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ABSTRACT 

With the development of local gauge theories of gravitation, it became evident that intrinsic spin was an integral part of 
the theory. This gave spin a classical formulation that predicted the existence of a new kind of field, the torsion field. To 
date only omne class of experiments has been developed to detect this field, a search for a long range dipole force. In 
this article, the torsion equations are de-coupled from the curved space of general relativity derived from basic princi-
ples using vector calculus and the theory of electromagnetism as a guide. The results are written in vector form so that 
they are readily available to experimentalists, paving the way for new kinds of experiments. 
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1. Introduction 

In this article I would like to take you through a tour of 
the development of how a theoretical physicist, or a phys- 
ics student, may derive a theory along the lines of the se- 
cond approach described above. In particular we will be- 
gin with an intriguing aspect of curved space, defined be- 
low, and see how we can develop, and test, a theory. This 
could be viewed as a homework problem with hints: All 
you need to know is the physics and mathematics of a 
typical junior year course in electromagnetism. A little 
quantum mechanics would not hurt. 

Motivation 

First we must go back to the period 1905-1915, when 
Einstein began his quest to develop the general theory of 
relativity. At that time there was another problem that 
attracted the attention of physicists, the simple wheel. 
According to special relativity, if it is spinning, the cir-
cumference will suffer length contraction but the radius, 
being normal to direction of motion, will not contract. 
Thus either the value of π is not constant, or Euclidean 
geometry was wrong. 

Another ingredient in this little tour of those years is 
Einstein’s Principle Equivalence. I will not discuss this in 
detail but will extract the main point: The mass of a test 
particle drops out of the equation F = ma when F con-
tains m (the equality of inertial and gravitational mass). 

These clues led Einstein to think in terms of geometry, 
where particles fall along geodesics in curved space. The 

biggest problem was, he did not know much about curved 
spaces! With his friend, Marcell Grossman teaching him, 
they learned Riemannian geometry together from pub-
lished articles of Riemann’s work. A key ingredient of 
this geometry is the affine connection, a geometrical ob-
ject denoted by 

 . When a vector is parallel trans-
ported along a curve, the effect of curved space is to ro-
tate the vector: The affine connection is a measure of that 
change in the vector. However, the concept of parallel 
transport was developed two years after Einstein pub-
lished the theory of general relativity by Levi-Civita. 
Moreover, before that (1915) torsion was not known. 

The connection between the mathematics of curved 
space and physics is the rotation of the vector. Translat-
ing from Newtonian physics to GR, instead of saying the 
incorporeal gravitational field lines of Earth reach out 
and cause the apple to accelerate, we say Earth curves 
space and the apple follows along a geodesic. Thus all of 
the information about the motion of the apple is in the 
affine connection, quite a fine idea. 

In fact these were Riemann’s ideas, but he lacked the 
contribution of Minkowski, who showed us the four di-
mensional spacetime in which we live. So the ideas of 
the previous paragraph only work out in four dimen-
sional spacetime. I will often use the term space to stand 
for spacetime. 

In the limited Riemannian geometry Einstein had to 
work with in 1915, the affine connection was symmetric. 
In this special case the affine connection is called the 

Christoffel symbol, usually denoted by  


   
 and the 

symmetry just mentioned means  
  . However, *Corresponding author. 
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soon after 1915 the full geometry of curved space was 
developed and it was found that the affine connection is 
not, in general symmetric, and specifically the antisym-
metric part is defined as the torsion, S 

 , so that 
2S   

  
Now we may focus on “the intriguing aspect of curved 

space” I mentioned above, something not known when 
Einstein published his theory. Suppose we have two 
vectors A and B. They are in a plane (of course), origi-
nally with the bases touching. Here is a little thought 
experiment you may do. Parallel transport A along B and 
mark where the tip of A is. Call this trip one. Now go 
back and set the vectors as they were, but this time par-
allel transport B along A and mark the point where the tip 
of B is. Call this trip two. Is this the same point? In 
Euclidean geometry it is, and it is also the same point in 
Riemannian geometry, but in the richer non-Riemannian 
geometry (a poor name, but it means non-Riemannian 
and non-Euclidean) it is not the same point. In fact, the 
difference between these points is proportional to the 
torsion. 

