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ABSTRACT 

We demonstrate a new technique for calculating proton-proton inelastic cross-section, which allows one by application 
of the Laplace’ method replace the integrand in the integral for the scattering amplitude in the vicinity of the maximum 
point by expression of Gaussian type. This, in turn, allows us to overcome the computational difficulties for the calcula-
tion of the integrals expressing the cross section to sufficiently large numbers of particles. We have managed to over-
come these problems in calculating the proton-proton inelastic cross-section for production ( ) number of secon-

dary particles in within the framework of 

8n 
3  model. As the result the obtained dependence of inelastic cross-section 

and total scattering cross-section on the energy s  are qualitative agrees with the experimental data. Such description 
of total cross-section behavior differs considerably from existing now description, where Reggeons exchange with the 
intercept greater than unity is considered. 
 
Keywords: Inelastic Scattering Cross-Section; Total Scattering Cross-Section; Laplace Method; Virtuality;  
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1. Introduction 

The problems of the inelastic scattering cross-sections cal- 
culation have been discussed in details in [1]. As the re- 
sult of approximations, which are usually made to over- 
come these difficulties [2-5], are obtained the integral over 
the areas of phase space, where different points correspond 
to different values of the energy-momentum, but at the same 
time they come to the equation with equal weights. There- 
fore, the energy-momentum conservation law does not con- 
sider reasonably.  

Besides, the virtualities, in the equation for the ampli- 
tude, reduced to values of the square of transversal com- 
ponents particles momentums [6], meanwhile the rest 
components of virtualities are not insignificant and ap-
pear as quite essential [1].  

These approximations are based on the assumption that 
the main contribution to the integral makes the multi-Regge 
domain [7]. This assumption is crucial for the modern ap- 

proaches to the description of inelastic scattering proc- 
esses [8]. However, the obtained results in [1] lead to the 
conclusion that main contribution in the integral does not 
make the multi-Regge domain.  

The aim of this paper is to propose an alternative me- 
thod for calculating inelastic scattering cross-sections based 
on well-known Laplace’ method for the multidimensional 
integral [9]. In order to apply this method it is required the 
element of integration has the point of maximum within 
integration domain. It has been shown [1] that for the dia- 
grams of “comb” type with the accurate energy-momen- 
tum conservation law calculation the square of scattering 
amplitude module is really has that maximum.  

Analysis of the properties of this maximum led to the 
conclusion that there is the mechanism of cross-section 
growth. This mechanism has not been considered previ- 
ously, due to the above approximations associated with 
the multi-Regge kinematics. Now we would like to show 
that this mechanism can be responsible for the experimen- 
tally observed behavior of cross sections dependence 
with energy*Corresponding author. s . However, application of Laplace’s me- 
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thod to the processes of production of large number of 
secondary particles faces the challenge of accounting the 
vast amount of interference contributions, which will be 
discussed in detail in Section 3 of this work. In fact, there 
are  of these contributions for the process with produc- 
tion of n secondary particles. Therefore, in the present 
paper we were able to calculate all interference contribu- 
tions to the production of  secondary particles. 

!n

8n 
Typically, these contributions are underestimate, because 

according to the considering assumption that particles on 
the “comb” strongly ordered in rapidity [3] or strongly 
ordered in Sudakov’s parameters [4], they should be neg-
ligible.  

However, later in this paper, we show that these con- 
tributions are significant and the contribution from the 
square modulus of just one “comb” type diagram with ini- 
tial particles arrangement, which are usually limited, is 
only a small fraction of the sums of all interference con- 
tributions. Despite the fact that it was possible to calcu- 
late the partial cross sections only for small amounts of 
secondary particles, we can achieve qualitative agreement 
with experimental results. 

