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Abstract 
 
We develop the discrete derivatives representation method (DDR) to find the physical structures of the 
Schrödinger equation in which the interpolation polynomial of Bernstein has been used. In this paper the 
particle swarm optimization (PSO for short) has been suggested as a means to improve qualitatively the solu-
tions. This approach is carefully handled and tested with a numerical example. 
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1. Introduction 

Several different methods, analytical and numerical have 
also been formulated and modeled during the past dec-
ades for the study of the solutions of the wave equation 
with different structures. It is known also that for very 
limited potentials, Schrödinger equation is exactly solv-
able [1-6]. 

The latest numerical approach to date is the differential 
quadrature method [1] introduced for energy spectra es-
timate. It was first applied to Schrödinger equation in the 
linear case, where the solution is not correctly reproduced 
in the domain in which strong oscillations can arise, or 
simply for instance in the case of highly excited states. 

Further calculations are pursued for the construction of 
the solution by a suitable choice of the interpolating 
points using the particle swarm optimization (PSO) [7] 
together with the discrete derivatives representation 
method. The aim of the present work is to develop a gen-
eral numerical procedure for the wave equations that is 
universally applicable. 

2. Formulation of the Discrete Derivatives 
Representation Method (DDR) 

In this section, the description of the discrete derivatives 
representation method can be summarized as follows: the 
radial Schrödinger equation in the framework of the 

spherically symmetric potential ( )V r r

=

 is written as 

( ) ( )n l n l

d
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dr
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        (1) 

where m E
2

2e = . We treat the case where the potential is 

central, and the Equation (1) is identified as the reduced 

Schrödinger equation, 
2 2

2m Kw r V r
h r

( ) ( )= +  is the ef-

fective potential where K  is expressed in terms of the 
angular momentum quantum number l  by l l( 1)+ , and 

the radial function n lR r, ( )  is related to ( )n lS r,  by the 

relation ( )n l n lS r rR r, ,( ) = . The radial variable r runs 

from a to b  with a 0>  and b  can be infinite. In 
general, in some problem, the Schrödinger operator re-
quires a change of variables. At this point, we need to 
make a universal transformation on the variable r . 

Let z r( )j=  be the new variable, where r( )j  is a 

smooth invertible function ( r z( )j-= ), and it is also 

easy to see that this definition preserves always the ei-
genvalue equation. 

We can express the solution n lS z, ( )  by making the 

substitution 

ΨasS z S z z z( ( )) ( ) ( )rj- =             (2) 

where we have now dropped the n l,  subscript for sim-
plicity. z( )Y  is a polynomial function in which will be 

defined in the following, asS z( )  is a asymptotic solution 
to be determined, and r  is arbitrary quantity, and can be 



A. ZERARKA  ET  AL.                                     
 

Copyright © 2010 SciRes.                                                                                 JMP 

45

expressed in terms of the parameters of the potential. 
After substitution in (1) it can be verified that the func-

tion z( )Y  must be solution of the equation 

Ψh z( ) 0=                    (3) 

where the differential operator h  is defined by  

d d
h F z A z D z

dz dz

2

2
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for simplicity, we abbreviate as follows 
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Now, we introduce the discrete derivatives representa-
tion method in which any derivative discretized at any 
grid point can be expressed by a linear combination of 
functional values at all discrete points over the interval 

a[ ( )j , b( )]j  of the variable z . 

The term Ψhé ùê úë û  involves the different derivatives and 

can be expressed as a constant coefficient eigenfunction 
combination at all discrete points over the interval a[ ( )j , 

b( )]j  as 

Ψ Ψ
N

ij ji
j

h β z i N
0

( ) for 0,...,
=

é ù = =ê úë û å         (6) 

iz( )F  represents the eigenfunction value at grid point 

iz . The weighting coefficients ijβ  are established with 

the choice of the test function and specifically taken as 
the Bernstein interpolated polynomial of N  th degree as  

