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ABSTRACT

In this paper we propose a new family of circular distributions, obtained by wrapping discrete skew Laplace distribution
on Z =0, £1, £2, around a unit circle. In contrast with many wrapped distributions, here closed form expressions exist
for the probability density function, the distribution function and the characteristic function. The properties of this new

family of distribution are studied.
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1. Introduction

Circular data arise in various ways. Two of the most com-
mon correspond to circular measuring instruments, the
compass and the clock. Data measured by compass usu-
ally include wind directions, the direction and orienta-
tions of birds and animals, ocean current directions, and
orientation of geological phenomena like rock cores and
fractures. Data measured by clock includes times of arri-
val of patients at a hospital emergency room, incidences
of a disease throughout the year, where the calendar is
regarded as a one-year clock. Circular or directional data
also arise in many scientific fields, such as Biology, Ge-
ology, Meteorology, Physics, Psychology, Medicine and
Astronomy [1].

Study on directional data can be dated back to the 18th
century. In 1734 Daniel Bernoulli proposed to use the
resultant length of normal vectors to test for uniformity
of unit vectors on the sphere [2]. In 1918 von Mises in-
troduced a distribution on the circle by using characteri-
zation analogous to the Gauss characterization of the
normal distribution on a line [2]. Later, interest was re-
newed in spherical and circular data by [3-5].

Circular distributions play an important role in model-
ing directional data which arise in various fields. In re-
cent years, several new unimodal circular distributions
capable of modeling symmetry as well as asymmetry
have been proposed. These include, the wrapped versions
of skew normal [6], exponential [7] and Laplace [8].

Wrapped distributions provide a rich and useful class
of models for circular data.

The special cases of the wrapped normal, wrapped Pois-
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son, wrapped Cauchy are discussed in [9]. We give a
brief description of circular distribution in Section 2. In
Section 3 we introduce and study Wrapped Discrete
Skew Laplace Distribution. Section 4 deals with the es-
timation of the parameters using the method of moments.

2. Circular Distributions

A circular distribution is a probability distribution whose
total probability is concentrated on the circumference of
a circle of unit radius. Since each point on the circum-
ference represents a direction, it is a way of assigning
probabilities to different directions or defining a direc-
tional distribution. The range of a circular random vari-
able ® measured in radians, may be taken to be (0, 27:]
or[-m, x].

Circular distributions are of two types: they may be
discrete - assigning probability masses only to a count-
able number of directions, or may be absolutely continuous.
In the latter case, the probability density function /()
exists and has the following basic properties.

1 £(6)=0

2) [ f(0)do=1

3) f(0)=f(0+2nk), for any integer k. That is
/() is periodic with period 27 .
Wrapped Distributions

One of the common methods to analyze circular data is
known as wrapping approach [10]. In this approach,
given a known distribution on the real line, we wrap it
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around the circumference of a circle with unit radius.
Technically this means that if X is a random variable on
the real line with distribution function F (x), the ran-
dom variable X of the wrapped distribution is defined
by

X, =X (mod2m) )
and the distribution function of X 1is given by
F,(0)= X [F(0+2ak)-F (2nk)
k=-o0

k=0,21,42, -

2

By this approach, we are accumulating probability
over all the overlapping points x =6, 6 +2mn, 0 t4n,--
So if g(0) represents a circular density and f'(x) the
density of the real valued random variable, we have

g(6)= X f(0+2ak),
0<0<2n

By this technique, both discrete and continuous
wrapped distributions may be constructed. In particular,
if X has a distribution concentrated on the points

3

x= k , k=0,£1,£2,---and m is an integer, the prob-
2mm
ability function of X is given by
2ar 2
Prl X =—|= plr+km
( m j k;w ( ) 4)
r=0,1---,m—-1

[T 1)

where “p” is the probability function of the random vari-
able X.