2. On the Need of Consideration of Diagrams 
with the Different Sequence of the  
Attaching External Lines to the “Comb” 

An inelastic scattering cross-section, which is interesting 
for us, is described by the following equation: 

     
 4

1

4 !n I





 

3 4
3 3 3

130 40 0

3 4 1 2
1

d dd

2 2π 2 2π 2 2π

n
k

n
k k

n

k
k

P P p

P P p P P








     
 





P pP

 

 (1) 

where 

2 2

1 2I P M M



1 2P                      (2a) 

 2

2 1 2 3 4, , , , , ,nT n p P P P P  

i
i

i

,i , ,i  i
!n

!n

 

1, ,p p           (2b) 

The scattering amplitude in this equation will be con- 
sidered within framework of the multi-peripheral model, 
i.e., for the diagrams of “comb” type. However, here we 
will make the important remark.  

According to the Wick theorem, the scattering ampli- 
tude is the sum of diagrams with all possible orders of ex- 
ternal lines attaching to the “comb”. In the terms of diagram 
technique it looks as follows. Plotting the multi-peripheral 
diagram of the scattering amplitude (as it is shown in Fi- 
gure 1 of [1]) at first we have adequate number of verti- 
ces with three lines going out of it and n lines corresponding 
to the secondary particles as it is shown in Figure 1(a).  

“Pairing” some lines Figure 1(a) in order to obtain the 
“comb”, we will get a situation shown in Figure 1(b). 

The weighting coefficient appearing from this procedure 
is included to the coupling constant. Finally we have to 
“pair” the appropriate lines of particles in the final state 
with the remaining unpaired internal lines in the diagram 
of Figure 1.  

If we marked by 1 —the external line, paired with the 
first vertex; 2 —the external line, paired with the second 
vertex and etc.; then k  is an external line, which is paired 
with k-th vertex, so every diagram will be characterized 
by sequence 1 2 n . And in this case the total am- 
plitude is expressed by the sum of  terms, each of them 
corresponds to one of  possible index sequences and 
therefore the inelastic scattering cross-section can be writ- 
ten as 
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(4b) 

Here, as well as in [1], 1M  and 2M  are the masses 
of particles in initial state and we assume that  
M1 2M M  1P

P 3P 4P
p

1, 2, ,k n

, where M is proton mass. Moreover,  
and 2  are four-momenta of initial protons;  and  
are four-momenta of protons in the finite state; ,  k

   are four-momenta of secondary particles (pi- 
ons of mass m). As the virtual particles we understand the 
quanta of real scalar field with pion mass m. A coupling  
 

 
(a)                            (b) 

Figure 1. Plotting diagrams of the “comb” type. 
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constant in vertexes, in which the pion lines join with 
proton lines, is denote as g and   is coupling constant in 
vertexes, where three pion lines meet. The function A is 
defined by: 
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Moreover, as it was shown in [1], the function A is real 
and positive therefore sign of complex conjugation in Equa- 
tion (3) can be dropped and we can rewrite this expression 
in the following form: 
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terms corresponding to all possible permutations of indi-
ces 1 2 n . Let us note that the integration variables 
in each of term of considered sum can be renaming, so 
that the indexes 1 2 n  formed the original placing 

. At the same time the indexes  will 
run through all possible permutations and summation 
must be carried over all these permutations. Taking into 
account this, we get instead of Equation (6): 
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Now we can use the fact that the amplitudes A in Equa- 
tion (9) have the points of constrained maximum [1]. 

3. Computation of Contributions to Inelastic 
Scattering Cross-Sections Corresponding 
to the Multi-Peripheral Diagrams by 
Laplace Method 

For further analysis, we examine expression Equation (6) 
in c.m.s. separating the longitudinal and transverse to the 
collision axis components of three-dimensional particle 
momenta 
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  defined by Equation (8) and Iwhere 
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The last three  -functions in Equation (10), whose ar- 
guments are linear with respect to integration variables, 
we can vanish by the integration over 4|| , 4P xP ^ , 4 yP

3||P  

^ . 
In order to take into account the rest δ-function, which 
expresses the energy conservation law let’s replace 
by new integration variable 
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ities instead of longitudinal momenta: 

||p m          (13a) 

  2
k km  p pm           (13b) 

After these transformations we get: 

 

