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ABSTRACT 

We develop various statistical methods important for multidimensional genetic data analysis. Theorems justifying ap- 
plication of these methods are established. We concentrate on the multifactor dimensionality reduction, logic regression, 
random forests, stochastic gradient boosting along with their new modifications. We use complementary approaches to 
study the risk of complex diseases such as cardiovascular ones. The roles of certain combinations of single nucleotide 
polymorphisms and non-genetic risk factors are examined. To perform the data analysis concerning the coronary heart 
disease and myocardial infarction the Lomonosov Moscow State University supercomputer “Chebyshev” was em- 
ployed. 
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1. Introduction 

In the last decade new high-dimensional statistical methods 
were developed for the data analysis (see, e.g., [1]). Spe- 
cial attention was paid to the study of genetic models 
(see, e.g., [2-4]). The detection of genetic susceptibility 
to complex diseases (such as diabetes and others) has 
recently drawn much attention in leading research centers. 
It is well-known that such diseases can be provoked by 
variations in different parts of the DNA code which are 
responsible for the formation of certain types of proteins. 
One of the most common individual’s DNA variations is 
a single nucleotide polymorphism (SNP), i.e. a nucleotide 
change in a certain fragment of genetic code (for some 
percentage of population). Quite a number of recent stu-
dies (see, e.g., [5,6] and references therein) support the 
paradigm that certain combinations of SNP can in- crease 
the complex disease risk whereas separate changes may 
have no dangerous effect. 

There are two closely connected research directions in 
genomic statistics. The first one is aimed at the disease 
risk estimation assuming the genetic portrait of a person 
is known (in turn this problem involves estimation of 
disease probability and classification of genetic data into 
high and low risk domains). The second trend is to iden- 

tify relevant combinations of SNPs having the most sig- 
nificant influence, either pathogenic or protective.  

In this paper we propose several new versions of sta- 
tistical methods to analyze multidimensional genetic data, 
following the above-mentioned research directions. The 
methods developed generalize the multifactor dimen-
sionality reduction (MDR) and logic regression (LR). 
We employ also some popular machine learning methods 
(see, e.g., [2]) such as random forests (RF) and stochastic 
gradient boosting (SGB).  

Ritchie et al. [7] introduced MDR as a new method of 
analyzing gene-gene and gene-environment interactions. 
Rather soon the method became very popular. According 
to [8], since the first publication more than 200 papers 
applying MDR in genetic studies were written.  

LR was proposed by Ruczinski et al. in [9]. Further 
generalizations are given in [6,10] and other works. LR is 
based on the classical binary logistic regression and the 
exhaustive search for relevant predictor combinations. 
For genetic analysis it is convenient to use explanatory 
variables taking 3 values. Thus we employ ternary vari- 
ables and ternary logic regression (TLR), whereas the 
authors of the above-mentioned papers employ binary 
ones. 

RF and SGB were initiated by Breiman [11] and 
Friedman [12] respectively. They belong to ensemble *Corresponding author. 
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methods which combine multiple predictions from a cer- 
tain base algorithm to obtain better predictive power. RF 
and SGB were successfully applied to genetics data in a 
number of papers (see [2,13] and references therein). 

We compare various approaches on the real datasets 
concerning coronary heart disease (CHD) and myocar- 
dial infarction (MI). Each approach (MDR, TLR and 
machine learning) is characterized by its own way of 
constructing disease prediction algorithms. For each method 
one or several prediction algorithms admitting the least 
estimated prediction error are found (a typical situation is 
that there are several ones with almost the same esti- 
mated prediction error). These prediction algorithms pro- 
vide a way to determine the domains where the disease 
risk is high or low. It is also possible to select combina- 
tions of SNPs and non-genetic risk factors influencing 
the liability to disease essentially. Some methods allow 
to present such combinations immediately. Other ones, 
which employ more complicated forms of dependence 
between explanatory and response variables, need further 
analysis based on modifications of permutation tests. 
New software implementing the mentioned statistical 
methods has been designed and used.  

This work was started in 2010 in the framework of the 
general MSU project headed by Professors V. A. Sadov-
nichy and V. A. Tkachuk (see [14]). MSU supercomputer 
“Chebyshev” was employed to perform data analysis. 

The rest of the paper is organized as follows. In Sec- 
tion 2 we discuss various statistical methods and prove 
theorems justifying their applications. Section 3 is de- 
voted to analysis of CHD and MI datasets. Section 4 
contains conclusions and final remarks. 

2. Methods 

We start with some notation. Let  be the number of 
patients in the sample and let the vector  

1

N

( , , )j j j
nX X X

( 1, , )j N 
  consist of genetic (SNP) and non- 

genetic risk factors of individual j . Here n 
is the total number of factors and j

iX  is the value of the 
i-th variable (genetic or non-genetic factor) of individual 
j. These variables are called explanatory variables or 
predictors. If j

iX  stands for a genetic factor (character-
izes the i-th SNP of individual j) we set 

0,  SNP is homozygous for do

1,   SNP is heterozygous

2,  SNP is homozygous for rec

j
iX


 



minant allele,

essive  allele.

, ,

 

For biological background we refer, e.g., to [15].  
We assume that non-genetic risk factors also take no 

more than three values, denoted by 0, 1 and 2. For exam- 
ple, we can specify a presence or absence of obesity (or 
hypercholesterolemia etc.) by the values 1 and 0 respec- 
tively. If a non-genetic factor takes more values (e.g., 
blood pressure), we can divide individuals into three 

groups according to its values. 
Further on 1

j j
mX X

, ,
 stand for genetic data and 

1
j j

nmX X  for non-genetic risk factors. Let a binary 
variable jY  (response variable) be equal to 1 for a case, 
i.e. whenever individual j is diseased, and to –1 other-
wise (for a control). Set  

 1= , , N  

= ( , ),   = 1, ,  . j j j

 

where 

X Y j N 
1, ,

 
NSuppose    are i.i.d. random vectors. Intro-

duce a random vector  ,X Y  independent of  and 
having the same law as 1 . All random vectors (and 
random variables) are considered on a probability space 
 , , P , F

 := 0,1, 2
n

X

E denotes the integration w.r.t. P. 
The main problem is to find a function in genetic and 

non-genetic risk factors describing the phenotype (that is 
the individual being healthy or sick) in the best way. 

2.1. Prediction Algorithms 

Let  denote the space of all possible values 
of explanatory variables. Any function  : 1,1f  X  is 
called a theoretical prediction function. Define the bal- 
anced or normalized prediction error for a theoretical 
prediction function f  as 

     := EErr f Y f X Y

 : 1,1   R

 

where the penalty function . Obviously 

      
    

= 2 1 P = 1, = 1

             2 1 P = 1, = 1 .