3. Wrapped Discrete Skew Laplace
Distribution

3.1. Discrete Skew Laplace Distribution

Discrete Laplace distribution was introduced by [11]
following [12], who defined a discrete analogue of the
normal distribution. The probability mass function of a
general Discrete Normal random variable Y can be writ-
ten in the form
k
p(Y = k) = wf(—)

2 ) . (5)

Jj==©

k=0,+1,+2,

where “f” is the probability density function of a normal
distribution with mean p and variance o [13].

Using Equation (5), for any continuous random vari-
able X on R, we can define a discrete random variable Y
that has integer support on Z. When the skew Laplace
density
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1 « e, &x<0
f(x)_;1+/(2 _xid
e °, &x=>0

(6)

where, x>0, are inserted into Equation (5), the prob-
ability mass function of the resulting discrete distribution
takes an explicit form in terms of the parameters p~ =

K 1
e o and q =¢ ",

Definition 3.1 A random variable Y has a discrete
skew Laplace distribution with parameters p" < (0,1)
and ¢ €(0,1) denoted by DSL (p*,q*), if

S (k)=P[Y =A]
(1—p*)(1—q*){p*”,k:o,l,z,--- @)

I-pq q*‘x‘,k:O,—l,—Z,---
The characteristic function of Y is given by

_ (1=p7)a=a)
q)(t)_(l—p*eit)(l—q*eit)’IER ®)

In this paper, we study the probability distribution ob-
tained by wrapping discrete skew Laplace distribution on
Z=0, £1,+2,--- around a unit circle.

As we know, reduction modulo 2x wraps the line onto
the circle, reduction modulo 2wm (if m is a positive in-
teger) wraps the integers onto the group of m"” root of 1,
regarded as a subgroup of the circle. That is, if X is a
random variable on the integers, then ®, defined by

© = 21X (mod 27m)

. . . 2nr
is a random variable on the lattice —,r=0,1,---,m—1
m

on the circle. The probability function of ® is given by
Equation (4).

In particular, if X has a discrete skew Laplace distribu-
tion with parameters p° and ¢, then the probability

distribution of the wrapped random variable ® = 2 is
m

given by

2nr

P(@:—J: i p(r+km), r=0,1,---,m-1

m k=—c0
(1 —p)(l _q)q\r#«m\

Il
ek

where p=p’(mod 2nm) and
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q= q (mod 27‘[7’}1)

1
~(r+km) (r+km)
q +P t2.p
1 pq [Z Z }

k k=1

a 1 [(1

prq

1-pq
for r=0,1,---,
Again, we have

m—=1

;}pw(aﬁ

Hence P,(-) represents a probability distribution.

Definition 3.2 An angular random variable “®” is
said to follow wrapped skew Laplace distribution on in-
tegers with parameters p, q and m if its probability mass
function is given by

P 5 | G L T

10)
o | ()]

0351

03

0.25

ot
[

P(theta)

0.15

0.1

0.05

r=0,1,---,
WDSL(p, q, m)

Following are the graphs of wrapped discrete skew
Laplace distribution for various values of x, o and m. In
Figure 1, the graph of the pdf of wrapped discrete skew
Laplace distribution for x = 0.25, 0 = 1 and for m =5, 10,
20, 30, 40, 50 and 100 are given.

In Figure 2, the graph of the pdf of wrapped discrete
skew Laplace distribution for k = 0.5, 6= 1 and for m =5,
10, 20, 30, 40, 50 and 100 are given. The graph of the
pdf of wrapped discrete skew Laplace distribution for x =
0.25, =1 and for m = 5, 10, 20, 30, 40, 50 and 100 are
given in Figure 3.

m—1and p,q €(0,1) and we denote it by

3.2. Special Cases

When either “p” or “q” converges to zero, we obtain the
following two special cases: ©® ~WDSL (p,0,m) with
pe(0,1) is a wrapped geometric distribution with
probability mass function

r

1—
P(@):ﬂ}:m,r:m,...,m_l. (11
m 1-p"

while @ ~WDSL(0,q,m) with ge(0,1) is a wrapped
geometric distribution with probability mass function