     
1

2 4 2
3

2 2
3||

|| 3||

3
1

2
|| 3||

1 1

2π d

4 4 2

d d

2 2π

2

n

p k
k

n

n

n
k k

E s mk p

n n

k k

g

s M s M P

y P

E

M p P










 

 




 









    
 





 

P

p

2 2
3

ch

2 2

3

k ky

k k

 



 



  
 

p

P

p P

3 4|| 4

, ,

, , ,p P PP P   



  3||shk ky P
  
 

3
1

n

k 


  
 
 p P

P

 (14) 

where 
 1 1 2 2

1|| 2|| 3||

, , , ,

, , , ,

p p

n n

n y y

y P P

   
   (15) 

with 

 4||
1

p
n

k

P m 


          (16a) 

4 |
k

  P                (16b) 

Note that the 3||  is expressed through the other vari- 
ables of integration by Equation (8) in [1]. 

Now turn to the dimensionless integration variables 
and made the following replacement k k^ ^ , mp p

3 3^ ^ . We designate the new dimensionless 
integration variables just as the old variables, for short. 
Moreover, replace expression for 3||  by the same ex- 
pression divided by m. The same concerns the constants 
in expressions for cross-section, i.e., the designations M 
and 

mP P

P

s  are used for proton mass and energy of collid- 
ing particles in c.m.s., which is made dimensionless with 
the pion mass m. 

Now introduce the following notations of integration 
variables in Equation (14) and designate the rapidities 
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A n P P p p p P P  in Equation (14), 
expressed as a function of independent integration vari- 
ables, has a maximum point in the domain of integration. 
At the neighborhood of this maximum point it can be 
represented in the form 
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where 0 ,nA s is the value of function (see Equation 
(4) in [1]) at the point of constrained maximum;  
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strained maximum point of scattering amplitude; aX - 
value of variables, maximize the scattering amplitude. 
That is, the real and positive value A defined by Equation 
(4) (see [1]) is represented as   exp lnA A , and ex- 
ponential function is expanded into the Taylor series in 
the neighborhood of the maximum point with an accu- 
racy up to the second-order summands. 

An accuracy of approximation Equation (17) can be nu- 
merically verified in the following way. Function A, de-
fined by Equation (4) (see [1]) can be written as 
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Now let us examine functions: 
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Three-dimensional curves of these functions ca

ea

 

n be 
sily plotted in the vicinity of the maximum point (i.e., 

at the neighborhood of zero of variables a and b). The 
typical examples of such curves are shown in Figure 2 
and Figure 3, where it is easy to see that the approxima-
tion Equation (19) works well in the wide energy range. 
The results similar to ones in Figures 2-3 were obtained 
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Equation (19), which demonstrates the possibility of apply-
ing the Laplace method. 
 
a nt values o , ,s i k  and n. As one can see 

re 3, t

ification  

from Figure 2 and Figu hat true amplitude and its 
Gaussian approximation Equation (19) start differ visibly 
only in the parameter region, which makes a insignificant 
contribution to the integral. 

Now let us proceed with ident
 3 4 1 2 2 1, , , , , , , ,nA n P P p p p P P  in Equation (9) and de- 

e arrangemen

k

fine all possibl ts of indices 1, 2, ,n  by 
     1 2 !, , , nP P P . The function of variables X , w



t st by renamin

here 
, which corresponds to arrangement 

   1 2 3 2, , , ,l nP
n X X X  . It differs from  

1,2, ,3 2k n 
 lP , define as A

he f ation (18) juunction Equ g the arguments, 
and therefore it also has a point of constrained maximum 
under condition of the energy-momentum conservation. 
The value of this function at the constrained maximum 
point is equal to the value of function Equation (18), i.e.,  

,a= (dashed line) and ( )b  ( )1,7 ,gFF a b  

y (solid line) at energ s = 10
e z

nd it is equal to  

0 GeV and n = 10. The gen- 
eral image 2(a), and th oomed image 2(b) at the neighbor- 
hood of maximum point. Clear that in an area that makes 
the most significant contribution to the integral, the scat- 
tering amplitude does not differ from its Gaussian appro- 
ximation Equation (19), which demonstrates the possibility 
of applying the Laplace method. 
 

