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Abstract 
 
The work deals with the steady flows of ions and electrons coinciding in quantity and direction. The one- 
dimensional problem considers the cold ions and electrons characterized by the isentropic state. The area was 
defined in which the speed of ions exceeds the ion-acoustic speed. The problem may be of interest for the 
creation of accelerators in which the charged particles have to leave the accelerator in pairs excluding the 
possibility of charge accumulation in the accelerator. 
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1. Introduction 
 
The solution of the fundamental problems of plasma dy-
namics is of interest to energy efficient thrusters and 
analysis of states of the plasma that forms around the 
spacecraft. analysis of states of the plasma that forms 
around the spacecraft. 

In Specifically, should create an conditions in which 
there is no charge accumulation on the spacecraft. Is 
commonly used “cathode-compensator” (see [1]). 

The problem also is the appearance of “sound singu-
larity” in the thruster (see [2-4]), which appears with 
using the quasi-neutral approach, but in [5] it is shown 
that the singularity appears due to an inadequate descrip-
tion of the system. 

In the work [6] the acceleration of heavy ions with the 
counter flows of ions and electrons was explored, more-
over the electrons were characterized by the isotherm 
equation of condition  where  is pressure, 

e  is the temperature of electrons, e - electron density. 
The present work deals with the states with electrons 
characterized by the isentropic equation of condition 
considering that the flows of particles coincide in quan-
tity and direction. It will be shown that the ions flow rate 
continuously passes through the value corresponding to 
ion-sound barrier. 

,e eP n T P
T n

The electrons are considered to be the monatomic 
ideal gas which is described by the equation of condition: 

eP Cn                     (1) 

where   is an adiabatic index. For the monatomic gas 

5 3  . It is suitable to represent the constant C as:  
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 , here  is a constant of the energy  0T

dimension (temperature),  is the initial electron den-
sity. 
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2. Equations 
 
The one-dimensional hydrodynamic equation of the 
electron motion is as follows: 
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where e  is the speed of electrons, - the potential, 
- the electron charge and mass, - the axial coor- 

dinate. 
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This equation can be integrated: 
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        (3) 

The Equation (3) is modified Bernoulli equation de-
scribing the equilibrium of the fluid in an external field 
(see [7]). 

In (3) the quantity 0T  is the integration constant. 
The ions are described by means of the relation: 

2 2

2 2
iM e M in 
                (4) 

where i - the velocity, in - the initial velocity of the 



A. S. CHIKHACHEV 1551 
 
ion flow, M- the ion mass. 

Let us introduce the parameter 1
0

m
n

T
  , where  

  is the stream of particles. Let us denote  

0
0

1 1

,en
y y

n n
 

n
. It is suitable to introduce the dimen- 

sionless length: 0
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From the Poisson equation:  
2
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   (  in

- the ion density) using (3) and (4) ( 0in  ), the equality 
of the ion and electron streams, we shall get: 
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Substituting 
0

e

T


 from (3) we shall get the equality: 
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The Equation (6) has the integral: 
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 (7) 

Hereinafter we will solve the equation (7) in view of 

05 3, 10, 1y     as well as assuming that  

2
697

M

m
 , i.e. we will consider the plasma of the  

singly-ionized xenon. 
 
3. The Solve of the Equations  
 
Let us explore the behavior of the second member of the 
Equation (7) with these parameter values. Figure 1 
shows the behavior of the function  F y : 

 
0

1

2
0

1 1

2 1
             

2

y
F y

y y

M y

m y y











         

 
   

 

 

It can be seen from this figure that the Equation (7) 
has meaning for all the values of y, if 0  Figure 
2 shows the solution of the Equation (7) with 0

500.C 
C 500  

and with the initial value 0 . It was considered 
that 

9.923y 
0y  , meanwhile the electron density decreases 

with the rise of x , the pressure gradient accelerates the 
electrons in the same direction with the electric field ac-
celerating the ions. The pressure gradient value is suffi-
cient for the deceleration force excess on the part of the 
electric field. 

According to the equation of the ideal gas condition, 
the temperature of the electron stream is the function of 
the axial coordinate:  
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The ion flow velocity is defined by means of the ex-
pression: 
 

 

Figure 1. Graph of the function F(y), which describe the 
right-hand side of Equation (7). 
 

 

Figure 2. The solution of Equation (7). 
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It can be seen from Figure 4 that the ion density in the 
acceleration gap (curve II) significantly exceeds the elec-    
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tron density (curve I). The electron density decrease has 
to be large in order to create the acceleration force ex- 
ceeding the deceleration force on the part of the electric 
field which accelerates the ions. 

For the comparison of the ion-acoustic speed  

(
2 e

s

T

M
  ) with the ion flow velocity the Figure 3 

shows the dependance  
02i

M
x

T
  and  

It should be mentioned that in the considered values 
range of the axial coordinate the coefficient of y  does 
not go to zero. The range related to the zero crossing of 
this coefficient needs the further exploration. Further-
more, the higher values the coefficient  has (i.e. 

1  ), the greater effect of the ion acceleration can be 
achieved. 0 02

e
s

TM

T T
   on the longitudional coordinate. 

The ion flow velocity increases and starts ranking over 
the value of the ion-acoustic speed even at small values 
of x . 

Thus, the present work shows that basically it is theo-
retically possible to achieve the simultaneous electron 
and ion acceleration with the streams of particles with 
the opposite charges which coincide in the quantity and 
the direction. This circumstance is quite significant for 
the electrojet engines creation—the particles with the 
opposite charges leave the device in pairs which enables 
to avoid the charge accumulation in the accelerator. 

Let us calculate the density of the electron and ion 
charges in the acceleration gap. These values are shown 
in Figure 4 in logarithmic scale as the functions of the 
axial coordinate. 
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