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ABSTRACT

The main object of this paper is the mathematical study of the vibration behavior in ultrasonic machining (USM) de-
scribed by non-linear differential equations. The ultrasonic machining (USM) consists of the tool holder and the ab-
sorbers representing the tools. This leads to four-degree-of-freedom system subject to multi-external excitation forces.
The aim of this project is the reduction of the vibrations in the tool holder and have reasonable amplitudes for the tools
represented by the multi-absorbers. Multiple scale perturbation method is applied to obtain the solution up to the second
order approximation and to study the stability of the steady state solution near different simultaneous resonance cases.
The resulting different resonance cases are reported and studied numerically. The stability of the steady state solution
near the selected resonance cases is studied applying both frequency response equations and phase-plane technique. The
effects of the different parameters of the system and the absorbers on the system behavior are studied numerically. Op-

timum working conditions for the tools were obtained. Comparison with the available published work is reported.

Keywords: Passive Vibration Control; Stability; Resonance; Ultrasonic Machining (USM)

1. Introduction

Ultrasonic machining (USM) is of particular interest for
the machining of non-conductive, brittle materials such
as engineering ceramics. Rupinder and Aspinwall [1,2]
introduced a review for the fundamental principles of
stationary ultrasonic machining, the material removal
mechanisms involved and the effect of operating pa-
rameters on material removal rate, tool wear rate, and
work piece surface finish of titanium and its alloys for
application in manufacturing industry. The USM mecha-
nism is dependent on vibration control of the machine
head at resonance, while the tool represented by a dy-
namic absorber is doing the machining. Lim et al. [3]
studied the behavior of the (USM) hypothesized theo-
retical model. The theoretical results showed that con-
trolled variations in the softening stiffness can have a
significant effect on the overall non-linear response of
the system, by making the overall effect hardening, sof-
tening, or approximately linear. Experimentally, it has
also been demonstrated that coupling of ultrasonic com-
ponents with different non-linear characteristics can
strongly influence the performance of the system. Amer
[4] investigated the coupling of two non-linear oscillators
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of the main system and absorber representing ultrasonic
cutting process subjected to parametric excitation forces.
A threshold value of main system linear damping has
been obtained, where vibration can be reduced dramati-
cally. This threshold value can be used effectively for
passive vibration control, if it is economical. This will be
more useful than usual passive control, and active control.
It can be applicable for all excitation frequencies. Asfar,
Eissa, El-Bassiouny and Shitikova [5-16] showed how
effective is the passive vibration control reduction at
resonance. Eissa, El-Bassiouny and Jaensch [17-23]
showed how effective is the active control in vibration
reduction at resonance at different modes of vibration.
They demonstrated the advantages of active control over
the passive one. Eissa et al. [24-26] investigated satura-
tion phenomena in non-linear oscillating systems subject
to multi-parametric and/or external excitations. The sys-
tem represents the vibration of a single-degree-of-free-
dom cantilever or the wing of an aircraft. They reported
the occurrence of saturation phenomena at different pa-
rameters values. They applied saturation values of dif-
ferent parameters as optimum working conditions for
vibration suppression of the cantilever. EI Ganaini et al.
[27-29] studied USM model subject to multi-external or
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both multi-external and multi-parametric and both multi-
external and tuned excitation forces. The model consists
of multi-degree-of-freedom system consisting of the tool
holder and absorbers (tools) simulating ultrasonic ma-
chining process. The advantages of using multi-tools are
to machine different materials and different shapes at the
same time. This leads to time saving and higher machin-
ing efficiency. Besides, devoting all the available energy
in the cutting process. The multiple time scale perturba-
tion technique is applied throughout to get an approxi-
mate solution up to the second order approximation. The
stability of the system is investigated applying both phase-
plane and frequency response function methods. The ef-
fects of the different parameters of the absorbers on sys-
tem behavior are studied numerically. The objective of
this work is to study the model subject to multi-external
excitation forces. The model is represented by a four-
degree-of-freedom system consisting of the main system
(machine head) and three absorbers (tools) simulateing
ultrasonic machining process. The multiple time scale per-
turbation technique is applied throughout to get an ap-
proximate solution up to the second order approximation.
The stability of the system is investigated applying both
phase-plane and frequency response functions. The ef-
fects of the different parameters of the absorber on sys-
tem behavior are studied numerically. Comparison with
the available published work is reported.

