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ABSTRACT 

Some new oscillation criteria are given for forced second order differential equations with mixed nonlinearities by using 
the generalized variational principle and Riccati technique. Our results generalize and extend some known oscillation 
results in the literature. 
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1. Introduction 

The oscillatory behavior of second order differential 
equations has a major role in the theory of differential 
equations. It has been shown that many real world 
problems can be modelled, in particular, by half linear 
differential equations which can be regarded as a na- 
tural generalization of linear differential equations [1- 
14]. A considerable amount of research has also been 
done on quasi-linear [15-18] and nonlinear second order 
differential equations [19-23]. 

In this paper, we investigate the oscillatory behavior 
of second order forced differential equation with mixed 
nonlinearities. 
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By a solution of Equation (1), we mean a function 
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  and satisfies Equation 
(1). We restrict our attention to the nontrivial solutions 
x t  of Equation (1) only, i.e., to solutions  x t  
such that  sup : > 0x t t T   for all xT  T . A non- 
trivial solution of (1) is oscillatory if it has arbitrarily 
large zeros, otherwise, it is called non-oscillatory. 

Equation (1) is said to be oscillatory if all its nontrivial 
solutions are oscillatory. 

Equation (1) and its special cases such as the linear 
differential equation 

          =r t x t q t x t e t  ,           (2) 

the half-linear differential equation 

              1 1
=r t x t x t q t x t x t e t

       (3) 

and the quasi-linear differential equation 

              1 1
=r t x t x t q t x t x t e t

       (4) 

have been extensively studied by numerous authors 
with different methods (see, for example, [1-5,15-19] 
and the references quoted therein). 

In 1999, Wong [1] proved the following theorem by 
making use of the “oscillatory intervals” of e(t) and 
Leighton’s variational principle (see [10]) for (2). 

Theorem 1.1. Suppose that for any , there 
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then Equation (2) is oscillatory. 
Afterwards, in 2002, the authors of [2] extended 

Wong’s results, using a similar method, to Equation (3) 
as follows. 

Theorem 1.2. Suppose that for any 0T , there 
exist  such that (5) holds. Let 
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for i = 1, 2, where    1
= 1 1K





 , then (3) is oscil- 

latory. 
Later, in 2007, Zheng and Meng [16], considering a 

more general Equation (4), improved the paper [2] and 
showed that the results obtained in [2] for Equation (3) 
can not be applied to the case > 1 . The main result 
of Zheng and Meng [16] is the following. 

Theorem 1.3. Assume that for any 0T , there exist t
1 1 2< <T s t s t2   such that (5) holds. Let 

            1 1, = , : > 0, , and = = 0  for 1,2.i i i i i i i iD s t u C s t u t t s t u s u t i   



 

Suppose that there exist  ,i iH D s t  and a positive, nondecreasing function     1
0 , , ,C t      such that 

               
   

1

1:= d > 0
1

i

i

t

i
s

H t t
Q H t Q t H t r t H t t

t



  


 




  
       

                (8) 

for i =1, 2. Then Equation (4) is oscillatory, where 

           / ///= ,Q t q t e t
        0 <     

                      (9) 

 
with the convention that  00 = 1.

Also, in [2009], Zheng et al. [17] extended the 
results obtained for Equation (4) to Equation (1) as 
follows. 

Theorem 1.4. Assume that for any , there 
exist 2

0T t
1 1 2< <T s t s t   such that  
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holds. Let 
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for i = 1, 2. Then Equation (1) is oscillatory, where 

         = ( )
j j jj j j

j j j jQ t m q t e t j m
           
     , 1                   (11) 

 
with the convention that  00 = 1.

Recently, Shao [15] generalized the results of Zheng 
and Meng [16] by using the generalized variational 
principle due to Komkov [24] and gave the following 
result for Equation (4). 

Theorem 1.5. Assume that, for any 0T , there 
exist 2  such that (1.5) holds. Let 

t
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for i = 1, 2, then Equation (4) is oscillatory, where 
 Q t  is the same as (9). g u t G u t
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Motivated by the above theorems we propose some 
new oscillation results by employing the generalized 
variational principle and Riccati technique for Equation 
(1). Our results extend and generalize some known 
results in the literature. We now state our main results 
and several remarks. 

2. New Oscillation Results  

In order to prove our results we use the following well- 
known inequality which is presented by Hardy et al. 
[25]. 

Lemma 2.1. (see [25]). If X  and  are non- 
negative, then 

Y

  11 ,X Y XY      

where equality holds if and only if = .X Y  
Theorem 2.1. Assume that, for any , there 0T t

exist 1 1 2< <T s t s t2   such that  

   0 1jq t j m    for    1 1 2 2, ,t s t s t   and (5)  

holds. Let  1 ,i iu C s t  and nonnegative functions  
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         = = 0,  =i i i i i iG u s G u t g u G u  
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        1 1
1i ig u t G u t
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for i =1, 2, then Equation (1) is oscillatory, where 

 is the same as (11).  jQ t
Proof. Suppose that  =x x t  is a nonoscillatory 

solution of Equation (1). Then, there exists a 0 0  
such that 

T t
  0x t   for all 0t . Without loss of 

generality, we may assume that  for all  
T

  > 0x t

0t T . We introduce the Ricccati transformation 
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Then, by using (17) in (16), we get 
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Multiplying  through (18) and integrating over  1G u t 1I , we have 
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which contradicts the assumption (14) for . = 1i

When  x t  is a negative solution for , 
we may employ the fact that 

0 0>t T t
  0e t   on  2 2= , 2I s t  

to reach a similar contradiction. Therefore, any solution 
 x t  can be neither eventually positive nor eventually 

negative. Hence, any solution is oscillatory. This com- 
pletes the proof of Theorem 2.1. 

If   0p t   and , then Equation (1) reduces 
to Equation (4). Thus by Theorem 2.1, we have the 
following oscillation result: 

= 1m
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Corollary 2.1. Assume that, for any 0 , there 
exist such that (5) holds. Let  
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for i = 1, 2, then Equation (4) is oscillatory, where 

 is the same as (9).  Q t
Remark 1. Corollary 2.1 shows that Theorem 2.1 is 

a generalization of Theorem 1.5. 
Remark 2. Let     1

1 2= =G u G u u   in Corollary 
2.1, then our main Theorem 2.1 reduces to Theorem 
1.3. 

Remark 3. If we choose     1
1 2= =G u G u u   in 

Theorem 2.1, then we obtain Theorem 1.4. 
Remark 4. If we choose     1

1 2= =G u G u u   and 
 in Theorem 2.1, then we obtain Corollary 2.3 

of Paper [17]. 
  1t 

Remark 5. If we choose     1
1 2= =G u G u u   and 

 in Corollary 2.1, then we obtain Corollary 
2.3 of paper [1
  1t 

6]. 
Remark 6. Let  
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1 2= = , 0,1jG u G u u q t j m     

and   1t   in Theorem 2.1, then Theorem 2.1 is a 
generalization of Theorem 1.1. 

Remark 7. Let    0, 1 .jq t j m    If we choose 
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1 2
  in Theorem 2.1, then Theorem 

2.1 improves Theorem 1.2, since the positive constant 
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Remark 8. If the condition (5) in Theorem 2.1 and 
Corollary 2.1 is replaced by  
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then the results given in this paper are still valid. 

3. Examples 

Example 3.1. Consider 
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by Theorem 2.1. 
ple 3.2. Consider the following forced quasi- 

linear differential equation     
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