Theta (2xpixr)/m

Figure 1. Wrapped discrete skewed Laplace distribution for ¢ =1,
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k = 0.25 and for different values of “m”.
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Figure 2. Wrapped discrete skewed Laplace distribution for ¢ =1, x =0.25 and for different values of “m”.
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Figure 3. Wrapped discrete skewed Laplace distribution for ¢ =1, x =0.25 and for different values of “m”.
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p(@:ﬂj:—(l_q)q_r =0~ =(m=1).  (12)
m 1-¢"

when p = g, we have
P(Qzﬂj_(l—p)(p M0}
m (1+p)(1-p™) (13)
r:0,1,~~,(m—1)

which is the probability mass function of wrapped dis-
crete Laplace distribution.

3.3. Distribution Function of WDSL (p,q,m)
The distribution function, F(0) is given by

F(6)= (1-p)1-9) ‘Im_r(l—p”’)erf(l_qm)
I O O [ I
g (=p)(1-p")+A-g)i - p
(I_Pq)(l—p’”)(l_qm)
r:O,l’...’(m_l).

M=

I
o

»

3.4. Probability Generating Function and
Characteristic Function of WDSL (p,q,m)

The probability generating function of WDSL( p,q,m)
is given by

(15)

If ®(¢) is the characteristic function of a linear ran-
dom variable X, then the characteristic function of the
wrapped random variable, X, is ®(n), for

L) S o) 1-a)o -
P B 1- =) 1- 1- (1=¢™)}(sp)
“ (1-pg)(1-p")(1-¢4") = 7" p)q H=p")(1=¢")+ "M (sp
_ (=p)—g) (=2 ’"—s’”)q+(1—(sp)m)(1—q"’)
(1-pg)(1-p")(1-4") q-s 1-sp
Also, we have P(1)=1. where n =0 (modm)
when s=¢""" we have
P(e(iZnn)/m ) _ (1 —p)(l—q)

(1 _ pe(iZnn)/m )(1 _ qe(—iZnn)/m )

®(n)= E[em@] forn=0,£1,42,--

in2mr
:E{e m }, forr=0,1,....m—1

m-1 l_p 1_q
B )(m ) i
r:o(l—pq)(l—p )(l—q
On simplification it reduces to
(1-p)(1-4)

(1 _ pe(izﬂ")/m )(1 _ qe—i27m/m) ’

(D(n):

Again, we have

)[q'"’r(l—p”’)+p’(1—p’”)(l—q’”)+p'"”(l—q”’)}e "

(1_p)(l_q){Hpq_(p+q)cos(nin)+i(p—Q)Sin(n’inﬂ

n=0,£1,£2,--- [2]. Thus for the wrapped discrete skew
Laplace distribution, we have

(16)

in2mr

n=0,x1,x2,---,n#0 (mod m) (17)

d)(n): (I_P)(l_‘I) _

i2mn —i2mn

I-pe™ —qe " +pq
where
2
(l—p)(l—q)|:l+pq—(p+q)cos(nmnj:|

[l+pq—(p+q>cos(”2”ﬂ +[<p—q)sin(”2”)}
m m
(18)

n
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[ R

and

=a,+if},

(l—p)(l—q)(p—q)sin(njf]

{l+pq—(p+q)cos(nznﬂ +[(p—q)sin(nznﬂ
m m

(19)

n
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Proposition 3.1 /f ® ~WDSL(p,q,m) then ©®d0©, -0,

where O, and ©, are two independently distributed

wrapped geometric random variables with probability

mass functions

r(o-2)= 2UL pfo, -2 o)
m ) 1-(1-p) m ) 1-(1-¢q)

Proof.