Err f f X Y

f X Y





 

 
     (1) 

 Err f  depends also on the law of  ,Clearly X Y

 

 
but we simplify the notation. Following [8,16] we put 

 1
( ) = ,   1,1 ,

4P =
y y

Y y
  

P( = 1) = 0Y 

 

where the trivial cases  and P = 1 = 0Y  
are excluded. Then 

 1 1
( ) = P ( ) = 1 = 1 P( ( ) = 1 = 1).

2 2
Err f f X Y f X Y    

(2) 
   If P = 1 = P = 1 = 1 2Y Y  a sample is called bal- 

anced and one has    = E 2  .Err f Y f X  There- 
fore in this case  Err f equals the classification error 
  P Y f X

 

. In general, 

 * *1
= E  .

2
Err f Y f X

* *( , )

 

X Y

 

 having the distribution with 

 * * 1
P = , = = P = = ,

2
X x Y y X x Y y  

Copyright © 2012 SciRes.                                                                                  OJS 



A. BULINSKI  ET  AL. 75

   , 1,1  X

 P = 1Y

x y  

The reason to consider this weighted scheme is that a 
misclassification in a more rare class should be taken into 
account with a greater weight. Otherwise, if the probabil-
ity of disease  is small, then the trivial function 
  1f x    may have the least prediction error.  
It is easy to prove that the optimal theoretical predict- 

tion function minimizing the balanced prediction error is 
given by 

     > P = 1 ,

erwise,

Y
*

  1,   
=

1,   oth

p x
f x







        (3) 

where 

  = P = 1 = ,p x Y X x xX

xX
*f x  * = 1.f x 

 = 1

*

.       (4) 

Then each multilocus genotype (with added non-ge- 
netic risk factors)  is classified as high-risk if 

 or low-risk if    = 1
p xSince  and  are unknown, the imme- 

diate application of (3) is not possible. Thus we try to 
find an approximation of unknown function 

 P Y

f  using a 
prediction algorithm that is a function 

  = ,PAPAf f x S

 1,1 xX

 = ,jS j S  

 1, ,S N 

 

with values in  which depends on  and the 
sample 

   

where 

.               (5) 

The simplest way is to employ formula (3) with  p x
 P = 1Y

 

 
and  replaced by their statistical estimates. 
Consider 

    
= 1,

ˆ , =
=

j j
j S

j
j S

I Y X
p x S

I X x
 






=
,  ,

x
xX      (6) 

and take 

    1j
j S

I Y




 

1
P 1

#
S Y

S
               (7) 

where I A  stands for the indicator of an event A and 
#D denotes the cardinality of a finite set D. 

Along with (7) we consider 

    
 
= 1,

,
j j

j

X C

C





.C  X
xX

 for th ators of 

P = 1 = j S
S

j S

I Y
Y X C

I X









 (8) 

for  Thus (6) is a special case of (8) for 
 with . Note that a more difficult way is 

*
 =C x

to search e estim  using several sub- 

samples of  . 
For a give  prn ediction algorithm ,fPA keeping in mind 

(2

 
), we set 

  

f

   { 1,1}

,

1
= P , =  .

2

PA

PAy

f SErr

f X S y Y y




 




   (9) 

If one deals with too many parameters, overfitting is 
likely to happen, i.e. estimated parameters depend too 
much on the given sample. As a result the constructed 
estimates give poor prediction on new data. On the other 
hand, application of too simple model may not capture 
the studied dependence structure of various factors effi- 
ciently. However the trade-off between the model’s com- 
plexity and its predictive power allows to perform reli- 
able statistical inference via new model validation tech- 
niques (see, e.g., [17]). The main tool of model selection 
is the cross-validation, see, e.g., [16]. Its idea is to esti- 
mate parameters by involving only a part of the sample 
(training sample) and afterwards use the remaining ob- 
servations (test sample) to test the predictive power of 
the obtained estimates. Then an average over several 
realizations of randomly chosen training and test samples 
is taken, see [18]. 

As the law of  ,X Y  is unknown, one can only con-
st ruct an estimate    ,PAf S  of  

 
Err

  ,PAErr f S
(EPE) of a prediction algorithm 
. In Section 3 we use the estimated 

prediction error  PAf  
which is based on K-fold cross-validation  1K    
has the form 



and

 

 

   
 

( )

1 ( )1,1

,1 1

2

K PA

j j
K k PA k

j
k= ky

I f X ,ξ S y Y = y

K I Y = y

 

 





 

(10) 

where the sum ( ) .k

ˆ , ,Err f 

 is taken over j belonging to 

  
     

1

< =        ,

k

k N K I k K NI k K
    (11) 

1, ,S k N K   

 = 1, , \k kS N S  and  a  is the integer part of .aR  
Let    1, , ,rk k n

   
1,  . Introduce 

 1 , , 1= = , , ,  = 1, , .k k n k kr i i
C x u u u x i r    

The next result provides wide sufficient conditions for
co

exist a subset U  X  and 
a 

: =uX

 
nsistency of estimate (10). 
Theorem 1. Suppose there 
subset    1, , 1, ,rk k n   such that t wing 

holds: 
1) Fo

he follo

r each xX  and any finite dimensional vector 
v ts bwith componen elonging to  1,  1 , X  functions 

 ,PAf v  and f are constant on k kC x 
1, , r . 
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2) For each x U  and an ,y N

s 
 1 ,W N  with 

# ,NW   one ha     ,PA Nf x W  when f x  a.s.
N  . 

3) Y X   
1 1

P = 1 = ,..., = = P = 1
r rk k k kx X x Y  if  

\ .x U  
4) f ant on \UX . 

, a.s., N  . 
o orem 1  a 

m

X
nstis co

Then ˆ ,KErr f  PA  
rk. If we replace c

  Err f  
ndition 3 Rema of The by

ore restrictive assumption 
3’)   P = 1 = = PY X x Y = 1 for all \ .x UX  then 

 r  ve condit
f is ba

,

we  take 1, ,k k
e proo

 can  to remo ion 1. 
Proof. Th following  

 1, , n
sed on the 

Lemma. Let      m m, ,    1j jZ Y j m m  N  be an  

ar e independent random elements ray of rowwis distrib-
uted as  ,Z Y , where Z takes values in a finite set Z  
and Y  takes values in { 1,1} . Assume that 

  ,  ,  zf z m N Z  rray of randomm

with values in 
is an a  variables 

 1,1 . 
 exists U  Z  such that the following 

co


Suppose there
nditions hold: 
1)  m f z f z  a.s. 

u
for  as m  , 

nonran
all z U ,

{ 1,wh  a ere nction : 1}f  Z .  
2) 

dom f
  P = 1 = P =Y Z z Y .   if 1  \z UZ

3) f  ant o
, 

is const n \ .UZ  
The as ,m   n

 

     
  

   a.s.

m m
m j j

j

m
my

j
j

I f Z y Y y

Err f
I Y y 








(12) 

Proof of   =1
=m

m jI Y y  and 
de

  , = ,m m
j j

=1

1,1

=1

, =
1

2 =

m

 Lemma. Set   m

j
Q y 

fine events 

m     j mA y f Z  y Y y  

  , = .m
jy Y y  

Then the l.h.s. of (12) equals 

     ( )m m
j jB y f Z 

 
  

=1

( ) .
2

m
j

y jm 1,1

1 m

I A y
Q y 

   

For  1,1y  , we have 

 
    

 
    

        

=1

=1

=1

1
   

1
=

P =

1 1
  .