  

S

. 

Is there physics here? Does the richer non-Riemannian 
geometry carry new physics just as Riemannian geome-
try did? If we ask what this little experiment is telling us, 
we must conclude that space can be endowed with a 
sense. In other words, in the experiment, in trip one, if 
you were going in an anticlockwise direction, then in trip 
two you were going clockwise. Thus in a geometry with 
torsion space has a sense or handedness that distin-
guishes between clockwise and anticlockwise. In GR we 
saw that the mass determines the affine connection of 
Riemannian space, so what physical quantity determines 
the sense? We assume it is a fundamental property of 
matter, like mass of charge, but unlike mass or charge it 
must have a direction, for otherwise it could not form a 
space that has a sense. Now we ask ourselves the simple 
question, what fundamental property of matter has a di-
rection associated with it? There is only one, spin. With 
these ideas, we are led to suspect that spin is the source 
of torsion. More details on the geometry may be found in 
a previous article in Contemporary Physics [1]. 

As an aside, with this line of reasoning we achieve an 
egalitarian view of our fundamental particle parameters, 
just as mass create the gravitational field, and charge 
creates the electromagnetic field, now we have that spin 
creates the torsion field. It is emphasized that this is the 
intrinsic spin of elementary particles, not orbital angular 
momentum. This makes an interesting comparison with 
the celebrated “no hair” theorem of general relativity. 
This theorem states that a black hole can be described by 
only three parameters-mass, charge and spin the same 
parameters that give rise to the fundamental classical 
fields (other putative parameters, such as fields propor-
tional to baryon number, is the hair, which is not al-

lowed). 
This brings us to the point of this article. We have 

theoretical reason to believe that spin creates a field, so 
what are the field equations? Using the undergraduate 
level mathematics we shall completely derive this theory, 
but first additional motivation is given. 

The standard model of elementary particles, which is 
based on the concept of local gauge invariance, has shown 
to be a very successful theory. This formulation includes 
all the known forces in nature except gravitation. Not 
only is gravity left out, it is a theory that is non-re-
normalizable. That means, unlike electromagnetism, in-
finite quantities that appear cannot be canceled out by a 
change of definition in the mass and charge. In hopes of 
duplicating the success of the standard model, general 
relativity was also formulated as a local gauge theory [2], 
which I will now briefly describe. In that work, the tor-
sion is given by the third rank tensor 

 , which is the 
antisymmetric part of the affine connection. 


Let us consider a Lorentz transformation,   which 

takes us from one inertial reference frame to another. The 
elements of 

  are constant (for inertial frames v is 
constant). But there is a problem here, first of all, in the 
presence of gravity, for example, reference frames will 
be accelerated. Second of all, since the 

  are constant, 
the transformation changes all of space instantaneously, 
which violates special relativity. A transformation that 
consists of constants and effects all of space instantly is 
called a global transformation. 

We know from special relativity that no information 
can be transmitted faster than c, the speed of light in 
vacuum. Paradoxically the Lorentz transformation does 
just that. This issue was raised first by Yang and Mills 
[3]. They argued that the global transformation that was 
used in nuclear physics (that instantaneously transformed 
protons to neutrons and vice verse) is unphysical, and in 
order to subscribe to the precepts of special relativity, it 
must be made local. This means that the constants of the 
transformation must be generalized to functions of space 
and time. There were still some issues to be resolved in 
this new “local gauge theory”, but today all of particle 
physics, the standard model, is based on this idea. 

When the global Lorentz transformation is made local, 
one of the most beautiful results in physics occurs, we 
end up with general relativity. In fact, we end up with a 
little more then GR, in this development the torsion must 
exist in order to maintain a physical difference between 
translation and rotation, as shown so convincingly in [2]. 
The torsion is related to the rotational part of the Lorentz 
transformation so once again we see that, at the particle 
level, general relativity must include spin. Later, in more 
general gauge theories, it was found that a scaler field 
goes along with gravity and torsion [4]. 