We have,

(1-p)(1-9)

1— pe(i21m)/m )(1 _ qe(—iZnn)/m )

n=0,t1,£2,---,n # 0 (modm)

CD@(n)=(

and
Dy, ()= 2, @ (m) =
09 1— pe(iZnn)/m ’ 023 1— qe(iZTm)/m
Therefore,

(1-p)d-9)
Do, o, (1) = (1 _ pe(iZnn)/ml])(l ~ qqe(—iZnn)/m )

=Dq(n)

3.5. Infinite Divisibility

We know that the geometric distribution with probability
mass function, P(X =k)=(1-u)'u,u=0,1,--- is infi-
nitely divisible, so wrapped geometric distribution is
infinitely divisible. Hence ® ~WDSL(p,q,m) is infi-
nitely divisible. By the well known factorisation proper-
ties of geometric law [14], ® ~WDSL (p,q,m) admits a
representation involving wrapped negative binomial dis-
tribution, ©dO, +0©, +---+0O, , k=1,2,--- where ®"/
(=1 v, _VV"Z :

m

(1-p) (1-9)

q)% (n)= (l_pe(i2m1)/m ) (1_qe(—i27w)/m)
= ! !
[1_17‘)/] [l_q‘”j
I-p  1-p l-g 1-¢g
1 1

(A _Be(i21m)/m) (C_De(—iZnn)/m)

where 4,B,C,D>0,A-B=C-D=1 and A:IL,
-p
B = p ’C: 1 ’D: q
1-p, l-g l-q
Therefore,

® ()
0 +0,, +..+0,,

~ ﬁ 1 1
i (A_Be(i2nn)/m) (C_De(fﬂnn)/m)

_ |:(A _ Be(z’27m)/m )(C _ De(—iZnn)/m ):I_k

3.6. Stability with Respect to Geometric
Summation

Proposition 3.2. Let ©,,0,,--- be identically and in-
dependently distributed WDSL (p,q,m) angular ran-
dom variables, and let N, be a geometric random va-
riable with probability mass function (1—u)"u,
k=1,2,--, independent of ©'s. Then the angular

Nll
random variable © d )" © (mod2m) has the WDSL

J=1

Consider (s, r, m) distribution with
s = 2p and r=4
2
p+q+(l—p)(1—q)u+\/[p+q+(l—p)(l—q)u] —4pq} p
Proof. Now we show that the above function coincides with
Let ©,,0,,--- be identically and independently distrib- the characteristic function of WDSL (s, 7, m) distri-

uted angular random variables following WDSL (p,q,m)

and N, is a geometric random variable with mean 1/u .

Conditioning on the distribution of N, we can write the
characteristic function of the right hand side of the above
equation as (Equation (20))

E|:ei(®1 Oy, )(modZn):| _ Z::IE[e,-(@ﬁ..&@k) :|(1_u)k—1 "
u®(p.q.m) (20)
1-(1-u)®(p,q,m)
u(1-p)(1-9)
(1- ™) (1-ge ")~ (1-u)(1- p) (1-q)
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bution with s and r as given above. Setting Equation (20)
equal to ®(n/s, r), which is the characteristic function
of WDSL (s, r, m) distribution, produces the equation

cDu.m (n) = ( (l’;:j) (l_r)—iZJm (21)

l-se™ |(1-re ™ )
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That is, Dividing Equation (23) by Equation (24), we get
i2mn —i2mn _ Sq . . . .
[1 _gem J(l e m J(l —p)(1-q)u r= ? Substituting the value of r in Equation (23) we get
27 —i2n (l—p)(l—q)((usq)/p):(l—s)(l—(sq/p))q (25)
=(1-s)(1-r)||1=pe ™ ||1-ge "
On simplification, Equation (25) reduces to
~(1-u)(1-p)(1-¢q) } g5’ =s[q+p+(1-p)(1-q)u]+p=0 (26)