P =

j
jm

m
m

j
j

m
m

j
j m

I A y
Q y

I A y
m Y y

m
I A y

m Q y Y y

 
   

 







   (13) 

The absolute value of the second term in the r.h.s. of 
(1

m
m

3) does not exceed  ( ) 1 P( = ) .mm Q y Y y  and 

tends to 0 a.s. if m  from 
the strong law of la mbers for arrays (SLLNA), see 
[19]. 

Not

. This statement follows 
rge nu

e that 

    
    

             
          

=1

=1

=1

( )

=1

 

1
=

1
  

1
 ( ) .

m
j

j

m
m

j
j

m
m m m

j j j
j

m
m mm

j j j
j

y
m

I B y
m

1 m

I A

I Z U I A y I B y
m

I Z U I A y I B y
m

  

  







(14) 

According to SLLNA the first term in the r.h.s. of (14) 
go



es to   , =P f Z y Y y  a.s. We claim that the sec- 
ond term ed, the set Z  is finite and 
the functions ,

 tends to 0 a.s. Inde
f mf  take only two values. Therefore, by 

condition 1, for almost all  , there exists 
 1 1N N   such that   =m  f z for all z Uf z    

. Hence seco he r.h.s. o ) 
equa all 1>m N , which proves the claim. Thus, it 
remains to estim  third term. 

In view of condition 3, w.l.g. 

and 1>m N nd term in t f (14
ls 0 for 

ate the
we may assume that 

  = 1zf   for \ .z UZ Then we obtain 

 

           
 

        

       

1,1 =1

=1

\ =1

( )
:=

P =

1
     = = 1

1
     = = 1 =

m m m
m j j j

m
y j

m
m m m

j m j j
j

m
m m

m j j
z U j

I Z U B y
V

m Y y

I Z U I f Z R
m

I f z I Z z R
m

 



 



 



 
Z

(15) 

where 

 

I A y I

 
 

 
 

( ) ( )= 1 = 1

P = 1 P = 1

m m
j jm

j

I Y I Y
R

Y Y


 


. 

SLLNA and condition 2 imply that, for \z UZ  
and  1,1 ,y   we have 

    
 

 
   

( )

=1

    
P =

P = , =
= P =

P =

m
j j

j

= =m
m I Z z I Y y

m Y y

Z z Y y
Z z

Y y



 

almost surely. Therefore, for almost all ,   there 
exists  2 2N N  such that 

    

=1

1
= <m m

j j
j

I Z z R
m

m

  

for all \z UZ and 2> .m N  Using the last estimate 
 we finall at, for and (15) y get th 2> ,m N  
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 ( ) #m mV I f z   
\

1 .
z U

 
Z

Z  

Hence V . if m  . Combining (12)-(16) 
.   

f 

0m   a.s
he desiwe obtain t red result

Let us return to the proof o x 1 k KTheorem 1. Fi    
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      f Err f


   

n ,N   which completes the proof of Theorem 1. 

n important problem is to make sure that the predict- 
ti

1

1ˆ , ,
K

K PA
k

Err f Err
K



whe
  

A
on algorithm PAf  gives statistically reliable results. 

The quality of an gorithm is determined by its predict- 
tion error (9) which is unknown and therefore the infer- 
ence is based on consistent estimates of this error. Clear-
ly the high quality of an algorithm means that it captures 
the dependence between predictors and response vari-
ables, so the error is made more rarely than it would be if 
these variables were independent. Consider a null hy-
pothesis 0

 al

H  that X  and Y  are independent. If they 
are in fac epende , then f r any reasonable pre- dic-
tion algorithm 

t d nt o

PAf  an appropriate test procedure in-
volving PAf  sho ld reject 0u H  at the significance level 
 , e.g., . This shows th the results of the al- go-

hm could not be obtained by chance. For such a pro-
cedure, we take a permutation test which allows to 

find the Monte Carlo estimate      = ,p F Err f

 5% at 
rit

 

K PA   

(see [20]) of the true p-value   = ,K PAErr fˆp F  .  

tion (c.d.f.) oHere F is the cumulative distribution f  func
ˆ

KErr  under 0H  and    =F F z  is the corresponding 
e rejecempirical c.d.f. W t 0H  if  .p   For details we 

refer to [21].  
Now we pass to the description of various statistical 

m

ionality Reduction 

lyzing 

e balanced error of a theoretical predict- 
tio

troduced 
in

ethods and their applications (in Section 3) to the car- 
diovascular risk detection. 

2.2. Multifactor Dimens

MDR is a flexible non-parametric method of ana
gene-gene and gene-environment interactions. MDR 
does not depend on a particular inheritance model. We 
give a rigorous description of the method following ideas 
of [7] and [8].  

To calculate th
n function we use formula (2). Note that the approach 

based on penalty functions is not the only possible. Nev- 
ertheless it outperforms substantially other approaches 
involving over- and undersampling (see [8]). 

As mentioned earlier, the probability p(x) in
 (4) is unknown. To find its estimate one can apply 

maximum likelihood approach assuming that the random 
variable  = 1I Y  conditionally on =X x  has a Ber-
noulli dist  with unknown paramribution eter  p x . Then 
we come to (6). 

A direct calculation of estimate (6) with exhaustive 
search over all possible values of x is highly inefficient, 
since the number of different values of x grows exponen-
tially with number of risk factors. Moreover, such a 
search leads to overfitting. Instead, it is usually supposed 
that  p x  depends non-trivially not on all, but on cer-
tain v les xi. That is, there exist ,  < ,l l nN  and a 
vector 

ariab
 * *

1 , , ,lk k  where * *

11 ,k k such 
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   * * * *
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In other words only few factors influence the disease 
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1 , , ,lk k  in formula (17) having minimal l is 
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For x
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where S is introduced in (5). 
Theorem 2. Let  *

l  be the most significant 
co ny fixed

*
1 , ,k k

mbination. Then for a     1, , 1, ,rk k n   
one has 

1)   * * 11
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;
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 
Er

 1, , rk kKErr f   is a strongly consistent asymptoti- 2) 
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ca nbiaselly u te of d estima  1, , rk kErr f   as ;N   
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 “independent rule”. We propose 
m

m
In view of this result it is n ral
mbinations of factors with the smallest EPEs as an 

approximation for the most significant combination.  
The last step in MDR is to determine statistical sig
ance of the results. Here we test a null hypothesis of 

independence between predictors X and response vari- 
able Y. This can be done via the permutation test men- 
tioned in Section 2.1. 

