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ABSTRACT 

In this paper we shall obtain some interesting extensions and generalizations of a well-known theorem due to Enestrom 

and Kakeya according to which all the zeros of a polynomial   1
n

nP z a z a z a0     satisfying the restriction 

 lie in the closed unit disk. 1 1 0 0n na a a a    
 
Keywords: Polynomial; Bounds; Zeros 

1. Introduction and Statement of Results 

The following results which is due to Enestrom and 
Kakeya [1] is well known in the theory of the location of 
the zeros of polynomials.  

THEOREM A. Let 

  1
1 1

n n
n nP z a z a z a z a

     0 , 

be a polynomial of degree n, such that 

1 1 0 0n na a a a     ,           (1) 

then  does not vanish in  P z 1z  . 
In the literature [2-5] there exist some extensions and 

generalization of Enestrom-Kakeya Theorem. Joyal, La-
belle and Rahman [6] extended this theorem to polyno-
mials whose coefficients are monotonic but not necessar-
ily non-negative by proving the following result:  

THEOREM B. Let 

1 1...n na a a a    0

0

 

then the polynomial  

  1
1 1

n n
n nP z a z a z a z a

      

of degree n has all its zeros in 

 0 0

1
n

n

z a a a
a

   

0

            (2) 

Recently Aziz and Zarger [7] relaxed the hypothesis in 
several ways and among other things proved the follow-
ing results:  

THEOREM C. Let  

  1
1 1

n n
n nP z a z a z a z a

      

be the polynomial of degree n, such that for some k ≥ 1, 

1 1 0 0n nka a a a                (3) 

then P(z) has all its zeros in  

1z k k                   (4) 

The aim of this paper is to prove some extensions of 
Enestrom-Kakeya Theorem (Theorem-A) by relaxing the 
hypothesis in various ways. Here we shall first prove the 
following generalization of Theorem C which is an in-
teresting extension of Theorem A. 

2. Main Results 

THEOREM 1.1. Let 

  1
1 1

n n
n nP z a z a z a z a

 0     , 

be a polynomial of degree n. If for some positive num-
bers k and   with k ≥ 1, and 0 1    

1 0 0n nka a a                 (5) 

then all the zeros of P(z) lie in the closed disk 

02
1 1

n

a
z k k

a
                  (6) 

If we take 1 1,n

n

a
k

a
  in Theorem 1.1 we obtain the  

following result which is a generalization of Corollary 2 
([7]). 

COROLLARY 1. Let 

  1
1 1

n n
n nP z a z a z a z a

 0     , 

be a polynomials of degree n. If for some positive real 
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number , 0 1     

1 2 0 0n n na a a a               (7) 

then all zeros of P(z) lie in 

 1 1 02
1 1n n

n n n

a a a
z

a a a
       

REMARK 1. Theorem 1.1 is applicable to situations 
when Enestrom-Kakeya Theorem gives no information. 
To see this consider the polynomial.  

     11 1n nP z z z z ,           

with 1   is a positive real number. Here Enestrom- 
Kakeya Theorem is not applicable to P(z) where as Theo-  

rem 1.1 is applicable with 
1

1,
n

k
n

 
   and accord-  

ing to our result, all the zeros of P(z) lie in the disk. 

1
1 , 1z 


   .  

which is considerably better than the bound obtained by a 
classical result of Caushy ([4]) which states that all the 
zeros of P(z) lie in  

1z A   

where  

1max ,n j
j n

n

a
A

a


   

Next, we present the following generalization of cor-
ollary 1 which includes Theorem 4 of [6] as a special 
case and considerably improves the bound obtained by 
Dewan and Bidkham ([8], Theorem1) for t = 0 and  

. 0 1k n  
THEOREM 1.2. Let 

  1
1 1

n n
n nP z a z a z a z a

     0 , 

be a polynomial of degree n. If for some positive number 
, 0 1  
,0 n

and for some non-negative integer  
1     

1 1 1 1n na a a a a a a   0,             (8) 

then all the zeros of P(z) lie in 

  1
1 0

1
1 2 2n

n
n n

a
z a a a

a a   
       0a   (9) 

Applying Theorem 1.2 to P(tz), we get the following 
result: 

COROLLARY 2. Let 

  1
1 1

n n
n nP z a z a z a z a

 0     , 

be a polynomial of degree n. If for some positive num- 
bers t and   with 0. 1  , 

1
1 1

n n
n nt a t a t a ta t a

 0
        

where , 0 1n     is a non negative integer then 
all the zeros of P(z), lie in  

  1 1
0 0

2 1
2n n

n n
n n

a a at
z t a a

a a tt t

  



          
  

 

If we assume a0 > 0, in Theorem 1.2, we obtain. 
COROLLARY 3. Let 

  1
1 1

n n
n nP z a z a z a z a

 0     , 

be a polynomial of degree n. If for some positive num-
bers , 0 1    and for same non-negative integer ,  
0 1n    

1 1 0n na a a a a 0         

then all the zeros of P(z) lie in,  

  1
1

1
1 2 2 1n

n
n n

a
z a a

a a  
      0a     (10) 

Finally we present all following generalization of 
Theorem B due to Joyal, Labelle and Rahman which 
includes Theorem A as a special case.  