That is, =gs’—s|g+p+(1-p)(1- +p.
which should hold for each p, ¢. This will happen when e f(s) ® s[q P ( p)( q)u] P

the following two equations hold simultaneously. Since p, ¢>0, f(0)=p>0,and
f(1)=-u(l-p)(1-g)<o0.
(1=p)(1-q)ur=(1-s)(1-7)q (23) Therefore, f(s) admits a unique solution in the in-
(1-p)(1-q)us=(1-s5)(1-7)p (24)  terval (0, 1) and is given by

_ q+p+(1—p)(l—q)ui\/[q+p+(l—p)(l—q)u]2 —4qp

2
1 27)
_ 2p

) q+p+(1—p)(l—q)ui\/[q+p+(l—p)(l—q)u]2—4qp

Remark 3.1. Wrapped discrete skew Laplace distribu- is given by

tion is infinitely divisible since a circular random vari- (1- p)(1-q)
able obtained by wrapping an infinitely divisible random Dy (n) = > P 1 >
variable is infinitely divisible by [1,11] . [1 B pez o ](l B qelmnn]

3.7. Trigonometric Moments . ,
The above expression can also be expressed in the

The n" trigonometric moment of the WDSL (p, q, m) form
(p—q)sin[%j

o (n)=(1-p)(1-9) {{Hpq ~(p+ q)COS(%)T - {(p —q)sin(%tﬂz }_21 e‘[””""m}

i,

=p,e

where p, €[0,1] is the pth mean resultant length and ~ and
4, €[0,27) isthe p th mean direction, for n=1,2,---,

. (p—q)sin(nznj
P, = (1—p)(l—q){[1+pq—(p—i—q)cos((nZn)/m)] u, =tan”' =

o (28) 1+pq—(p+q)(cos[nan
= m

. 2] 2
- 2
i [(p q)sm ((n 7[)/ m)] } The length of the mean resultant vector,

p=p =+ = (1=p)(1-g)

[omiamf ] fomoml]

% l+pq—(p+q)cos(2nj
m

29

and the mean direction,

M= 4 =tan1(
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The circular variance,

Vo=l-p=1-

(1-p)(1-4)

The circular standard deviation,

[emriramf ] rom(]

o W2 el

The measure of skewness,
7 =B, /Ve? where B, =E[sinsin2(©-u)]
The measure of kurtosis,
7= %;VO)A‘ where @, =E|[cos2(0—u)|
0
4. Estimation
Method of Moments

Let 6,,---,0, be a random sample of size n taken from
the WDSL (p,q,m) distribution with parameters p, g,
and m. Then the n" sample trigonometric moment about
the zero direction,

m, =a,+ib, (30)
where
1 k
anzzgcos(né’j) 31
and
1&
b, :Z;sm(nﬁj) (32)

Corresponding population moment is ®(n)=a, +if3,
Equating the sample moments to the corresponding popula-
tion moments, we get «, =a, and S, =b, for
n=1,2,---. Thus, we have

(l—p)(l—q){”l’q_(p+q)cos(2nﬂ

m

a, = 5 (33)

{1 +pa—( p+q)cos(i’:ﬂ2 '{(P_‘I)Sin(z:ﬂ

and
. (1-p)(1-0)(p-g)sin] 2%
ool (2]

(34)

Copyright © 2012 SciRes.

[(1-p)(1-0)]

@9

Using Equations (33)-(34) and for a fixed value of “m
we can find estimates for “p” and “q”.
We have,

l+pq—(p+q)cos[2nj
_ m

1

That is

a, (p—q)sin(%J:bl [1+pq_(1?+q)005(2_n7;ﬂ

which gives
bgcos (2“) —a,gsin (h) -b
m m

p= (33)
b,g—b, cos (2%} —a,sin (2“]
m

m

Substituting the value of “p” in terms of “q¢” in Equa-
tion (33) or in Equation (34) we will get an equation in
“g” and solving that we can find the estimate of “¢” and
thus “p”.
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