MDR method with
ultifactor dimensionality reduction with “independent 

rule” (MDRIR) method to improve the estimate of prob-
ability  p x . This approach is motivated by [22] which 
deals w assification of large arrays of binary data. 
The principal difficulty with employment of formula (6) 
is that the number of observations in numerator and 
denominator of the formula might be small even for 
large N (see, e.g., [23]). This can lead to inaccurate es-
timates and finally to a wrong prediction algorithm. 
Moreover, for some samples the denominator of (6) 
might equal zero. 

The Bayes form

ith cl

ula implies that  p x equals 
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where the trivial cases  P = 1 = 0Y   and   = 0  P = 1Y

g (20) into e obtain the

* 1),
( ) =

1,  otherwise.
f x

are excluded. Substitutin (3) w  
following expression for the prediction function: 

 1,  P( = | = 1) > P( = | =X x Y X x Y 


(21) 

As in standard MDR method described above, we as- 
sume that formula (17) holds. It was proved in [22] that 
for a broad class of models (e.g., Bahadur and logit mod- 
els) the conditional probability 

 11
P = , , = =rrk kX x X x Y y  

where = 1,y  can be estimated in the following way: 
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here (cf. (8)) 
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


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Combining (17) and (21)-(23) we find the desired es-
timate of * ( ).f x  

A numb ober of servations in numerator and denomi-
nator of (23) increases considerably comparing with (18). 
It allows to estimate the conditional probability more 
precisely whenever the estimate introduced in (22) is 
reasonable. For instance, sufficient conditions justifying 
the application of (22) are provided in [22, Cor.5.1]. 
MDRIR might have some advantage over MDR in case 
when the size l of the most significant combination 
 * *

1 , , lk k  is large. However, MDR for small l can 
e better behavior than MDRIR. 

Thus, as opposed to standard MDR me
demonstrat

thod, MDRIR 
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us

2.3. Ternary Logic Regression 

g the most sig-

es alternative estimates of conditional probabilities. All 
other steps (prediction algorithm construction, EPE cal-
culation) remain the same. As far as we know, this modi- 
fication of MDR has not been applied before. It is based 
on a combination of the original MDR method (see [7]) 
and the ideas of [22]. 
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nificant combinations of predictors as well as estimating 
the conditional probability of the disease.  
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ility of a d  norco onal probabnditi e defined in malized 

sample, where  * *,
iseas
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   ,  .tR  Note that we are going t

ase probability with the help of 
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values of the function estimated. Thus the logistic trans-
form is convenient, as 
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al valu

 functions in 
te

es. 
lued sider

rnary variables 1, , nx x . We call a model of the de-
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vious works

R (m
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uced in (5),  
o pre

o
,tR  and h M . In contrast t  our 
n of L re precisely, TLR) scheme involves 

normalization (cf. (1)), i.e. taking the observations with 
weights dependent on the proportion of cases and con-
trols in subsample 

versio

 ξ S . An easy computation yields 
that  arg minh M L h  equals arg maxh M, S  of the 
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1  

  .j
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ua ntees strong consistency of this 
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lihood estimation of *q . 

The next theorem g ra
timation method whenever the model is correctly spe-
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maxN N 1 2, ,N  here   |x  a= |max xh h X nd 
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By (26) and SLLNA 

N NL h W L

  * *

=E |
Nh hY h X  *

     * *

=| 0  a.s.,
2 Nh hY h X    
1

, EN NL h W 

    * *( ) )  a.s.q X  

Hence 

  * * *   a.s.q X   

This is possi    *h x q x  a.s. r all 
x ,

* *1
, E

2NL q W Y  

  * *

=| E
Nh hY h X Y E

ble only when N fo
X. Indeed, for almost all  we can always take 

a subsequence    ,N Nk k
h h    nverging to some 

function  ,
 co

     with 

   * * *X * *Y   E .Y q X   

Hence, by the inform

E =

ation inequality,    , .q     

 3 we no  To establish the second part of Theorem te

  that    , 2 , > 1 2 1x     converges a.s. 

to      * *2 > 1 2 1f x I q x    for all x U  where 

  

PAf x I h

    

*: : 1 2

   : P 1 1 .

U x p x

x Y X x

  

    

X

X

Then the conclusion follows from Remark afte Theo-
rem 1. The proof is complete.   

1 n

P Y
 

r 

A wide and easy to handle class of models is obtained 
by taking functions linear in variables , , .x x  or/and 
in their products. In turn these functions admit a conven- 
ient representation by elementary polynomials (EP). Re- 
call that EP is a function T in ternary variables 1, , .nx x  
belonging to  0,1,2  which can be represented as a 
finite sum of products 1

1

u un
nx x  where 1, ,u un Z . 

The addition and m ltiplication of ternary variables is 
considered by modulo 3. Any EP can be represented as a 
binary tree in which knots (vertices which are not leaves) 
contain either the addition or multiplication sign, and 
each leaf corresponds to a variable. Different trees may 
correspond to the same EP, thus this relation is not 
one-to-one. However, it does not influence our problem, 
so we keep the notation T for a tree. A finite set of trees 

1( , , )

u

sF T T   is called a forest. For a tree T its com- 
plexity C(T) is the number of leaves. The complexity C(F) 
of a forest F is the maximal complexity of trees consti-
tuting F. It is clear that if gG then there exists 1s   
such that g has the form 

   1 0 1, , = , , ,
=1

s

n i i n
i

g x x T x x      )  (27

here 0 1, , , s   R  and 1, , sT T  are EP. 
Let us say that function g belongs to a class  r sG , 

,s rwhere N , if there exist a deco (27) of g 
less o

mposition 
such that all trees Ti ( = 1, ,i s ) have complexity r 
equal to r. We identify a function  rg sG  with pair 
 ,F   where F is the corresponding forest and 

 0 , , s     is the vector of coefficients  (27). 
Minimization of 

 in
  ,L h S  defined by (25) over all 

functions  rh M s G  is done in two alternating 
dst  the optim

inim
eps. First, we fin al value of  while F is 

fixed (which is the m ization of a smooth function in 
several variables) and then we search for the best F. The 
main difficulty is to organize this search efficiently. Here 
one uses stochastic algorithms, since the number of such 
forests increases rapidly when the complexity r grows. 
For sN , a forest  1, , sF T T   and a subsample 
 S  (see (5)), consider a prediction algorithm F

LRf  
setting 

   
LR

 ,   > 0,
=

1F h
f x

x



 

 ,1,  otherwise

where   ,h F   and 

    0
=1

= arg m , .
s

j j
j

T S


   
 

  


  in L 

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Define also the normalized prediction error of a forest 
 1, , sF T T  as   ˆ

KF Er   LR , ,Fr f    . 

a bina
tex of T toget ith its offspring). The addition and 
m

A subgraph B of a tree T is called a branch if it is itself 
ry tree (i.e. it can be obtained by selecting one ver-

her w
ultiplication signs standing in a knot of a tree are called 

operations, thus * stands for sum or product. Following 
[9], call the tree T   a neighbor of T if it is obtained 
from T via one and only one of the following transforma- 
tions. 