a 0 ,nA s  according to the replace-  

hus, if ment made above. T      0 2 0
1 2, , , nX X X  are the  

values of variables 1 2, , , nX X  m point,  X  at the maximu
   0 2
1 2, , ,now same values  0

nX X 

1 2
, , ,

n

X  will be the values  

of the variables j j jX X X  at th

     0 2 0
1 2 2, , ,n n n

e maximum point.  

Analogously X X X  

1 2
, ,

nn j n jX  at th

   2 0
2 1 2 2 3, , ,n n n

are the values of vari-  

ables ,n jX X  e maximum point, and  

 0X X X    for 
1 22 2 2 nn j n j n jX X  

short we label the in variable, into which the

, , , X . For  

dex of  vari-
able a goes at given rearrangement, as    iP a  i.e., 

the variable 

 

aX  replaced by the variable   lP
X a . 

ivatives  the  
lo

If we denote the matrix of second der of
garithm of the function  lP

A at the maximum point by  
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 ˆ lPD , we will get the following approximation for the 
function  lP

A : 

     (0),
1 2 3 2

1
, exp

2
n

nP
, , ,lA n X X X A s K

   
 

 (22) 

where 

   
  0 0

la bP b
X X   

(23) 
Taking into account that Equation (22) depends on var  

ab

   
 

   
  2 3 2

( ), ( )
1 1

l

l l l

n n
P

P a P b P a
a b

D X X
 

 


3

K  

i- 

les    lP a
X  and    lP b

X  just as a function A depends  

iables on var aX  and bX  and the second derivative is 
taken a me val  arguments, we have t the sa ue

 

s of

     
 (24) 

4) rewrite Equa
ve  ˆ i

 

,

l

l l
P

abP a P b
D D              

Using Equation (2 tion (22) in more con- 
nient form. For this purpose introduce the matrices P , 
1, 2, , !l n   and by multiplying it with the column X̂  

of initial variables in Equation (19), we get a column in which 
the variables are arranged in that way so that in place of 
variable a

 
X  became a variable    lP a

X . At next iteration  

t a ne taking in ccount Equation (24) can rewrite Equa-o  o
tion (22) in a matrix form in the following way: 

   
   

        

    

1 2 3 2, , , , l nP
A n X X X

0 ,

0( )

0 0

1 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆexp 2
2

1 ˆ ˆ ˆexp
2



        
        

n

TT l lT l

T

A s

X P D P X X D P X

X D X

 

(25) 
where  0X̂  is a column whose elements are the num

 0
- 

bers aX , 1,2, ,3 2a n   in the initial arrangem
And now we can rewrite Equation (9) in the form: 

 

ent. 

 
         

      

1 2 3 2

2
0 , 0 0

!
0

1

, , , ,

ˆ ˆ ˆexp

1 ˆ ˆ ˆ ˆ ˆ ˆexp
2





 

   
 

    
 



 n

T
n

n T
l lT

l

n X X X

A s X D X

3 4 1 2 2 1, , , , , , , ,  nn P P p p p P P

X D X X V X

      6) 

where 
      ˆ ˆ ˆ ˆ

T
l l lP D P          (27a) 

 ˆ ˆ lV D D P        

p the furthe
tion 

ion

D̂ D 

 ˆ ˆl          (27b) 

If now we take u r consideration of Equa-
e other coefficients (ex-(14), we can see that all th

cept  ) under the integral don’t change the values un-
der the permutation of arguments. We replace these ex-
press s by their values at the maximum point and take 

them out from integral. From this, we introduce the fol-
lowing notation: 

   
 

 0

1
ch

n

p k
k

E s yp

s
E



    
 





       (28) 

where  0
3||P  is the value of expression (see 

[1]), corresponding to particle momenta, for which the 
ng am

0
3||0 ,n P

J


Equation 8 in 

scatteri plitude has maximum, i.e., at the  0
aX  and 

undimensionalized by m. 
The expression for cross-section in this case can be 

written in the form: 