A final and more recent motivation for the existence of 

Copyright © 2012 SciRes.                                                                                 JMP 



R. T. HAMMOND 3

torsion comes from string theory. String theory starts 
from a relativity simple idea, instead of assuming a parti-
cle, such as an electron, is a point, assume they are 
strings. The strings are so small 10–33 cm, there is no way 
to directly refute, or confirm, this notion. However, in 
order to have a consistent theory that makes sense, it 
turns out that there must be three fields: gravity, torsion, 
and the scalar field. The torsion field from string theory 
is often referred to as the Kalb-Ramond field [5], but it 
was quickly shown to be the torsion of non-Riemannian 
geometry [6]. In that work, the torsion is denoted by 

 , 3F A   , where  A  is the antisymmetric poten-
tial. So once again we see torsion must be included into a 
physical theory of gravity. 

Finally I will point that in some formulations it appears 
that torsion may be optional, meaning that a perfectly 
consistent theory can be constructed without it. However, 
this is not the case, and recently it was shown why tor-
sion is a necessary part of general relativity [7]. In this 
case it was shown that, in the absence of an external field, 
we have the total angular momentum plus spin is a con-
served quantity. Without torsion the wrong result would 
occur, since spin would not be included. 

With the development of a classical theory of spin, an 
old wound is opened. In particular, ever since its discov-
ery, spin has been considered a “quantum” effect, with 
no classical counterpart. This would make torsion stand 
apart from our other classical theories gravity and elec-
tromagnetism. However this old saw is specious. There is 
nothing wrong with a classical theory of spin, what was 
shown was that spin cannot be accounted for by a rapidly 
rotating particle, which is true. As is exemplified below it 
is structure, not rotation, that gives rise to spin. In fact, a 
classical string is a perfect source for torsion. 

Now we may proceed to the derivation of the field 
equations for torsion. Although it is usually described by 
arcane mathematics buried in a bigger theory of gravita-
tion, often in the context of string theory in more than 
four dimensions, we will elucidate the theory of torsion 
in a basic way, deriving it following basic principles of 
physics and using electromagnetism as a guide. 

In important caveat must be stated. This paper deals 
with torsion that is derived from a potential, often referred 
to as string theory torsion, or the Kalb-Ramond field. In 
the local gauge theories mentioned above, the torsion is 
taken to be the potential. Since torsion has never been 
measured we do not know which approach is correct, 
although several ideas carry over to both approaches. 

2. Derivation of the Field Equations 

Before we begin the derivation we can sketch a few ba-
sics. We will assume there is a source, spin, and this cre-
ates a field. If we perform a multipole expansion of the 
source, we must assume the lowest order term, the sphe- 

rically symmetric term, does not exist. This is because 
spin, unlike charge or mass, is not a scalar quantity and 
therefore its field cannot be spherically symmetric. If 
there were a spherically symmetric part to the source, 
then no matter how small, at a large enough distance the 
spin would appear as spherically symmetric, which is 
wrong. The spin source is denoted by a vector, say N, 
which related to the spin (this is detailed in Section 4). 
The direction of the spin establishes a preferred direction 
in space. For this reason, in a multipole expansion of the 
field, the lowest order term is the dipole term, so if we 
call the field b, we expect 

 3
ˆˆ= 2cos sin

r
  b r θ


         (1) 

where   is an unknown coupling constant, correspond- 
ing to the coupling constant in electromagnetism (the 
permittivity of vacuum in SI). In the following we will 
set c = 1 to avoid writing it every time a time derivative 
appears. 

The Potential 

Now let us begin the derivation. We assume first that the 
field, like electromagnetism, must be covariant under 
coordinate transformations in Minkowski space. This 
means the equations must retain their form under such a 
transformation. This, in turn, tells us that the field cannot 
be a 3-vector: It must be a 4-vector (it could be a higher 
rank tensor, but we start with the simplest first). This 
means that there must be a fourth component of the field, 
say ,  such that we may make a 4-vector as = ,b  b

.