1) Changing one variable to another in a leaf of the 
tree T (variable change). 

2) Replacing an operation in a knot of a tree T with 
another one, i.e. sum to product or vice versa (operator 
change). 

3) Changing a branch of two leaves to one of these 
leaves (deleting a leaf). 

4) Changing a leaf to a branch of two leaves, one of 
which contains the same variable as in initial leaf (split-
ting a leaf). 

5) Replacing a branch 1 2B B  with the branch 1B  
(branch pruning). 

6) Changing a branch B ranch i to a b x B  (branc  
growing), here i

h
x  is a varia

We say that for
ble. 

ests F and F   are ne  if they 
can be written as  1, ,

ighbors

sF T T   and 1 , , sF T T  
where T  and   are neighbo

 
1 1T rs. The neighborhood 

relation defines a finite connected graph on all forests of 
equal size s with complexity not exceeding r. To each 
vertex F of this graph we assign a number ( ).F  To 
find the global minimum of a function defined on a finite 
graph we apply the simulated annealing method (see, e.g., 
[24]). This method constructs some specified Markov 
process which takes values in the graph vertices and 
converges with high probability to the global minimum 
of the function. To avoid stalling at a local minimal point 
the process is allowed to pass with some small probabil- 
ity to a point F having greater value of ( )F  than cur- 
rent one. We propose a new modification of this method 
in which the output is the forest corresponding to the 
minimal value of a function ( )F  over all (randomly) 
visited points. Since simulated annealing performed in- 
volves random walks on a complicated graph consisting 
of trees as vertices, the algorithm was realized by means 
of the MSU supercomputer. 

2.4. Machine Learning Methods 

Let us describe two machine learning methods: random 
ing. They will be 

rmance in a number of studies (see 

[1

forests and stochastic gradient boost
used in Section 3.  

We employ classification and regression trees (CART) 
as a base learning algorithm in RF and SGB because it 
showed good perfo

8]). Classification tree T is a binary tree having the 
following structure. Any leaf of T contains either 1 or –1 
and for any vertex P in T (including leaves) there exists a 
subset PA  of the explanatory variable space ,X  such 
that the following properties hold:  

1) ,PA  X  if P is the root of T.  
2) If rtices Pve   and P  are children of P, then 

P P PA A A    and A   P ØPA  . 

ub rre rm 
the partition of X . A cl  defined by 
tion tree is introduced as s. To obtain a prediction 
of

o 

In particular, s sets co sponding to the leaves fo
assifier a classifica-
follow

 Y given a certain value xX  of the random vector 
X, one should g along the path which starts from the 
root and ends in some leaf turning at each parent vertex P 
to that child P  for which 'PA  

a C m

contains x. At the end 
of the x-specific path, one gets either 1 or –1 which 
serves as a prediction of Y. Classification tree could be 
constructed vi ART algorith , see [18].  

RF is a non-parametric method of estimating condi- 
tional probability  p p x . Its idea is to improve pre- 
diction power of CART tree by taking the average of 
th

es of thi
ese trees grown on many bootstrap samples, see [18, ch. 

15]. The advantag s method are low computa- 
tional costs and the ability to extract relevant predictors 
when the number of irrelevant ones is large, see [25]. 

SGB is another non-parametric method of estimating 
conditional probability  p x . SGB algorithm proceeds 
iteratively in such a way that, on each step, it builds a 
new estimate of  p x  and a new classifier decreasing 
the number of misclassif ases from the previous step, 
see, e.g., [12]. 

Standard RF a GB work poorly for unbalanced 
samples. One needs either to balance given datasets (as 
in [26]) before

ied c

nd S

 these methods are applied or use special 
modifications of RF and SGB. To avoid overfitting, 
permutation test is performed. A common problem of all 
machine learning methods is a complicated functional 
form of the final probability estimate  ˆ ,p x   w.r.t. x . 
In genetic studies, one wants to pick up all relevant com- 
binations of SNPs and risk factors, based on a biological 
pathway causing the disease. Therefo - 
mate 

re, the final esti
 ˆ ,p x   is to be analyzed. We describe one of 

possible methods for such analysis within RF framework 
called conditional variable importance measure (CVIM). 
One c ermine CVIM for each predictor iould det X  in X 
and range all iX  in terms of this measure. Following 
[27], CVIM of predictor iX  given certain subvector 

iZ  of X is calculated as follows (supposing iZ  takes 
values  1, ,i im i

dz z  X  for some  1, ,d n  ). 

1) For each 1, , ,k m   permute randomly the 

elements of 

 i
 : j

i ikikA j Z z   to obtain a vector  
 

 
  1 ,k k

M k , wh # ik
( ) : ,k  ere  M k A sid . Con er a 

Copyright © 2012 SciRes.                                                                                  OJS 



A. BULINSKI  ET  AL. 82 

ve
  1 , 

BN . Ge p sampl

,

ctor 
   , m i . 

2) Let nerate bootstra es 

 1, , :Nl l 

 = ,jb jb
b  ,  = 1, ,X Y j N  , , .b B  

h of th  classifier 

b bf x

= 1

For eac ese samples, construct a CART
 ,  and calculate 

      1
, ,j

b

lj j j
b b b b

j C

I Y f X I Y f X 


   
 

   

| |

b

b

CVIM

C

  ,j j

bX Ywhere   1, , :bC j N   
3) Compute the final CV

 . 
IM using the formula 

1

1 B

b
b

CVIM
B 
 .        (29) 

gorithm 
destro betw

CVIM     

Any permutation  1, , Nl l  in the CVIM al
ys dependence een iX d  , iY Z  where  an

iZ  co  com Xnsists of all ponents of  which are not in 
.iZ At the same time it p itial empirical distri-

bution of  ,i i

reserves in
X Z  calculated for the sample . The av-

erage loss of correctly classified Y is calculated, and if it 
elatively large w.r.t. CVIM of other predictors, then 

i

is r
X  plays important role in classification and vice versa. 