 
  

 

      

         

      

2
02 2 2

3||

2 4 2

32
0 02

3||
1

2
0 , 0 , 0 0

3 2!
0

1 1

16 4

2π 1

2 2π
sh

ˆ ˆ ˆ( ) ( ) exp

1 ˆ ˆ ˆ ˆ ˆ ˆd exp
2





 

 

                  
 

   
 

   
 



 

n

n

k
k

T
n n

nn T
l lT

a
l k

m s M s M P

g

m m
M y P

A s J s X D X

X X D X X V X


 

(29) 

As the value     0 0
3||

1

n

k
k

2
2π

n

sh y P


  in Equation (29) is the  

negative value of longitudinal component of mome  

P aximum point
 

ntum 
 0

4|| taken at the m , it can be replaced by  
0

3||P due to the symmetry properties that have been dis- 
cuss d above.  e

ultidimensional integrals under the summation sign M
can 

ach of them. Such diagonalization can be 
nu

be calculated by diagonalizing of quadratic form in 
the exponent of e

merical realized, for instance, by the Lagrange method. 
The large number of terms in Equation (29) is substantial 
computational difficulty, which we overcame only for the 
number of particles 8n  . To represent results of nu- 
merical computations, it is useful to decompose Equation 
(29) in the following way: 

   
    

      
3 2!

0

1 1

1 ˆ ˆ ˆ ˆ ˆ ˆd exp
2



 

 
 

    
 

 
nn T

l lT
a

l k

0 0ˆ ˆ ˆexp  

n
P

T

f s

X D X

X D X X V X

 (30) 

X

 
       

  

2
0 , 0 ,

2
02 2

3||

( ) ( )

4

n n n
P

n

A s J s f s
s

s M s M P
  

   
 

      (31) 

 

2

3

1

2 2π
L

m

   
 

               (32) 
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Note, that here and in the follo
use the “prime” sign in ours nota
use a dimensionless quantity that characterized the depen- 
de

wing sections we will 
tion to indicate that we 

nce of the cross-sections on energy, but not their abso- 
lute values.  

The Equation (31) differs from the inelastic scattering 

cross-section  n s  only by the absence of factor  

 
   

22 2

2 3

2π 1
16

n

g
m mm

 

2 2π
 

    

dent and its consideration allow us to trace the depend- 
ence of inelastic scattering c

    
, which is energy indepen- 

 

ross-section on energy s  
(Figures 4-5).  

From Figure 4 it is obvious that derivatives of cross- 
sections with respect to energies along the real axis  
equal to zero at p

 are

er
oints corresponding to the threshold en- 

gy of n particle production, i.e., though the threshold 
values of energy are branch points for the cross-sections, 
they have continuous first derivative along the real axis at 
the branch points. This can be illustrated in the following 
way.  

In the examined approximation of equal denominators, 
for the even number of particles value of square of scat- 
tering am

 

plitude at the maximum point can be written like: 

    

 2 1

2
0 ,

2
2

1
1

sh

n

n

n

A
y

 
 
  
 
 

      (33) 

where 2ny  defined by (see [1]): 

2

1
arccos

 
h

2

s

1n

n
y

M

 
   

 
       (34) 

Derivative from Equation (34) along the real axis at the 
threshold branching-point is infinite. Howe
this  value of 

n 

ver, cause at 
 point 2n

is obvious that derivative of  0 ,n
y  is zero, than from Equation (33) 

it A  will be converge to 
threshold along the real axis tends to zero. 