2. Mathematical Modeling

The considered model is shown schematically in Figure
1, while Figure 2 illustrates the principles of USM. It
consists of the tool holder and absorbers (tools) simulat-
ing multi-tool ultrasonic machining process represented
by a multi-degree-of-freedom non-linear system. The main
system is exited by multi-external forces as shown in the
following equations:

Xl+2g§lxl+254’2(xl—X2)+2£§3(X1— XS)
+25§4(X1_ X4)*"‘324’5X12 + ol X, + 7, (X, = X,)
+ey, (X = Xy)+ers (X = X, )+ emX]
+;3772(X1—X2)3—i-e3773(X1—X3)3

@
X, +280, (X, = X, )+ @3 (X, = X, ) +ens (X, = X,)’ =0
)
Xy +260, (Xy = X, )+ @f (Xy = X, )+ 5 (X5 = X,)° =0
®)
X, + 2605 (X, = X, )+ @f (X, = X,)+em, (X, = X,)° =0
(4)
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Figure 1. Schematic diagram of USM.
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Figure 2. Response of the main system and absorbers at
simultaneous primary and internal resonance case
Qzw zw,20,20,.

2.1. Perturbation Analysis

Multiple scale perturbation method is conducted to obtain
an approximate solution for Equations (1)-(4). Assuming
the solution in the form:

X, (6) =X (T Ty) + %y (To, ) n=(1,2,3,4) (5)

and the time derivatives became
d d? 2
a: DO+€D1, W: DO +2€D0D1 (6)
where T, = £'t. (n = 0, I) are the fast and slow time scales
respectively.
Substituting Equations (5) and (6) into Equations (1)-
(4), and equating the coefficients of the same power of
¢ in both sides, we obtain

(D5 +of )%, =0 U]
(D§+w;)xm0:w;xlo, m=(2,34) (8)
AM
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(Dg +“)12)X11 =D F cossQT, —2(D, + &, + &, + &3 +¢, ) (DoXyg ) + 245 DoXog + 283D Xa + 24, DyXyg ©)
s=1

_(71“‘72 +73)X10 + 71 %50 + V2 %50 +73X40—771X130 _’72(X10 _X20)3_773(X10 —X30)3—;74(X10 _X40)3

(Dg + a’zz ) Xoy = =204 Dy Xo0 + 286 DyXyg — 285Dy Xy + a)zlel R/ (Xio ~ X% )3 (10)
(D02 + ‘032 ) X1 = =200 Dy Xy +287 Dy Xyg — 287 DyXgp + a’slel 17 (Xio ~ X3 )3 (11)
3

(D02 + o) ) Xg1 = =2Dg Dy Xy + 285D Xy — 285 Do Xyg + @3 X0y +177; (Xig = Xag ) (12)

The solution of Equation (7) can be expressed in the @32
form where E, , = (—’“) A, are complex functions in

Wy — @]
%o = Aexp(ieyT), +cc (13) T,, which can be determined from eliminating the secular
Using Equation (13) into Equation (8) yields terms at the next approximation, and cc, stands for the
conjugate of the preceding terms. Substituting Equations
T, )+E, . ) N
( =An e>;p(| @ To)+ Ensexp(iaTo ) +cc, (14) (13) and (14) into Equation (9), eliminating the secular
=(2,3,4),

terms, then the first order approximation is given by:
X, = Zn:QSl exp(is QT,) + E, exp(i w,T, )+ Egexp(i o, Ty ) + Eg exp(i @, Ty ) + E; exp(3ie T, ) + E; exp(3iew,Ty)
S=1
+Eq exp(3iw,T, )+ Ey exp (i, Ty ) + E;y exp (i (@ + 20,) Ty )+ Ey, exp(i (@ - 20,) Ty )+ Ey, exp(i(2ay + 0,)T,)
+Eyy exp(i (20, - ,) Ty )+ Eyg exp(i (e, + 20, ) Ty ) + Eys exp( i (0, — 2005 ) T, ) + Ep exp(i (20 + @) Ty )
+Ep exp(i (20 — ;) T, ) + Eyg exp (i (@ +200,) Ty ) + E g exp (i (@ — 200, ) Ty ) + Ey exp(i (20 + ) Ty
+Ep exp(i (20, - w,) T, ) +cc
(15)

where Qg and E (s =4, 5,---,22) are complex func- (10)-(12) and eliminating the secular terms to obtain the
tions in T,. From Equations (13)-(15) into Equations solutions are given by:

X,y = ZQSZ exp(isQTy)+ E,y exp(i Ty )+ E, exp(i ;T ) + Eys exp(i @, Ty ) + Ey exp(3io T, ) + E,, exp(3io,T)
)

+ Ege €Xp (3T, ) + Eyg eXp(3i,Ty ) + Eyy exp( i (@, + 2, )Ty ) + Eqy exp (i (@, — 29, ) Ty )+ Esp exp( i(200, + @,) Ty

i(20,— @, )Ty )+ Eyy exp(i (@, + 2003 ) Ty ) + Egg exp(i (@, — 200, ) Ty ) + Eqs €xp (i (209, + @) Ty )
(i(

+Eqyexp(i(
+Eg exp( (20, — ;) Ty )+ Egg exp( i(@, + 20, )Ty ) + Eqe exp(i(@, — 20, )Ty ) + E o exp( i (209, + )T, )
(i(

+Eq exp(i(2m, - w,) Ty ) +cC
(16)

:Zn:stexp(isQTo)+E42exp(ia)1T0)+E43exp(ia)2 To)+Eyexp(io,Ty)+Ez exp(3iaTy )+ E s exp(3iw,Ty)

S=1
+E,; exp(3im,T, )+ E e exp(3ia,T, ) + Eyg exp(i (e, + 20, )Ty )+ Esp exp(i (@, - 20,) T, ) + Es, exp(i (20, + @,) T,
+Eq, exp (i (200, — ) Ty ) + Egy exp( i (e, + 20, )Ty )+ Esy exp (i (0, — 20,) Ty ) + Egs eXp (i (200, + @) Ty))
+ Eqgo exp (i (200, — 03) Ty ) + Es; exp(i (@, + 200, ) Ty ) + Egq eXp (i (@, — 2, ) Ty ) + Esg €xp( i (209, + ) Ty )
(i(

+Eqg exp(i(20, -, )T, )+cC

(7

Copyright © 2012 SciRes. AM
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1 =2, Qs, exp(isQT, )+ Eg exp (i T, ) + Eg, exp (i 0,T, ) + Egs exp (i 0,Ty ) + Eg, exp(3iay T, ) + Egg exp(3iew, Ty )
S=1

+ Egs €Xp(3im,T, ) + Eg; exp(3ier, Ty ) + Egg exp(i (@, + 20, ) Ty ) + Eg eXp(i (@, — 200, ) Ty ) + Eqo exp( i (200, + @,) T,

+E, exp(i(20, - o,)
+Es exp(i(20, - ;)
(i(

+Eqq exp(i (20, — )Ty ) +cc

where Qg, , Qs , Qg and E(s=23:--,
complex functions in T,.

The reported resonance cases at this approximation
order are:

1) Trivial resonance: Q=+w, =+, =+w,
Primary resonance:

Q=+aw, Q

79) are

I

tw, =0.

=tw,, Q=tw, Q=to,

2) Sub-harmonic resonance:
Q=13w,, Q=13w,, Q=13w,, Q=13n,
3) Super-harmonic resonance:

Q=+ /2,Q=z+10,/3, Q=t0,/2, Q= +tw,/3
Q=+w,/2, Q=+, /3, Q=t0,/2, Q=tw,/3
Q=13w,/2, Q=13w,/2, Q=+3w,/2, Q= +30,/2

4) Internal resonance: o, = tw, = tw, = to,,

o, = +3w,,
3w, =5m,, 5o, = 3w,, N :(2,3, 4).

= 13wy, w, = Haog, 0, = 50,

3w, = 5wy, 5w, = 3wy, S :(1,3,4).

Wy = X3w,, 0, = Ho,,0, = 5o, ,

3w, =5, 5w, =3, n :(1, 2,4).

w, =130, o, = 4o, 0, =50,

3w, =5w_, 50, 23w, L :(1,2,3).
o, =t(0,+2w,), o, =+(o £20,), 0, =+ (o, £ 20,)
o, =2t20 tw,), 0, =220, +®;), o, =20, + v,),

n=(1234).