For instance, as .iZ  ( 1, ,i n  ) one can take all the 
components kX  ( k i ) such that the hypothesis of the 
independence between kX  and iX  is not rejected at 

e significance level (e.g., 5%). CVIM-like algorithmsom  
could be used to ra e combinations of predictors w.r.t. 
the level of association to the disease. This will be pub- 
lished elsewhere. 

3. Applications: Risks of CHD and MI 

We employ here 

ng

various statistical methods described 
above to analyze the influence of genetic and non-genetic 

sease 

ation with K = 6. As shown in [16], the 
st

ase data. Note that 
sponding SNP. To 

(conventional) factors on risks of coronary heart di
and myocardial infarction using the data for 454 indi- 
viduals (333 cases, 121 controls) and 333 individuals 
(165 cases, 168 controls) respectively. These data contain 
values of seven SNPs and four conventional risk factors. 
Namely, we consider glycoprotein Ia (GPIa), connexin- 
37 (Cx37), plasminogen activator inhibitor type 1 (PAI-1), 
glycoprotein IIIa (GPIIIa), blood coagulation factor VII 
(FVII), coagulation factor XIII (FXIII) and interleukin-6 
(IL-6) genes, as well as obesity (Ob), arterial hyperten- 
sion (AH), smoking (Sm) and hypercholesterolemia (HC). 
The choice of these SNPs was based on biological con- 
siderations. For instance, to illustrate this choice we re-
call that connexin-37 (Cx37) is a protein that forms gap- 
junction channels between cells. The mechanism of the 
SNP in Cx37 gene influence on atherosclerosis develop- 

ment is not fully understood, but some clinical data sug- 
gest its importance for CHD development [28]. In the 
Russian population homozygous genotype can induce MI 
development, especially in individuals without CHD 
anamnesis [29].  

The age of all individuals in case and control groups 
ranges from 35 to 55 years to reduce its influence on the 
risk analysis. For each of considered methods, we use 
K-fold cross-valid

andard choice of partition number of cross-validation 
from 6 to 10 does not change the EPE significantly. We 
take K = 6 as the sample sizes do not exceed 500. The 
MSU supercomputer “Chebyshev” was involved to per- 
form computations. As shown below, all applied methods 
permit to choose appropriate models having EPE for 
CHD dataset less than 0.25. Thus predictions constructed 
have significant predictive power. Note that, e.g., in [30] 
the interplay between genotype and MI development was 
also studied, with estimated prediction errors 0.30 - 0.40. 

3.1. MDR and MDRIR Method 

Coronary heart disease. Table 1 contains EPEs of the 
most significant combinations of predictors obtained by 
MDR analysis of coronary heart dise
we write the gene meaning the corre
estimate the empirical c.d.f. of the prediction error when 
the disease is not linked with explanatory variables, we 
used the permutation test. Namely, 100 random uniform 
permutations of variables 1, , NY Y were generated. For 
any permutation  1, , N

b bY Y  we constructed a sample  

    1 1, , , ,N N
b b bX Y X Y    

 
Table 1. The mo t combinations obtained by st significan
MDR and MDRIR analysis for CHD and MI data. 

sease Method Factors EPE Di

GPIa, FXIII, AH, HC 0.231

Cx37, AH, HC 0.238MDR 

37, AH, HC GPIa,Cx 0.241

FXIII, FVII, AH, HC 0.240

FXIII, AH, HC 0.242

CHD 

MDRIR 

H 

GPIa, Cx37, AH, HC 0.247

GPIIIa, FXIII, Cx37, A 0.343

GPIIIa, FXIII, FVII, Cx37 0.347MDR 

Cx37, Sm 0.356

Cx37, Sm 0.351

GPIIIa, Cx37, Sm 0.353

MI 

MDRIR 

7, Sm, HC GPIIIa, Cx3 0.355
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and applied the same to this simulated s , 
1,b   ulations the co -

sponding em was not les  
0.42. Thus the Monte three com - 

0.42), which

 in this table) with EPE around 0.24. It fol- 
lo

ethod to a subgroup of individuals who 
w

 and hyper- 
ch

-free sample. Moreover, it fol-
lo

analysis ample
here ,100. In t

pirical p
hese 100 sim

rediction error 
rre

s than
Carlo p-value of all bina

tions was less than 0.01 (since their EPEs were much less 
than  is usually considered as a good per- 
formance. 

Table 1 contains also the results of MDRIR method, 
which are similar to results of MDR method. However, 
MDRIR method allows to identify additional combina- 
tions (listed

ws from the same table that hypertension and hyper- 
cholesterolemia are the most important non-genetic risk 
factors. Indeed, these two factors appear in each of 6 
combinations. 

To perform a more precise analysis of influence of 
SNPs on CHD provoking we analyzed gene-gene inter- 
actions. We used two different strategies. Namely, we 
applied MDR m

ere not subject to any of the non-genetic risk factors, i.e. 
to non-smokers without obesity and without hypercho-
lesterolemia, 51 cases and 97 controls (risk-free sample). 
Another strategy was to apply MDR method to the whole 
sample, but to take into account only genetic factors ra-
ther than all factors. Table 2 contains the most signifi-
cant combinations of SNPs and their EPEs. 

Thus based on coronary heart disease data with the 
help of Tables 1 and 2 we can make the following con-
clusions. Combination of two SNPs (in GPIa and Cx37) 
and two non-genetic factors (hypertension

olesterolemia) has the biggest influence on CHD. Also 
FXIII gives additional predictive power if AH and HC 
are taken into account. 

It turns out that both methods yield similar results. 
Combination of SNPs in GPIa and Cx37 has the biggest 
influence on CHD. EPE is about 0.28 - 0.34, and smaller 
error corresponds to a risk

ws from Tables 1 and 2 that EPE dropped significantly 
after additional non-genetic factors were taken into ac-
count (the error is 0.247 if additional non-genetic factors 
are taken into account and 0.343 if not). 

Myocardial infarction. EPEs of the most significant 
combinations obtained by MDR analysis of MI data are 
presented in Table 1. For all 100 simulations of b  
when the disease was not linked with risk factors, EPE 
w

he

increases EPE. 

Ta

E 

as larger than 0.38. Monte Carlo p-value of all combi- 
nations was less than 0.01. MDRIR analysis of the same 
dataset gave a clearer picture (see the same table), as t  
pair (Cx37, Sm) appears in all three combinations with 
the least estimated prediction error.  