. 
This is analogous to the potential of electromagnetism, 
which consists of a vector A and a scalar   These are 
combined into the 4-vector potential (Although the same 
letter A is used for the potential for both torsion and 
electromagnetism, this should cause no confusion. One 
can distinguish them by looking at the other side of the 
equation). 

Next, we assume the fields (b and  ) arise due to a 
source. We cannot build up such a theory starting from a 
scalar source (this gives the so called Klein Gordon 
equation, which was Schrödinger’s first attempt at the 
quantum equation), and the vector potential is already 
taken by electromagnetism. The next simplest case is a 
second rank tensor, but the symmetric second rank tensor 
is also taken, by gravitation. This leaves the antisymmet-
ric tensor, which has six independent components. For 
example, the electromagnetic field tensor F  is an 
example of an antisymmetric second rank tensor, with 
the six components representing the two vectors of the 
electric field and magnetic induction (in vacuum). Thus 
we assume the torsion source may be represented by two 
vectors, say N and I. 
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Now, like E & M, we assume that the theory should 
give rise to linear, second order differential equations in 
terms of the potential. Thus the fields should be given by 
some first order differential operator, DO, such that b = 
(DO A). The obvious operator is the curl (the divergence 
would yield a scalar, and the gradient would not yield a 
vector), so we have the putative equation, 

= .b A  

Also, for  , we expect   = DO a. In order to turn a 
vector into a scalar it is evident the choice of the DO is 
divergence, so we have 

= .  a

= 0b

                 (2) 

A troubling aspect of these two equations is that, 
unlike E & M, there is no time derivative. Moreover, in 
the theory of E & M we know that the existence of the 
potential automatically gives rise to two of Maxwell 
equations, so let’s see if this gives us a clue. Looking at 
the putative equation we have, since the divergence of 
curl is zero, . Now we clearly see that the lack 
of time dependence has gotten us in trouble, for such an 
equation cannot be relativistically covariant. As argued 
above it must have a fourth component. In fact, using the 
generalization that, when going to 3-space to Minkowski 
space we have t   , we should expect, in 
place of , = 0b 0t     b

a

= . b A a

 a a V V

. The easiest way to 
get this equation is to add the term  to the putative 
equation, so that we have 

                (3) 

Another important property of electromagnetism is 
gauge invariance, and we expect to have gauge invari-
ance in this theory as well. From Equation (2) we see that, 
since the divergence of the curl vanishes, we might try 

 where  is some vector. This means 
that the simplest the potential can be is a vector, and as 
explained above, there must be a fourth component, say 



 . This fits with Equation (3), since the curl of the gra-
dient of a scalar vanishes. Thus we may also consider 

 A A  where   is some scalar. This does not 
quite work however, due to the presence of  in Equa-
tion (3). This is easy enough to correct: we simply add 

 to 

a

V  . With this we have full gauge invariance, 
shown in Figure 1. 

3. The Field 

Now let us try and deduce the field equations. From the 
assumption that they are linear and of second differential 
order in terms of the potential we expect, like E & M, 
equations of the form: Field = DO source. Starting with b, 
once again we look for a DO that turns a vector into a 
vector, and once again the choice is the curl. Thus we 
assume 

= .b N

= 0

              (4) 

An important consequence of this is that N is not totally 
arbitrary. Since the divergence of the curl vanishes, we 
must have N . This will be used later. 

For  , we seek a DO that turns a scalar into a vector. 
Therefore this DO must be the gradient operator, so we 
postulate 

= ,I

= 0

 

but there is a problem. Once again time dependence is 
lost. For example, Newton’s theory of gravitation is time 
independent, which implies forces act instantaneously. 
This violates special relativity and therefore any time 
independent theory cannot satisfy special relativity. Sup-
pose we consider the vacuum equation:  . Now 
consider the identity we found earlier, = 0t   b . 
Since the order of partial differentiation commutes, we 
can take the gradient of this and get, 

  = 0t    b

  = 0b

, 

or with the previous equation,   . Now we 
can use the vector identity 

    2=    b b b

2 = 0 b

2 = 0B B  

=

        (5) 

and equate the last two terms, since the curl of b is zero 
in vacuum. This yields —an unacceptable re-
sult. 