5) Combined resonance:
(o +w,), Q=t(a
Qz+(w-20,), Q= (20, +0,), Q=+(20, - o,)

-—0,), Q= (0, +20,),

6) Simultaneous or incident resonance: Any combina-
tion of the above resonance cases is considered as simul-
taneous resonance.
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(
)To)+Epexp(i(a, +2m,)Ty )+ Eqgexp( i (@, —20,)Ty )+ E,y exp(i (20, + @,) T, )
T, )+ Ersexp(i (@ +20, )Ty )+ E, exp(i (o, - 20,) Ty ) + Eqe exp (i (20, + @, ) Ty )

(18)

2.2. Numerical Results

Table 1 illustrates the selected values of the equations
parameters used in resonance case calculations and its
units.

Table 2 summarizes some of different resonance cases
and the effectiveness of the absorbers.

Figure 2 illustrates the response for the system with
absorber at the simultaneous primary resonance
Q=aw =, =0, = e, . The effectiveness of the absorber
E, (the steady state amplitude of the main system without
absorber/the steady state amplitude of main system with
absorber) is about 7, which means that the maximum
amplitude is reduced to about 14% of its original value.

3. Results and Discussion

One of the effective resonance cases where the tool
holder has low amplitude and at the same time, the ab-
sorbers have high amplitudes is studied in the next sec-
tion.

3.1. Stability of the System

Introducing the detuning parameters o,, o,, o, and

o, in the primary and internal resonance to convert the

small-divisor terms into the secular terms, according to:
Q= +é0,, w, =0+ &0,

(19)
Wy = 0 +E0,, O = 0 +E0,

Table 1. The values of the equations parameters.

Damping coefficients £,=0.01 £,=0.001 £,=0.001 ¢£,=0.001
values (Newton
sec/micrometer) ¢,=0.01 £,=0.01 £;=0.01 £,=0.01

n,=0.01 7,=0.005 7,=0.005 7,=0.005
1,=0.05 7,=0.05 7,=0.05
7,=04 7,=04 ,=0.4

Non-linear
parameters values
(Newton/micrometer)

Natural and Excitation Q
frequencies values —=1, 0= 0,~0,= 0,
(Hertz) @
Excitation

amplitudes values F=4F=2F-=1

(micrometer/sec?)

AM
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Table 2. Summarizes the resonance cases for the tool holder and absorber.

Cases Conditions x/F, X,/F, X, /F, X/F, Remarks*
0zZ0,z0,=0, 12.5% 85% 85% 85% Limit cycle
0,z0,/2=20,%0, 15.5% 50% 118% 118% Limit cycle

o z20,/320,z0, 18.75% 30% 118% 118% Limit cycle

Qzw,

0 z0,/5z0,20, 20% 22% 118 % 118% Limit cycle
0z0,20,/2=0,/3 34% 165% 74% 43% Limit cycle
oz0,20,/320,/5 39% 170% 50% 40% Limit cycle

0z0,z0,=0, 35% 0.4% 0.4% 0.4% Limit cycle
Q=3
020,220, 0, 3.75% 27% 0.45% 0.45% Limit cycle
0z0,=20,=0, 39% 100% 100 % 100% Limit cycle
Q=w/2
0 z0,/2z20,z0, 36% 40% 113% 113% Limit cycle
0 =Z0,=0,Z0, 65% 85% 85% 85% Limit cycle
Q=w,/3
0 z0,/2=0,=0, 63% 67% 85% 85% Limit cycle
0z0,z20,=0, 37% 31% 31% 31% Limit cycle
Q=302
0 z0,/220,%0, 36% 25% 31% 31% Limit cycle

This case represent the system best case and at the secular terms, leads to the solvability conditions for the
same time absorber high amplitude. Substituting Equa- first order approximation noting that A, A,, A, and
tion (19) into Equations (9)-(12) and eliminating the A, are functionsin T, we get