Apparently, combination of smoking and SNP in Cx37 
is the most significant. These two factors appear in all 
combinations in Table 1 concerning MI and MDRIR. 
Involving any additional factors only 

ble 2. Comparison of the most significant SNP combina-
tions obtained by two different ways of MDR analysis of 
CHD data. 

Method Factors EP

MDR on individuals not subject to 
risk factors 

GPIa, Cx37 0.281 

MDR on the whole gr
only gene

oup concerning 
tic data 

G 7 PIa, Cx3 0.343 

 
icit form of the prediction al m based  

C cto nte . 
S ll as homozygote for of 

e SNP in Cx37 provokes the disease. However wild- 
ty

trictions imposed on the statis-

The expl gorith on
x37 and Sm shows that these fa
moking as we

rs exhibit i
recessive allele 

raction

th
pe allele can protect from consequences of smoking. 

Namely, the combination of smoking and Cx37 wild- 
type is protective, i.e. the value of prediction algorithm 
of this combination is –1. 

3.2. Ternary Logic Regression 

We performed several research procedures for CHD and 
MI data, with different res
tical model. Set  

   1 1 1, , , , , , ,n m kX X Z Z R R    

where a vector  1, , mZ Z Z   stands for SNP values 
(in PAI-1, GPIa, GPIIIa, FXIII, FVII, IL-6, Cx37 respec- 
tively) and  1, , kR R R   denotes non-genetic risk 
factors (Ob, AH, Sm, HC), 7,m  4.k   

 four different

s in predictive 
r applications we took 3s

We considered  models in order to ana- 
lyze both total influence of genetic and non-genetic fac- 
tors and losse force appearing when some 
factors were excluded. In ou   
as

nsist

 , , ,Z R T Z Z R       

 search over larger forests for samples with modest 
sizes could have given very complicated and unreliable 
results. 

Model 1. Define the class M (see Section 2.3) co - 
ing of the functions h having a form 

 
s k

h 0 1
1 1

v v m s v v
v v


 

where v R  and vT  are polynomials identified with 
trees. In other words we require that non-genetic factors 
are present only in trees consisting of one variable. 

Model 2. Now we assume that any function h M  
represe  has the ntation

   0 1 1, , , , , ,
s

v v m kh Z R T Z Z R R      
1v

where v R  and vT  are polynomials identified with 
trees. Thus we allow the interaction of genes and non- 
genetic factors in order to find significant gene-envi- 
ronment interactions. However we impose additional 

ons to torestricti avoid o complex combinations of non- 
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genetic risk factors. We do not tackle here effects of in- 
teractions where several non-genetic factors are involved. 
Namely, we consider only the trees satisfying the fol- 
lowing two conditions. 

1) If there is a leaf containing non-genetic factor vari- 
able then the root of that leaf contains product operator.  

2) Moreover, another branch growing from the same 
root is also a leaf and contains a genetic (SNP) variable.  

ob
st e the impo

 simulated annealing search 
of

 error of 0.23 was obtained. Model 
3 

2 2

3 7 1 3

7

)( )

),   

Z Z Z Z

 

with sums and products modulo 3. 
The non-genetic factors 2 and 4 (i.e. AH and H ) are 

the most influential since the coefficients at them are the 
greatest ones (1.311 and 2.331). As is shown above, 

. If the gene-environ- 
m

Models 3 and 4 have additional restrictions that poly-
nomials vT   1, ,v s   in (30) depend only on non- 
genetic factors and only on SNPs respectively. These 
models are considered to compare their results with ones 

tained with all information taken into account, in order 
to demon rat rtance of genetic (resp. non-ge- 
netic) data for risk analysis. 

Coronary heart disease. The obtained results are 
provided in Table 3. 

EPE in Model 1 for CHD was only 0.19. For the same 
model we performed also fast

 the optimal forest which was much more time-effi- 
cient, and a reasonable

application showed that non-genetic factors play an 
important role in CHD genesis, as classification based on 
non-genetic factors only gave the error less than 0.23, 
while usage of SNPs only (Model 4) let the error grow to 
0.34. 

Model 1 gave the minimal EPE. For the optimal forest 
 1 4, ,T R  the function   ,h Z R  given before formula 
(28) with  1, ,S N   is provided by 

1 2 3 1

2 3 4

0.597 0.354 0.521 0.444

1.311 0.146 31 0.226

T T T R

R R R

   


    (31) 

where 

2.3  

1 3 4 6 7 2

2 2

2 1 3 6 7 2 4

2

3 2 2 6 7

( ( )

( ) ( ( )

2 ( )

T Z Z Z Z Z Z

T Z Z Z Z Z Z Z

T Z Z Z Z

   

 

 

7 ,  

C

MDR yielded the same conclusion
ent interactions were allowed (Model 2), no consider-

able increase in predictive power has been detected. How- 
ever we list the pairs of SNPs and non-genetic factors 
present in the best forest: 7Z  and 2R , 7Z  and 1R , 

7Z  and 4R , 5Z  and 1R  We see that SNP in Cx37 is 
of substantial importance as it appears in combination 
with all risk factors except for smoking. 

As formula (31) is hard to i erpret, w  se t 
nifican N via a variant of permutation test. Con-

sider a random rearrangement of the column with first 
SNP in CHD dataset. Calculate the EPE 

nt e lect the mos
sig t S Ps 

using these new 

si

ve by MDR method. 

factors play 
sl

mulated data and the same function h  as before. The 
analogous procedure is done for other columns (contain- 
ing the values of other SNPs) and the errors found are 
given in Table 4 (recall that the EPE equals 0.19 if no 
permutation is done). 

It is seen that the error increases considerably when 
the values of GPIa and Cx37 are permuted. The state- 
ment that they are the main sources of risk agrees with 
what was obtained abo

Myocardial infarction. For the MI dataset, under the 
same notation that above, the results obtained for our 
four models are given in Table 3. To comment them we 
should first note that non-genetic risk 

ightly less important role compared with CHD risk: if 
they are used without genetic information, the error in- 
creases by 0.09, see Models 1 and 3 (while the same in- 
crease for CHD was 0.03). The function   ,h Z R  de- 
fined before (28) with  1, ,S N   equals 

1 2 3 1

2 3 4

1.144 0.914 0.45 0.285

0.675 0.828 0.350 0.0

T T T R

R R R

   

   
 

where 

55

 2
,  ,  T Z Z Z Z Z1 1 3 5 2 7 3 3 4 6 7T Z T Z Z    . 

Thus the first tree has the greatest weight (coefficient 
equals –1.144), the second tree (i.e. SNP in Cx37) is on 
the second place, and non-genetic factors are less impor-

Model 1 2 3 4 

 

tant. 
 

Table 3. Results of TLR. 

EPE for CHD 228 0.340 0.190 0.204 0.

EPE for MI 0.305 0.331 0.391 0.365 

 
Table 4. The SNP significance test for CHD in Model 1. 