As it follows from Figures 4-5,  8 s   monotone 
increases in the all considered energy range. At the same 
time from Figure 6 one   

 
  

 can see that  P
8f s  has drop-  

wn sections. Moreover, even on th ions, where  do ose sect
   n

Pf s , 2 5n    increase, corresponding  n s    
decrease. It makes possible to concl  amplitude ude, that

virtuality duction) i e growth

en

growth at maximum point (which is the consequence of 
re s generally responsible for th  

of inelastic scattering cross-section.  
As it evident from Figures 4-5 for some values of en-

ergy Equation (31) has a positive energy derivative and 
for some values of energy Equation (

 

Figure 4. The calculated values of 
31) has a negative 

ergy derivative. This makes a question? If we form 
from them a quantities 

  n s , n = 0, 1, ···, 8 in  

the range of threshold energies for 1, 2, ···, 8 particle pro  

   
8

n
n

- 

ductions. Via  
0 s was denoted the contributions   one of 

0n

s L s               (35) from the diagram (shown on the right) to inelastic scatter-
ing cross-section. 
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(a) 

 

Figure 6. The calculated values of     
(b) 

n
Pf s determined by 

Equation (30), in the energy range s  = 3 - 95 GeV. 

 
(c) 

 of Figure 5. Values   n s in th gy range e ener s  = - 95 

GeV. 

3 

 

  
1

n
n


8

I ns L s              


(36) 

where L is defined by Equation (32), 
choose the “coupling constant” L so that the value of Equ-

is it possible to 

ation (35) has a characteristic minimum for the total pro-
ton-proton scattering cross-section? Answer for this 
question is positive (see Figure 7), i.e., the curves agree 
qualitatively at the close values of L. The energy range 
shown in Figure 7 takes into account all the inelastic 
contributions. We find indeed very interesting result that 
curves presented on Figures 7-8, where calculated values 
of Equations (35), (36) are given at 5.57L , qualita-
tively agree with experimental data [10,11]. 

Let us point to the fact that in Figures 7-8 the mini-
mum at higher energies s  than in the e ment. We 
be

xperi

nu
lieve that the accounting contributions with higher 
mber of secondary particles n to  n s   and the 
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Figure 7.  of Calculated values   s  at L = 5.57, in the 

y range energ s  = 5 - 25 GeV. 
 

 
(a) 

 
(b) 

Figure 8. Calcu f lated values o   s  at L = 5.57, in the 

e ergy range: (an ) s  = 1.89 -  GeV and (b) 25 s  = 3 - 25 GeV. 

corresponding change of constant L will “move” a max-

Moreover, in h s paper we have ex ned the sim- 
imum to a required area. 

 t i ami
plest diagrams o  3f   theory and we int d to compareen
the qualitative form of these cross-sections with experi- 
mental data, but do not cla

 

im quantitative agreement. It is 
possible to hope that the application of similar computa- 
tion method to more complicated diagrams in more real- 
istic models will lead to correct outcome.  

As known, within the framework of Reggeon theory 
the drop-down part of total cross-section is described by 
the Reggeons exchanges with interception less than unity 
[12,13]. The cuts concerned with multi-Reggeon exchanges 
with participation of Reggeons with intercept greater 
than unity are responsible for the cross-section growth 
after the reaching the minimum [5]. 

As will be shown further, the accounting of  n s   at 

8n   will not change the behavior of function  s   
Equation (35). This means that within the framework of 
gi al diagra
w

ven model the summation of multi-peripher ms, 
hen we compute the imaginary part of elastic scattering 

itude, will not result in power dependence o , ampl n energy
since this dependence is monotonic. This, in turn, will 
mean that the appropriate partial amplitude has no pole 
singularity! And this obviously differs from the results of 
standard approach in calculations of multi-peripheral model 
and from the results of Reggeon theory (see f.ex. [2]). 

Another argument in favor of this hypothesis are the 
results of the “multiplicity distribution” shown in Figure 
9, where axis of ordinates designates the number of par- 
ticles n and abscissa axis designates the value of: 

 
 

n
n

n I

L s
p

s









             (37) 

 

Figure 9. Distribution (see Equation (37)) (red line) and 

Poisson distribution (dotted line) at s  = 15 GeV. 
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The Poisson distribution for the same average like for 
distribution Equation (37) is given for comparison. The 
energy s  = 15 GeV is chosen for example, because at 
higher energies all distributions is no longer fit in the 
range from 0 to 8 particles. As is obvious from Figure 9, 
the distribution Equation (37) significantly differs from the 
Poisson distribution, which, as it is known, lead to power- 
law behavior of the imaginary part of inelastic scattering 
amplitude and, consequently, to the pole singularity of 
partial amplitude [5,14]. 