200, [Dy+ 6, + &+ G+ C ) A +(n+ 72+ 75) A+ I ATA +1, (3AZA +6AAR, )
(SR AR o7, (IR +OAAR )~ {24118 47, (KR +6ARA, e
2y Agy + 7,8+ (382A, + 6 ARA) |60 [ 2i0,AL, + 75A, + 7, (3A2A, +6ARA,) €T 0
+[3n, AR |62 3y, A2A, [0 + [ 3, A A e — [ 3y, AZA, Je 70

+[3n, A Je? % —[an AR Je T =0

2i0, [ DA, +yA, |+, (3A2A, + 6AA A, ) [ 37, AZA Je' 7"

. . (21)
~[2iegiA +1s (3R +6ARA ) [ +[3nATA, Je "R ~0
2, [DA + & AL+, (3AR, + 6ARA )~ 3, ATA [ (22)
[z A o, (3K - ARA e [ RATE 7 o
2io, [DA, + GoA ]+ 17, (SATA, +BAAA, )= [ 3, ATA [e”:" 23)
[ziacin o, (KA OARAJ]E " 31, R ] -0
Putting A =%an (T,)e” ™, n=(1,2,34) 24)

Copyright © 2012 SciRes. AM



6 Y.S.HAMED ET AL.

where a, and g, are the steady state amplitudes and tion (24) into Equations (20)-(23) and separating real and
the phases of the motion respectively. Substituting Equa- imaginary part yields,

F . . . .

a, =—+-sing, -T,a +T,cos6, +;sind,+T,cosb, + I sind, + T cosd, +T;sing,
2, (25)
—Iysin26, -Iysing, —T' sin26, -T',,sin@, —-I';,sin26, -T';;sin 6,

F . . .
a8 =——L-cos@ +I,,+T,sing, —T,cos6,+T,sin@, —T, cosd, + T sino,
20, (26)
—-I';cos6, +I'ycos26,-TI'ycosd, +I',,cos26,—I";, cosb, + I, cos26, -, cosb,

a, =—(sa, +I;c050, —T';siné, +T;sin G, +T',55in 26, 27)
a,fB, =Ty —Tgsind, —I';;cosd, —T',, cosb, + 1", cos 26, (28)
a; =—¢,8,+,,c0s6, -, sin6, +T,,sin 6, + T, Sin 26, (29)
a0, =T, —T',sing, T, cos@, —T',, cosf, +I',, C0S 26, (30)
a, =—¢za, +1,: €086, —TSinf, +T,;,5in 6, + T, Sin 26, (31)
a0, =T, —T s sing, —T ,,c0s6, —T',, C0SH, +T ,, COS 26, (32)

where: (I,,T,,---,T,) are defined in the appendix,
6=0T,-B, 6,=0,,+5, -, =01, + -, 6,=0,1,+5, -5 (33)

For steady state solutions, a;, =6, =0, n=(1,2,3,4).
Then from Equation (33), we get:

B =0, ﬂzlz(o'l_o'z)7 ﬂ’3'=(0'l—0'3), ﬂ‘{=(0'l—0'4) (34)
Then it follows from Equations (25)-(32) that the steady state solutions are given by:

F . . . .
2—1sm6?1 -Ta +I,c080,+I,sing,+I",cosd,+I".sing,+I cosd, +I,sind, 35)
—Tysin26, -T'ysin@, —T',sin26, -, sing, -T',,sin26, -T',sing, =0
F . . .
a0, =——=cos@, +I, +T,sing, —T,cos6, +T,sind, —T,cosb, +T;sind, —T', cos 6,
20, (36)
+Igcos26, -I'ycosd, +I'y,cos26, —-T',, cos@, +TI",, cos26, —I';; cosd,

-8, +I';c0s6, —T';;sind, +T';sind, + T sin26, =0 (37)
a,(0,-0,)=I,-Tsinég, - cosé, T, cosb, + ', cos 26, (38)
—§,a,+T,,c050, =T, Sin@, +T ', sinG, +T ', sin26, =0 (39)
a,(0,—03)=T,, —T,sing, —T,, cos@, —T,, cos @, + I, c0s 26, (40)
=458, + T, €050, —T ', Sing, +T,,5iN0, +T,,5iN 26, =0 (41)
a,(0,—0,) =T, —T 8N, —T €056, —T,, C0S G, + T, €05 26, (42)
From Equations (35)-(42) we have the following case: the linear solution of the obtained fixed points will be
(practical case) a, #0,a, #0,a, #0,a, #0 determined as follows. Consider A, in the form:
Table 3 gives the final results of the frequency re-
sponse equations (in Table 3), where K, K,, K;, K,, A = l[ p, —ig,]e""™, n=(1,23,4) (43)
K., K, K, and K, are real functions. The stability of 2= 7

Copyright © 2012 SciRes. AM
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Table 3. Frequency response equations.