The only assumption that was made was that we are 
considering the vacuum case, but once again time de-
pendence is lost. Checking with E & M for a clue, we 
know that in vacuum the field components obey the wave 
equation, . We can trace this second time 
derivative to Faraday’s law. This is the clue that lets us sus-
pect the postulated equation should be modified so that 

.I b

2

              (6) 

Reproducing the previous steps results in 

b b = 0,                (7) 

an acceptable result. Thus, we have two field equations 
(as opposed to four vector equations of E & M) given by 
Equations (4) and (6). We also recognize (7) as the wave 
equation, and therefore predict that, like electromagnet-
ism, torsion produces waves that travel at the speed of 
light. It may also be shown that the potential satisfies the 
wave equation in the correct gauge [8]. These are sum-
marized in Figure 2. 
 

 

Figure 1. Comparison of fields from a potential and gauge 
invariance. 
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It should be noted that Equation (1) is a solution to 
Equation (4) exterior to the source. This gives rise to the 
field that was discussed in the introduction. We also see 
in retrospect that we did not have to assume such a form 
as Equation (1). Once we took the potential to be a pair 
of vectors, the simplest case excluding known fields, the 
result was inevitable. 

4. Tensor Formulation and String Theory 

Vector formulation in Euclidean space, as done above, 
breaks 4-vectors into the space part and a scalar (in 3D). 
This complicates the mathematics and it turns out many 
things are easier to see in terms of a tensor formulation in 
Minkowski space. For example in electromagnetism we 
start with a 4-vector potential A . A surefire way to 
obtain a tensor is by taking the antisymmetric derivative 

, ,=F A A      ( , =A A x
   ). This holds in Rie-

mannian geometry as well. In this case we started with a 
tensor of rank one, the potential, and generated the field. 
The next simplest approach is to start with a second rank 
tensor, say 

 

  and define the field according 

  , , , ),

1
= (

3
S               (8) 

(the brackets imply taking the antisymmetric part, which 
is written explicitly on the right hand side). The field 
equations are, as before given by some DO on  . The 
obvious choice is x 

j
. We also write the source as an 

antisymmetric tensor 

, =S j

 so that we expect 
 
                  (9) 

(we sum over  ). Gauge invariance is especially easy, 

 , .                   (10) 

as demonstrated in Figure 3. 
The detailed relationship between the 3-vectors and 

the tensor components may be found elsewhere [9]. 
Now let us a consider the string again. In the literature 

the phrase “string theory” usually means “superstring the-
ory” which means “supersymmetric string theory”. Su-
persymmetry postulates a symmetry between bosons and 
fermions. Although they seem to be quite separate, with 
their own conservation laws (conservation of baryon num-
ber, etc.), at high enough energies these transformations 
are expected to occur. The infinities exactly cancel out if 
supersymmetry is invoked, that is, the infinity from the 
boson sector cancels out the infinity from the fermion 
sector (at least at leading order), and the theory may be 
made free of infinities.  

String theorists claim than nothing the theory predicts 
has been shown to be false, making it a viable theory. 
Those who are not taken by the mathematical beauty say 
that nothing that string theory predicts has been observed 
(or worse, everything string theory predicts is wrong). 

 

Figure 2. The field equations and potential in terms of the 
source for electromagnetism and torsion. 

 

 

Figure 3. The tensor fields are given in terms of the source. 
 
These quantities refer to things like the number of di-
mensions in which we must live (10 or 11), and the many 
superpartners, like the neutralino. 