The described differences from a Regge theory are 
caused, apparently, by different physical mechanisms de-
terming the inelastic scattering cross-section growth. In 
our model, a reduction of virtualities at the point of con-
strained maximum of inelastic scattering amplitude play 
a role of such mechanism. Consideration of similar dia-
grams in [2] lead to 

 
2

~
!n

ln1 n s

n s
               (38) 

At the me time a similar result is obtained in [15] by 
the calculating of phase space with “cutting” of transver- 
sal momenta, i.e. authors ignore the dependence of ine- 
lastic scattering amplitude on rapidity, and its role is re-
duced only to the cutting of integration over transversal 
momenta. Similar results are obtained in [5,14], where 
examined diagrams of same type, but with the exchange 
of Reggeons instead of vi

 sa

rtual scalar particles was consi- 
dered. In [5,14] as a result of approximation authors to- 
tally ignored the dependence of expression under the in- 
tegral sign for cross-section on particle rapidity in the fi- 
nite state, thus obtained results include the dependence on 
energy s  only through the rapidity phase space. At the 
same time, as it evident from previous argumentations, 
the dependence of scattering amplitude on longitudinal 
momenta or rapidity is essential, becau
for the certain mechanism of inelasti
and their sum

suc

se it is responsible 
c cross-sections growth 

. 
Moreover, Equation (38) has positive derivative with 

respect to energy at sufficiently great n in sufficiently wide 
energy range. At the same time, sum of such expressions 
in [2] results in the cross-section, which decreases mono- 
tonically with energy growth. The reason for this may be 
apparent from Equation (38) factorial suppression of con- 
tributions with large n, which provide the positive con- 
tributions to derivative with respect to energy. 

In the presented model such suppression disappears at 
transition from Equation (3) to Equation (6) due to taking 
into account diagrams, with different order of attachment 
of external lines to the “comb”. The fact that the inclu- 
sion of h diagrams is essential as it seen from Figure 
10, where the ratio of contribution    n

If s  from a 
diagram with the initial arrangement of momenta (see 

Figure 2 in [1]) corresponding to the first summand in a 
sum Equation (30) to all sum    n

Pf s is given. 
As seen from Figure 10 contribution from a diagram 

with the initial arrangement of external lines in the wide 
energy range is small fraction of the total sum Equation 
(30), which was natural to expect since sum Equation (30) 
has enormous number of positive summands. For the same 
reason, as was shown on Figure 10, the quota of contri- 
bution from a diagram with the initial arrangement of par- 
ticles decreases sharply with increasing number of parti- 
cles n in a “comb”.  

At the same time, as it follows from Equation (31), the 
growth of scattering amplitude at the maximum point re- 
lated with the mechanism of reduction of virtualities can 
cause the growth of inelastic scattering cross-sections 

 n s   and, consequently, the growth of total cross- 
section. As an argument we can show  numeri-
cal calculation of the function Equation (39), which are 
listed in Table 1. 

results of

      
  

2
(0), ),n n(0

2
02 2

3||4
n

A s J s
Q s

s M s M P


   
 

   (39) 

This function is the ratio of increasing amplitude at the 
maximum point to the multipliers, which “working” on 
lowering of the total cross-sections with energy growth.  

Submitted data shows that the mechanism of virtuality 
reduction is “stronger” than multipliers, which “working” 
on lowering of the total cross-sections with energy growth. 

 

 

Figure 10. The ratio of the contribution from diagrams with 

an initial arrangement of the momenta    n
If s  to the 

sum of diagrams corresponding to all possible momenta 
arrangements    s  at different n . n

Pf
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Table 1. Energy dependence of the function Equation (39) 
at n = 10 and n = 20. 

