn π 

1 = 2 πs k  and  1 = 2 1 π.t k   Letting  
  = sinu t 0,t     2

1 = eG u u xp u   (it is easy to ve-  

rify that     1 14G u G u 
2

 for ), 0u    /3=t t   ,  

then we obtain T

              
1

1

(2 1)π
2 43

3
2 π

π 9
d = sin 3 4 sin exp sin d 1 ,

2 4 4

t k

i
s k

t p t Q t G u t t t t t t
e


  

     
 

    

and 

     
      
   

 1

1

1 21/ 1 2(2 1)π

2 π

sin exp sin 2
d = cos d < 1 π.

1 6

t k
i

s k

G u t t t t
t r t u t t t t

t t

    
 

                 
  6

   

 
Therefore, Equation (14) is satisfied for i = 1 pro-  

vided that 
2

3

1 9
0 < < 1 1 .

62 4 4e

          
 In a si-  

milar way, for  and , we 
choose u 2G t is easy  

to verify that     
2

4G u G u   for 0u  ) so that 

 2 = 2 1 πs k 
= sin 0t  , 

 2 = 2 2 πt k 
 2= expu u  (i t  u

2 2

that (14) is va  oscillatory for lid for i = 2. Thus (23) is  

2

3

1 9
0 < < 1 1

62 4 4e

          
 

by Theorem 2.1. 
ple 3.2. Consider the following forced quasi- 

linear differential equation     

Exam
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     1/5 /5     1 1 5exp sin sinx t t x x t
                 (24) 2 cos exp sin 5t t x x t t x

   
 
for , where 1t  , 0    are constants. Let 1    

and 5  , so    /5 4

5 4

5
exp sin 5 sin .

4
Q t t t t  The 

g term  are . For any

we choose n sufficiently large so that  
T

zeros of forcin 5sin t πn  1,T   

π 2 πn k  , 1 = 2 πs k  and  Letting   1 = 2 1 π.t k 
  = sin 0,u t t    2

1 = expG u u  u ,   /5=t t ,  

then we obtain  

         
1

1

(2 1)k π
2 6

5 4
π

π

5 4/55 54 4
0

d sin sin exp
54

π 25
sin 8

164 4

t

i
s k

t p t Q t G u t t t

e e




        
   

       
   




 

and 

2

=t 

2 65
sint t 

4/

1

5 4sin
d

t
t
  

     
      
   

 

   

1

1

1 21/ 1 (2 1)π

2 π

π
2 2

0

sin exp sin 2
d (2 cos ) cos d

1 1

3 1 10 d 3 1 10 π.
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i
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G u t t t t
t r t u t t t t t

t t

t

  
 

 

   

    
          

   

 



 
0

 
Therefore, Equation (14) is satisfied for i = 1 provided  

that 
 2

0
3 1 10




 


, where 
4/5 5 4

1 25
8 .

16 4e


 
   

 
 

In a similar way, for  and   2 = 2 1 πs k 
 = 2 2 πk  , we choose 2t   = sin 0u t t  ,  
   2= expu u u  so that (14) is valid for i = 2. Thus 2G

is oscillatory for (24)  2
0 < 1 10< 3  - 

rem 2.1.
 by Theo

4. onclusi

The oscillatory beh
been investigated and a

has been obtained in the literature. In 
results obtained in [16,17] and 

lts of Shao [15] by using the gene-

and suggestions on the paper. 
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