Case

Frequency response equations (FRE)

a#0a,#0,a,#0,a,#0

ol +Ko,+K, =0, 02 +Ko,+K, =0, o?+Ko, +K,=0,0°+Ko,+K, =0

where p, and q, arerealand v, =0, Vv, =(0;-0,),
v; =(0,-03) and v, =(o,—0;). Substituting Equa-

tion (43) into the linear part of Equations (20)-(23) and
separating real and imaginary part yields,

) (L +7,+73) 1) 1)
p1+(§1+é’2+§3+§4)p1+ Vl_ /1 272 Vs Q1_ 24’2 p2+LQ2_3_é’3p3
a)l a)l 2&)1 a)l (44)
,
+QQ3_ 4 p4+£q4=0
20, , 20,
, +y,+ F . [0
q1+(§1+§2+§3+§4)q1_ Vl_(yl & }/3)"' ! P, — 242 qz_ipz_a_é’g%
20y 2a,p, @ " 20 ! (45)
a,
e g @iy Vs g
20, @, 20,
’ a) ’
p2+§ep2+vzq2_ 14/6 p1:0 (46) q4+é/sq4_v4p4_w1§8 quO (51)
2 4
, The eigenvalues of the above system of equations are
Oz + Gl ~Vo P, — e G =0 (47) " given by the equation
2
ol A2+ +0,2° + 2+ A+ A+ AP A+ =0
p?’, + 417 p3 +V3q3 ——2r pl =0 (48) (52)
@ where, (r,r,,---,1;) are functions in the parameters
' g, (8, 3,,83,8,, @, @y, W3, W3,0,,0,,03,04,51,65,53:5 4
G + 6705 ~VaPs — © 4 =0 (49) V.V 7s B 6,,6,,0,,0,). According to the Routh-Huri-
’ witz criterion, the necessary and sufficient conditions for
' all the roots of Equation (52) to possess negative real
Pa+Ca P + Ve ~ ey P =0 (50) parts if andsonly ifqu 1on (52) fo possess negaity
4 1 1
K9 KlO Kll KlZ Kl3 K14 K15 KlG
- K17 Kg - K12 K11 - K14 K13 - K16 - KlS
Kig 0 A+ v, 0 0 0 0
D 0 Ke -V, A+ 0 0 0 0 (53)
Ke O 0 0 A+S, Vv, 0 0
0 Ky 0 0 -V, A+, 0 0
Ky O 0 0 0 0 A+Sy v,
0 Ky 0 0 0 0 -V, A+

and all its principle minors are positive. K,---,K,, are
real functions.
3.2. Numerical Results

Figures 3(a) and 4(a) shows that the effects of the detun-
ing parameters o,,0,,0, and o, on the steady state
amplitudes of the main system a and absorbers a,,

Copyright © 2012 SciRes.

a, and a, for the stability of the practical case where
a #0,a,#0,a,#0 and a, #0. For different values
of the damping coefficients ¢, , the non-linear parame-
ters 77,, (n =1, 2, 3,4 ) and the non-linear parameters
Vm» (M =2, 3, 4) the effects are trivial as shown in Fig-
ure 3(b). From Figure 3(c) we find that the steady state
amplitude of the tool holder is a monotonic increasing
function in its excitation amplitude F, with an increase

AM
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5 30 |-

2

5 25
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= 20 | 1

3 15

3

= 1,

o

g 5
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amplitude(al) (micrometer)

o,

()

in the unstable region of the solution.

The steady state amplitude of the tool holder is a
monotonic decreasing function in the natural frequencies
w,, (n=1, 2, 3, 4) with a decrease in the unstable region
of the solution as shown in Figure 3(d).

Now the effect of the detuning parameters o,, o,
and o, on the steady state amplitude of the tools
a,,a, and a, isshown in Figure 4(a).