SNP permuted EPE 

GPIa 0.263 

Cx37 0.260 

IL-6 0.226 

PAI-1 0.212 

G  PIIIa 0.208 

FXIII 0.202 

FVII 0.190 
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Table 6. EPE/EP ermutation test calculat  cross- 
validation for CHD and MI datasets with em nt of 
RF and SGB methods. 

As for CHD w ormed a permutation t  com-
pare the significance of different SNPs. Its res lts are 
presented in Tab

 

e machine learning methods give too complicated 
estimates of the dependence structure between Y and X, 

-

e perf est to
u

le 5. 
As seen from this table, the elimination of Cx37 SNP

leads to a noticeable increase in the EPE. This fact agrees 
with results obtained by MDR analysis of the same data-
set. 

3.3. Results Obtained by RF and SGB Methods 

Sinc

we have two natural ways to compare them with our me
thods. Namely, these are the prediction error and the final 
significance of each predictor. The given datasets were 
unbalanced w.r.t. response variable and we first applied 
the resampling technique to them. That means enlarge-
ment of the smaller of two groups case-control in the 
sample by additional bootstrap observations until the 
final proportion case:control is 1:1. Note that due to the 
resampling techniques the following effect arises: some 
observations in small groups (case or control) appear in 
the new sample more frequently than other ones. There-
fore, we took the average over 1000 iterations. 

Coronary heart disease. Results of RF and SGB me-
thods are given in Table 6. It shows that RF and SGB 
methods gave statistically reliable results (EPE in the 
permutation test is close to 50%). Moreover, additional 
SNP information improved predicting ability by 13% 
(SGB). It seems that SGB method is fitted better to CHD 
data than RF. 

To compute CVIM for each iX , we constructed a 
vector iZ  as follows. Let iZ  contain all predictors 

jX , j i , for which chi-square criteria rejected inde-
pendence hypothesis between jX  and iX  at 5% sig-
nificance level. Table 7 shows that the most relevant 
predicto for CHD are AH, HC and Cx37. 

 

Table 5. The SNP significance test for MI in Model 1. 

SNP permuted 

rs 

EPE 

Cx37 0.444 

GPIIIa 0.353 

IL-6 0.340 

FXIII 0.328 

FVII 0.324 

PAI-1 0.319 

GPIa 0.305 

E in p ed via
ployme

Disease Data RF SGB 

with SNP 0.200/0.454 0.134/0.473 
CHD 

without SNP 0.230/0.510 0.261/0.503 

with SNP 0.36 97 0.3 30 
MI 

without  

0/0.4 99/0.5

SNP 0.473/0.527 0.482/0.562 

 
Table 7. Predi ed in  CV D 
and

CHD MI 

ctors rang
t. 

terms of their IM for CH
 MI datase

AH 8.90 Cx37 7.50 

HC 5.30 Sm 2.00 

Cx37 5.10 AH 1.86 

F  

G  

P  

Ob 0.56 GPIIIa 0.03 

XIII 0.53 FVII 0.02 

Sm 0.11 FXIII 0 

PIa 0.10 HC 0 

FVII 0.07 GPIa 0 

AI-1 0.03 Ob 0 

GPIIIa 0.02 IL-6 0 

IL-6 0.01 PAI-1 0 

 
M ial infa n. Resul d SGB me-

thods ven in e 6. It s hat RF and SGB 
m hods gave statistically reliable estimates (EPE in the 
pe

 we developed important statistical 
methods concerning the analysis of multidimensional 

 with inde-

of 

yocard rctio ts of RF an
 are gi Tabl hows t

et
rmutation test is close to 50%). Moreover, additional 

SNP information improved predicting ability by 11% 
(RF method). 

CVIM was calculated according to (29) and is given in 
Table 7. Thus, the most relevant predictors for MI are 
Cx37, Sm and AH. 

4. Conclusions and Final Remarks 

In the current study

genetic data. Namely, we proposed the MDR
pendent rule and ternary logic regression with a new ver-
sion of simulated annealing. We compared them with 
several popular methods which appeared during the last 
decade. It is worth to emphasize that all considered methods 
yielded similar qualitative results for dataset under study. 

Let us briefly summarize the main results obtained. 
The analysis of CHD dataset showed that two non-ge- 
netic risk factors out of four considered (AH and HC) 
had a strong connection with the disease risk (the error 
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cl

tio

se requires a more detailed description of indi-
vi

 as well. The study can be continued an
m

, R. Shimizu and V. V. Ulyanov, “Multivari-
ate Statistics: High-Dimensional and Large-Sample Ap-
proximations,” Wiley, Hoboken, 2010. 

[2] S. Szymczak, ell, O. González- assification based on non-genetic factors only is 0.25 - 
0.26 with p-value less than 0.01). Also, the classification 
based on SNPs only gave an error of 0.28 which is close 
to one obtained by means of non-genetic predictors. 
Moreover, the most influential SNPs were in genes Cx37 
and GPIa (FXIII also entered the analysis only when AH 
and HC were present). EPE decreased to 0.13 when both 
SNP information and non-genetic risk factors were taken 
into account and SGB was employed. Note that exclude- 
ing any of the 5 remaining SNPs (all except for two most 
influential) from data increased the error by 0.01 - 0.02 
approximately. So, while the most influential data were 
responsible for the situation within a large part of popu-
lation, there were smaller parts where other SNPs came 
to effect and provided a more efficient prognosis (“small 
subgroups effect”). The significance of SNP in GPIa and 
FXIII genes was observed in our work. AH and HC in-
fluence the disease risk by affecting the vascular wall, 
while GPIa and FXIII may improve prognosis accuracy 
because they introduce haemostatic aspect into analysis.  

The MI dataset gave the following results. The most 
significant factors of MI risk were the SNP in Cx37 
(more precisely, homozygous for recessive allele) and 
smoking with a considerable gene-environment interact- 

n present. The smallest EPE of methods applied was 
0.33 - 0.35 (with p-value less than 0.01). The classifica-
tion based on non-genetic factors only yielded a greater 
error of 0.42. Thus genetic data improved the prognosis 
quality noticeably. While two factors were important, 
other SNPs considered actually did not improve the 
prognosis essentially, i.e. no small groups effect was ob-
served.  

While CHD data used in the study permitted to specify 
the most important predictors with EPE about 0.13, the 
MI data lead to less exact prognoses. Perhaps this com- 
plex disea  

dual’s genetic characteristics and environmental fac- 
tors.  

The conclusions given above are based on several 
complementary methods of modern statistical analysis. 
These new data mining methods allow to analyze other 
datasets d the 

edical conclusions need to be replicated with larger 
datasets, in particular, involving new SNP data. 
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