I was dubious, but then I found that strings really do 
fall into gravitation with torsion in a natural way. It all 
starts with the source. Let us look at the conventional (no 
string) multipole expansion of a vector source of elec-
tromagnetism [10], 

3

1
= d 'dn n nA J V J V

c c
    

x
x

x x
    (11) 

where x goes from the origin to the point at which the 
field is evaluated and x' goes from the origin to a point in 
the source. If the divergence of J (we are considering 
magnetostatics here) is zero the first term vanishes and 
the second term may be written such that 

3
=


x

μ x
A                   (12) 

where =x x  [10]. 
The same thing happens for torsion. The easiest way to 

see this is an examination of Figure 4 which compares 
electromagnetism and torsion. The first line shows each 
has a vector source. The second line shows that the curl 
of field in each case is equal to the source. The third line 
represents the source. The delta function insures that the 
particle is traveling along the worldline parameterized by 
x . The second part of the equations show how the 
source density,  ,   are defined. The major differ-
ence is that torsion has an intrinsic vector n . In the 
case of E & M the source is the density multiplied by the 
velocity, but no such equation is allowed for torsion 
since we know that spin cannot be accounted for by mo-
tion. This is why there is the intrinsic vector. With this, 
in the last line of this table we see how the spin is defined, 
integrating the cross product of the position vector with 
the source, , with . 'r ξ
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Figure 4. Comparison of torsion and electromagnetism regarding the source. 
 

From these we may build an area element of the string in 
target space, 

This is very important. It shows that intrinsic spin re-
sults from structure, not from any spinning motion. In 
fact there is a harbinger of this result from quantum me-
chanics. Suppose we picture = *    where   is 
the solution to the Schrödinger equation, for various 
quantum numbers, n and l. If the angular momentum is 
zero ( ) then = 0l   is spherically symmetric. Non-zero 
angular momentum states, while static, are not spheri-
cally symmetric. This suggests that angular momentum, 
quantum mechanically, should be pictured as arising 
from structure. For intrinsic spin, the above shows that it 
results from the structure of the source. 

Originally I did not have a physical picture of the in-
trinsic vector. But when the theory is formulated in 
curved space, the action is the same as that used in string 
theory. It was natural to assume, then, the source of tor-
sion should be the string. This turns out to be right, and 
the intrinsic vector invented above turns out to be the 
tangent vector to the string. 

To see this in particular let us discuss the classical 
string. The string is a natural generalization of a point. 
Suppose we consider the conventional formulation of 
electrodynamics. The action is 

41
d ,

e
g xF F= d d

16π
I m A x

c c
 

       (13) 

where we focus on the first term. This represents a point 
particle traveling along the worldline parameterized by  . 

A string has two coordinates. One is 0 , which is like 
the   coordinate used for the point particle, and the 
other is I  which gives the object length, i.e., makes it 
a string. The string space spanned by these two coordi-
nates is called the parameter space, while the space in 
which we shall make our measurements, described by the 
coordinates x , is called the target space. When the 
string is quantized it is found that the theory only makes 
sense in 26 dimensions for the bosonic string and 10 or 
11 for the fermionic case, but we do not care about that. 
We are establishing a classical theory so we are happy to 
keep to a four dimensional spacetime (target space). 

To reduce indices we will let 0=   and 1=  . In 
the target space a point on the string is  ,x    and we 
can find the tangent vectors by differentiation, 

   
0 1d = d d = d .

x
v v

 , , x  
 

  
 

    (14) 

d = d d
x x x x   

 .  
   

    
     

     (15) 

One may consider that the area between two vectors is 
equal to the magnitude of the cross product, and for any 
given  , 

d d dm

 the terms in (14) are essentially a cross 
product. For details in a very readable account one may 
consult the book by Zwiebach [11]. 

Now, if we want to generalize this first term in (12) to 
a string we have two choices. The first is 

                  (16) 

where the mass m is replaced by the mass per unit length 
 . The second choice is to couple an antisymmetric 
tensor to d    (note that from its definition d  is 
antisymmetric, so only an antisymmetric tensor coupling 
gives non-zero results). 