For different values of the damping coefficients ¢;, (i
=6, 7, 8), the effects on the steady state amplitudes of the
tools are trivial as shown in Figure 4(b). For different
values of the non-linear parameters 7, , (s =5, 6, 7), the
steady state amplitude of the tools are monotonic in-
creasing as shown in Figure 4(c). Figure 4(d) shows that
the steady state amplitude of the tools is a monotonic
decreasing function in the natural frequencies «,,, (M =
2, 3, 4) and the region of unstable solution is decreasing.
For all figures no jump phenomena was observed.

4. Conclusions

The vibrations of a four-degree-of-freedom non-linear
mechanical system and absorbers are investigated. The
physical motivation for the system stems from applica-

Copyright © 2012 SciRes.
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(d

Figure 3. Response curves (different parameters against o, ).

tions in ultrasonic machining in which an exciter (ma-
chine head) drives tuned blades (absorbers) having both
linear and cubic non-linearities. In the present work, we
considered multi-tools which allow the machining of
different materials and different shapes in different or
one workpiece the vibration of ultrasonic machine head
can be controlled via non-linear absorbers. Multiple time
scale perturbation technique is applied to determine
semi-closed form solutions for the coupled deferential
equations describing the system up to the second order
approximations. To study the stability of the system, both
the frequency response equations and the phase-plane
technique are applied. From the above study the follow-
ing may be concluded.
1) Optimum working conditions at Q = @,

o =, = w, = o, , Where the vibration of the tool holder
is suppressed to about 12.5% of the original amplitude,
and the three tools have reasonable amplitudes.

2) For different values of the damping coefficients ¢, ,
the non-linear parameters 7,, (n = 1,2,3,4) and the
non-linear parameters y,, (m = 2, 3, 4) we find the ef-
fects of these parameters on the steady state amplitude of
the tool holder are trivial and same effects have been

AM
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5=(56,7)

amplitude(am) (micrometer)

amplitude(am) (micrometer)

amplitude(am) (micrometer)

£ =+0.01, 0.1 30

i=(6,7.,8) 25

-15 -5 5 15

m

-5

-3 -1 1 3 ]

()

Figure 4. Response curves (different parameters against o,,, m = (2, 3, 4)).

obtained for the damping coefficients ¢;, (i=6, 7, 8) on
the steady state amplitude of the three tools.

3) The steady state amplitude of the tool holder is a
monotonic decreasing function in the natural frequencies
@,, (n =1, 2, 3, 4) with decreasing in the region of un-
stable solution.

4) The steady state amplitude of the tool holder is a
monotonic increasing function in its excitation amplitude
F, with increasing in the region of unstable solution.

5) The steady state amplitude of the tools is a mono-
tonic decreasing function in the non-linear parameters
7, , (s =5, 6, 7) and the natural frequencies «,,, (M =2,
3, 4) and the region of unstable solution is decreasing.

6) To make use of machine capability, multi-tools are
used to save both time and power.

7) The reported results are in a good agreement with
References [3,4] regarding the amplitude reduction.
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Nomenclature

c,, (n =1, 2, 3, 4). The damping coefficients of the
system and the absorber.

k,, (m=1, 2, 3, 4). The stiffness of the system and
the absorbers.

h,, (m=1, 2, 3, 4). The non-linear parameters of the
system and the absorber.

Fio Q; (=1, 2 3). The excitation amplitudes and
frequencies.

m,,m,m,, m,. The masses of the system and the ab-
sorber.

¢,=c,/2m , (n=1, 2,3, 4). The linear damping fac-
tors of the system.

{s=C;/m,. The quadratic damping factors of the

11

system.

¢s=C,/2m,, ¢, =c;/2m,, ¢ =c,/2m,. The damping
factors of the absorbers.

N =hy/m ., (m=1,2, 3, 4). The coupling non-linear
parameters of the system.

s =h,/m,,ns =h;/m;, 7, =h,/m,. The non-linear para-
meters of the absorbers.

w’ =k,/mg, (s =1, 2, 3, 4). The natural frequencies
of the system and absorbers.

o=k /m,y, =k, /m_, 7, =k;/m,. The stiffness of the
system.

X, i = (1, 2, 3, 4). Displacement of both system and
absorber.
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