THEOREM 1.3. Let 

  1
1 1

n n
n nP z a z a z a z a

 0     , 

be a polynomial of degree n, It for some positive number 
,0 1  
,0 n

 and for some non-negative integer  
1     

1 1n na a a a a 0        

then all the zeros of P(z) lie in 

  02 2n

n

a a a a
z

a
 0    

          (11) 

REMARK 2. For 1  , Theorem 1.3 reduces to 
Theorem B.  

3. Proofs of the Theorems 

PROOF OF THEOREM 1.1. Consider  

         
     

1
1 1 0 0

1
1 1 0 0

1 ,

        1

n n
n n n

n n n n
n n n n n

F z z P z a z a a z a a z a

a z a z ka z ka a z a a z a z a 







         

           



 0
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then for 1,z  we have 

       

       

  

1
1 1 0 0 0

0 0
1 1 2 0 0

0 0 0

1

1 1
           1 1

1
           1 1

           

n n n n
n n n n n

n

n n n n n n n
n

n

n n
n

n

n

F z a z a z ka z ka a z a a z a z a

a a
a z z k ka a a a a pa z

a z z z

a z z k ka a a a
a

a z z

 



 




  

           

  
             

   
 

        
  

 





  

 

0 0 0

0

1
1 1 0,

2 1
if 1

n
n

n

n

k ka a a a
a

ka a
z k

a

 



 
       

 
 

  

 

 
this shows that if 1z   then   0F z  , if 

  01 2 1
n

a
z k k

a
      

therefore all the zeros of F(z), whose modulus is greater 
than 1 lie in the closed disk 

  01 2 1
n

a
z k k

a
      

But those zeros of F(z) whose modules is less than or 
equal to 1 already satisfy the Inequality (6). 

Since all the zeros of P(z) are also the zeros of F(z). 
therefore it follows that all the zeros of P(z) lie in the 
circle defined by (6). Which completes the proof of Theo- 
rem 1.1. 

PROOF OF THEOREM 1.2. Consider 

     
   

     

1
1 1 0

1 1
1 1 1 1

1

        1 ,

         

n n
n n

n n
n n n

F z z P z

z a z a z a z a z a

a z a a z a a z a z z a z a z a




 
    




 
   

 

       

           

 

  0 0

 

therefore, for 1, 1,z n    and 0 1  ,we have 

       
   

1 1 1
1 1 2 1 1

1 0 0 0 0

1
1 2 1 11

1 0 1

              

1 1
         1

1
              1

n n n n
n n n n n

n nn
n n n n n

n

n

1

F z a z a z a z a a z a a z a a z

a a z a a z a

a
a z z z a a a a a a

a z z z

a a a
z

 
   

    

 

 

  
    


     



         

     

         


    









     

      

  

0
0 1

1
2 1 3 2 1

1 1 0 0 0

1
1 0 0

11

1

1
         1

           1

1
         1 2 2 0,

2 (2
if  1

n n

n n
n n n n n

n n

n n
n n

n n

nn

n

a

z z

a
a z z a a a a a a

a a

a a a a a a

a
a z z a a a a

a a

a aa
z

a

 

 





 

 






    








 



        




        


 
         

  
  

  



0 0)

n

a a

a



 

 
Therefore all the zeros of F(z) whose modulus is greater than 1 lie in the circle.  
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 1 01
2 2

1 nn

n n

a a a aa
z

a a
 0     

    

But those zeros of F(z) whose modulus is less than or 
equal to 1 already satisfy the Inequality (9). 

Since all the zeros of P(z) are also the zeros of F(z), 
therefore it follows that all the zeros of P(z) lie in the 
circle defined by (9). This completes the proof of Theo-
rem 1.2.  

PROOF OF THEOREM 1.3. Consider 

     
  

     

1
1 1 0

1 1
1 1 1 1 0

1

        1 ...

        

n n
n n

n n
n n n

F z z P z

z a z a z a z a z a

a z a a z a a z a a z a z a z a




 
   




 
  

 

       

           



  0

 

therefore, for 1, 0 1 and 0 1,z n       we have 

     1
1 1 1

n n
n n n 0 0F z a z a a z a a z a z a z a

 


           

 
Proceeding similarly as in the proof of Theorem 1.2, 

we have  

 
  

 

0 0

0 0

2 2
0,

2 2
if 

n

n n

n

n

n

a z z a a a a
F z

a

a a a a
z

a





 

 

    


   



 

therefore all the zeros of F(z) whose modules is greater 
than 1 lie in the circle 

    0 02 2n

n

a a a a
z

a
     

  

But those zeros of F(z) whose modulus is  already 
satisfy the (11). Since all the zeros of P(z) are also the 
zero of F(z), therefore it follows that all the zeros of P(z) 
lie in circle defined by (11) and hence Theorem 1.3 is 
proved completed. 
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