All this is great news for physics with torsion (as de-
scribed in the introduction). The first choice can be used 
to describe matter and the second term may be coupled to 

 , the torsion potential. This is a very natural coupling 
and was first discovered by Kalb and Ramond [5]. It 
turns out the intrinsic vector is replaced by the tangent 
vector to the string. Thus, the string is a very natural 
source for torsion and, in fact, one may say torsion de-
mands the use of torsion (in general, strings can be open 
or closed. In the following I assume they are closed, so 
that they make tiny loops). 

We may see explicitly why strings give rise to torsion. 
As mentioned above, the coupling is between the torsion 
potential and the area element, so the action has a term 

d .
 

dj

             (17) 

To obtain the field equations variations are taken with 
respect to the potential, so the term multiplying the po-
tential is taken to be the source. For example, without the 
string we used 




j

               (18) 

so that   is the source. With (16) we see that the string 
is the source. This is the beautiful result that strings have 
spin, and give to a theory of classical spin. In fact, it was 
shown that the value of the spin is proportion to area of 
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enclosed by the string, a very geometric result empha-
sizing the earlier remarks that spin arises from structure, 
not rotation [12]. 

5. Physical Manifestations and Summary 

This completes the development of theory, and the first 
question should be, how do we measure it? It has been 
shown that a particle with spin S in a torsion field b has 
the potential energy 

 =   b SU               (19) 

where the coupling constant is written as = 6K k  
where 4= 8πk G c . 

So far torsion has not been discovered experimentally. 
Several searches have been tried [13,14], but these ex-
periments only put an upper bound on the coupling con-
stant. In these searches a potential of the general form 

  2

1 1 2 2=
g

V K K
r

 σ σ 1 2

2r

  
 
 

r rσ σ
    (20) 

was assumed, there 1K  and 2K  atr constants to be 
found and  represnts the spin. For the case of a dipole 
field 2 1

σ
= 3K K

19< 10

. The first notion that may come to 
mind is hydrogen. We should expect the spin one-half 
proton to interact with the spin one-half electron. This is 
not to be confused with the “spin-spin” interaction which 
gives rise to the hyperfine structure. That effect is really 
the “magnetic moment-magnetic moment” interaction. 
The torsion will give rise to an additional splitting. 
However, this is not seen, so we immediately place an 
upper bound on the torsion coupling constant. From the 
experimental data on the energy levels of hydrogen [16], 
we conclude that the energy levels are known to about 
10–10 eV, so that  s/g [15]. More refined ex-
periments find the upper bound to be about three orders 
of magnitude smaller than this [13,14]. More recently 
Qui and Shao have examined this theory and found a 
better bound on the coupling constant [17]. 

K

Although there are other physical manifestations of 
torsion, such as spin flipping [18] and a nonlinear quan-
tum equation [19], recently I gave been working on an 
entirely new approach to measuring torsion. Unlike 
gravitational waves, which take an enormous accelerat-
ing mass to generate waves of appreciable magnitude, the 
power of torsion waves depends on spin. In fact, follow-
ing along the line of E & M, we can calculate the power 
emitted from a source. For N spins flipping at frequency 
 , I found the source emits power proportional to 

2 4N  . The key, therefore is to flip as many spins as 
possible at the highest frequency possible. This approach 
is still in progress, since a source and a detector must be 
selected. 

Two final comments. The first concerns the source of 

torsion, the intrinsic spin. Just as in E & M, or in general 
relativity, the source must be prescribed. It is not enough 
to simply say there are a pair of vectors N and I. This has 
been done in detail elsewhere [20], although subsequently 
I discovered a very beautiful result: The source of the 
torsion arises naturally from strings. Thus, using a string, 
both gravity and spin and be described-the interpretation 
being that strings have spin [12]. This holds in the limit 
that the source is stationary. Thus, intrinsic spin does not 
arise from rotation, but from the geometry of the source. 

The final comment is that this theory is unique within 
the assumptions given. However, there are other theories 
of torsion. In gauge theories torsion is the potential, and a 
field is derived in terms of that. Older work has torsion 
as the link for unified theories and gravity and electro-
magnetism. In the earliest work by Einstein and Cartan, 
called teleparallel theories, the torsion represented the 
matter of spacetime [21]. 
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