( )1 0,1
N j

j
N j

N
B x x x j N x

j, ( ) , 0,..., ,  and 
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(7) 

and the associated sequences jz{ } , 1 j N£ £  of the 

z  -variable linked to Bernstein points j
j N

x =  by the 

relation ( )j jz b a x a( ) ( ) ( )j j j= - + . The term 
N

j
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in (7) denotes the binomial coefficient. A given function 

g x( )  can then be approached using (7) by 
N

N j N j

j

g x g x g x B x,

0
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It follows that from (6,7,8), we can establish the un-

known weighting coefficients ijb  for the total Hamilto-

nian h  as 

ij i ij i ij i ijD z A z F z(0) (1) (2)( ) 2 ( ) ( ) ,b a a a= - -      (9) 

the superscripts 0, 1 and 2 in parentheses do not indicate 
powers, but merely identify the derivatives of the Bern-
stein’s polynomial with which the quantities ija  are 

associated. 

( )

k
N j ik

ij k k

d B x
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dxb a
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( ) ( )
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j j

= =
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   (10) 

Having found the weighting coefficients ijb  in terms 

of the energy, one can accurately solve the following ma-
trix equation and therefore the original problem (1) 

Ψ 0 bé ù =ê úë û                 (11) 

In the above expression, bé ùê úë û  is a ( ) ( )1 1N N+ ´ +  

matrix with elements i jb , and F  is a column vector 
with components 0(Ψ( ),z  1Ψ( ),z ... , Ψ Nz( )) . more 

complete description will be given later on with two spe-
cific examples. 
 
3. Strategy of Particle Swarm Optimization 
 
A new stochastic algorithm has recently appeared, 
namely “particle swarm optimization” PSO. The term 
‘particle’ means any natural agent that describes the 
swarms behavior. The PSO model is an appropriate parti-
cle simulation concept, and was first proposed by Eber-
hart and Kennedy [11-13]. 

In what follows, we present the main steps of the strat-
egy of the PSO algorithm. We assume that each agent 
(particle) i  can be represented in a multidimensional 
search space N  by its current position i iX x 1( ,=  

ix 2, . . .,  iNx )  and its corresponding specific velocity 

,i iV v 1(=  2 ,iv . . . ,  iNv ) . Also a memory of its personal 

(previous) best position is represented by i iP p 1( ,=  

2ip ,  ...,  iNp ) , called (pbest), the subscript i  range 

from 1 to s , where s  indicates the size of the swarm. 
Commonly, each particle localizes its best value so far 
(pbest) and its position, and consequently identifies its 
best value in the group (swarm), called also (sbest) 
among the set of values (pbest). 

Now each particle i  moves according to the following 
system as 
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k k k k k k k k
ij j ij i j i j j i jv w v c r pbest x c r sbest x1

1 1 2 2[( ) ] [( ) ]+ = + - + -  

(12) 
k k k
ij ij ijx v x1 1+ += +               (13) 

where k
ix 1+ , k

iv 1+  are the position and the velocity vec-

tor of particle i  respectively at iteration sequence 
k 1+ , c1  and c2  are acceleration coefficients for each 

term exclusively situated in the range of 2 to 4, jw  is 

the inertia weight with its value that ranges from 0.9 to 

1.2, whereas kr1 , kr2  are uniform random numbers be-

tween zero and one. For more detail, the double subscript 
in the relations (12) and (13) means that, the first sub-
script for the particle i  and the second one for the di-

mension j . The good choice of the inertia weight jw  

is crucial in the PSO success. In the general case, it can be 
initially set equal to its maximum value, and progres-
sively we decrease it if the better solution is not reached. 

In the relation (12), k
ijv 1+  is often replaced by k

ijv 1 / s+ , 

where s  denotes the constriction factor that controls the 
velocity of the particles. 

The features of this algorithm can be summarized with 
the following steps: 

Step 1: Set the values of the dimension space N , and 
the size s  of the swarm ( s  can be taken randomly). 

Step 2: Initialize the iteration number k  (in the gen-
eral case is set equal to zero). 