,s GeV   10Q s  ln   20ln Q s  

5 –68.867 –202.469 

15 –48.936 –133.814 

25 –44.874 –120.196 

35 –43.036 –113.138 

45 –41.993 –108.585 

55 –41.328 –105.315 

65 –40.874 –102.81 

100 –40.065 –97.131 

200 –39.622 –89.901 

–79.833 

5000 –44.905 –74.318 

14,000 –47.862 –72.979 

300 –39.74 –86.537 

500 –40.191 –83.029 

900 –41.043 

1800 –42.399 –77.008 

 
From uation (33) fo at with in  of n 

amplitude at the maximum point will increase sharply 
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the difference of these rapidities decreases with increase 
of particle iagram.  ’s number on the d  Therefore, it is ho- 
ped that decrease of    n

Pf s , even if it will take place, 
will be not too sharp and cross-sections for high multi-
p f particles will also grow at least in  rtain licities o  the ce

a
t the max

to what was described 
above. In this case, when calculating the first eight ine- 
lastic contributions in the wide range of en
give us contributions with negative derivative with respect 
to energy. Therefore we inclined to believe that such mo- 
del can describe total cross-section growth
large energies. 

energy range. This will lead to the amplification of con-
tributions with positive derivative with respect to energy 
into the total scattering cross-section. 

As it follows from Equation (33), that at sufficiently 
high energies the amplitude at the maximum point tends 
to a constant value and mechanism of the reduction of 
virtualities become exhausted. This, however, can be avoid- 
ed if we consider model in which the virtual particles on 
the diagram of the “comb” type re field quanta with zero 
mass. Then amplitude a imum point will tends to 
infinity at the infinite increase of energy. All computa- 
tion in this case can be done similarly 

ergies does not 

 to arbitrary 

4. Conclusions 

From demonstrated results it can be conclude that re- 
placing of the “true” scattering amplitude associated to the 
multi-peripheral processes within the framework of per- 
turbation theory by its Gaussian approximation is an ac- 
ceptable approximation. The main conclusion is, that the 
mechanism of virtuality reduction (considered in [1]) may 
play a major role in ensuring the experimentally ob-
served increase of the total cross-section [10,11], at least in 
some range of energies. This growth was obtained with 
allowance for n  at 8n  . However, as it follows from  

 n s   dependences, the maximum point of cross-sec- 
tion is shifted toward to higher energies with increase of 
n. We can therefore expect that in the consider energy 
range accounting of 

 
 n s   will add summands with 

positive derivative with respect to energy to expression 
for the total scattering cross-section, which leads to the 
fact that at least in the considered energy range obtained 
growth will only intensify.  

Discussed above differences from the Reggeon theory 
suggest that our model is not a model of Reggeon with 
intercept high than unity and increase of the cross section 
is occurred in different way. This is also evident from the 

el with a nonzero mass of virtual par-fact that in the mod
ticles cross-section n   at s   tends to zero. This 
is a consequence of the fact that the absolute value of vir- 
tualities cannot decrease indefinitely, because it is bounded 
below by zero. Therefore, for sufficiently low coupling 
constant, when for however-anything high multiplicities 
do not contribute to the total cross section, at sufficiently 
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energy g
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high energies the total cross section should begin to de- 
crease.  

An additional conclusion is the necessity of accounting 
the sum of all diagrams with all the permutations of ex- 
tern  for e sc ng amplitude. Although with 

rowth the fraction of contribution to the cross sec- 
tion of the diagram with an initial arrangement of the 
lines of the final particle ses and with rea s   
will tends to unity. In a wide range of energies, this frac-
tion is small and decreases with multiplicity increase, 
which can be easily understood on the basis of the posi- 
tivity of the amplitudes in the multi-peripheral model. 

Note that the application of Laplace method is not lim- 
ited by simplest diagrams. Therefore, our goal is further 
consideration of the more realistic models using same me- 
thod, especially in terms of the law of conservation of 
electric charge. 
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