Step 3: Evaluate for each agent, the velocity vector us-
ing its memory and Equation (12), where pbests and sbest 
can be modified. 

Step 4: Each agent must be updated by applying its ve-
locity vector and its previous position using Equation 
(13). 

Step 5: The steps 3, 4 and 5 can be repeated, succes-
sively until a convergence condition is satisfied. 

The practical part of using PSO procedure is examined 
in the following example. 
 
4. Example 
 
It is interesting to take the same case as in [1] of the 
quasi-exact solutions for the singular even-power anhar-
monic potential to cast a light on the previous and present 
results. 

V r ar br cr a c2 4 6( ) ; , 0- -= + + >       (14) 

a , b and c  are free parameters, whose bound states 
can, of course, be found in closed form [5,6,8]. This  
type of potential has been handled by Varshni [9]. The 
details of the solutions can be found in [9]. The discrete 
points generated with the algorithm examined above, 
have been applied successfully on this examples are listed 
in Table 1. 

With this potential, the results for the first three energy  
levels obtained by the present method, the [1], the nu-
merical integration of the Schrödinger equation, and the 
introduction of an ansatz for the state-function [9] are 
listed in Table 2, where the error tolerance: TOL 810-= . 
With this tolerance and the number of the interpolation 
points N 17= , the PSO results under consideration are 
very satisfactory. The wavefunction R r( )  is displayed in 

Figure 1.This illustration corresponds to following pairs 
of parameter ( c , b ) of Table 2: (10, -30.6637974), and 
(1, -14.2653094) for the first excited state, and the second 
excited state respectively. 

Table 1. The best interpolating points ix  generated by 
PSO algorithm for this example. 

i  ix  i  ix  

1 0.2910 12 2.5975 

2 0.7778 13 2.8191 

3 0.8263 14 3.0029 

4 0.8359 15 3.6242 

5 0.9794 16 3.7235 

6 1.0779 17 3.8154 

7 1.2836   

8 1.6411   

9 1.6526   

10 1.9432   

11 2.3253   

 
Table 2. Values of the energies E0 , E1 , and E2  in a.u. 
obtained for the ground state, the first excited state, and the 
second excited state respectively, (with a 1= , l 0= ), 
where the superscripts a, b, c, and d denote the results ob-
tained by numerical integration of Schrödinger equation: 
[9], by the ansatz for the first three bound states: [9], by the 
[1], and by the present work respectively. 

c 1 10 100 
b –14.2653094 –30.6637974 7.8573936 

0E   

d

c

b

a

8.7857393

8.7857394

8.7857394

8.7857393

 

1E  

d

c

b

a

2.3032559

2.3032559

2.3032559

2.3032559

  

2E

a

b

c

d

2.2653095

2.2653094

2.2653094

2.2653095
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Figure 1. wavefunction R r( )  obtained with the present 

method, where r  is in a.u. for the singular even-power 
anharmonic potential. Full curve ( 10c = , 30.6b = -  
637974 ), first excited state; dash curve ( 1c = , b =  

14.26- 53094 ), second excited state. 

 
5. Comments and Concluding Remarks 
 
In this work we have presented a new formulation that 
uses the PSO algorithm together with the DDR method 
for the computation of the bound-state eigenvalues and 
the associated eigenfunctions of linear differential op-
erators such as the Schrödinger-like equation resulting 
from a quantum system, with which one can receive re-
sults that are not available with the interpolating points 
of Tchebychev type, especially when the wavefunction is 
not smooth. 

Although the previous DDR method with the PSO 
procedure provides substantially better accuracy than the 
conventional Tchebychev’s interpolating points used in 
[1] which are always known to be the only best points 
which permits a good approach of the interpolating func-
tion. The preliminary results, obtained through the use of 
the PSO method, show a good improvement of solutions 
for the example which has been selected here as a testbed. 
For instance, Figure 1 shows graphically the wavefunc-
tion obtained by PSO procedure. Furthermore, the shape 
of the wave functions is preserved for all configurations 
and the error tolerance is 10-8. 
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