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Abstract 
 
In the present paper, an attempt is made to obtain the degree of approximation of conjugate of functions 
(signals) belonging to the generalized weighted W(LP, ξ(t)), (p ≥ 1)-class, by using lower triangular matrix 
operator of conjugate series of its Fourier series. 
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1. Introduction 
 
Let f  be a -periodic signal (function) and let 2π

 1 10, 2πf L L . Then the Fourier series of a function 
(signal) f at any point x  is given by  
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with partial sums ( ; )ns f x —a trigonometric polynomial 
of degree (or order) n, of the first terms. ( 1)n 

The conjugate series of Fourier series (1.1) of f  is 
given by 
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with partial sums ( ; )ns f x . 
If f is Lebesgue integrable and 1, ( ( ), )p f Lip t p  , 

then 
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exists for all x Zygmund [1, p. 131], ( )f x  is called the 
conjugate function of ( ).f x  

The matrix ,  in which ,n ka  is the element 
in n-th row and k-th column is usually called the matrix 
of T. Matrices T such that  for  are 
called lower triangular. 

T ( ),n ka

,n ka 0, ,k n

Let ,T ( )n ka  be an infinite lower triangular matrix 
satisfying Töeplitz [2] conditions of regularity, i.e. 
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Let  be an infinite series whose  

partial sum 
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The sequence-to-sequence transformation 
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defines the sequence  n  of lower triangular matrix 
summability means of sequence  ns  generated by the 
sequence of coefficients ,n k  The transforms n(a ).   are 
called linear means  or matrix means (determined by the 
matrix T) of the sequence  .ns  

An infinite series nu  is said to be summable to s by 
lower triangular matrix T-method, if lim n

n



 exists and  

is equal to s Zygmund [1, p. 74] and we write ( ),n s T   
as The summability matrix T or the sequence- 
to-sequence transformation 

n 
n  is said to be regular, if 

li limn n
n n

m s s s
 

   . 

A function (signal) ( )f x Lip , for 0 1,   if 

( ) ( ) ( ).f x t f x t     
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A function (signal) ( ) ( , )f x Lip p  for 

1, 0 1p    , Fadden [3], if 

 12π
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Given a positive increasing function ( )t  and an in- 
teger 1, ( ) ( ( ), ),p f x Lip t p   Khan [4], if 
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In case  then ( ) ,0 1,t t    ( ( ) , )Lip t p  coin- 
cides with the class ( , )Lip p .  If  in p 

( ,Lip p)  class then this class reduces to .Lip  
For a given positive increasing function ( )t , an in- 

teger 1, ( ) ( , ( )),pp f x W L t   Khan [4], if 
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We note that, if 0 
)

 then the generalized weighted 
( , ( )), ( 1pW L t p 

( ( ), ).Lip t p
-class coincide with the class 

  
Also we observe that 

( ,  ) ( ( ),  ) ( , ( ))pLip Lip p Lip t p W L t       

for 0 1, p 1,    Mishra [5]. 

The pL -norm is defined by 
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The norm of a function  is defined 
by  

-L :f R R

 sup ( ) : ,f f x x R

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and the degree of approximation  of a function  
 is given by 
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in terms of n, where ( ; )n f x  is a trigonometric poly- 
nomial of degree (order) n. This method of approxima- 
tion is called trigonometric Fourier Approximation (tfa) 
Mishra [6]. Riesz-Hölder Inequality states that if p and q 
be non-negative extended real numbers such that  
1 1 1p q  .  If  ,pf L a b  and  , ,qg L a b  then 
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Equality holds if and only if, for some non-zero con- 
stants A and B, we have . .
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Second Mean Value theorem for integration states that 
if  : ,G a b R  is a positive monotonically decreasing 
function and  : ,a b R

 ,
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
 is an integrable function, 

then  a number 
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Here ( 0G a )  stands for , the existence of lim
a

G


which follows from the conditions. Note that it is 
essential that the interval (a, b] contains b. A variant not 
having this requirement is: 

If  : ,G a b R  is a monotonic (not necessarily de- 
creasing and positive) function and  : ,a b R   is an 
integrable function, then   a number  ,x a b  such 
that 
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We use the following notations:  

( ) ( ) ( ),t f x t f x t       
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integer not exceeding of 1 t . 

Furthermore C will denote an absolute positive con- 
stant, not necessarily the same at each occurrence. Through- 
out this paper, we take  and , 0 (0 ),n ka k   n

,0 1 .nA n   
 
2. Main Result 
 
It is well known that the theory of approximations i.e., 
tfa, which originated from a well known theorem of 
Weierstrass, has become an exciting interdisciplinary 
field of study for the last 130 years. These approxima- 
tions have assumed important new dimensions due to 
their wide applications in signal analysis, in general and 
in digital signal processing [5] in particular, in view of 
the classical Shannon sampling theorem. 

This has motivated by various investigators such as 
Qureshi ([7,8]), Khan ([4,9]) Chandra [10], Leindler [11] 
Mishra [5] discussed the degree of approximation of 
signals (functions) belonging to 

, ( , ), ( ( ),Lip Lip p Lip t p)   and ( , ( ))pW L t -classes by 
using Cesàro and Nörlund means of an infinite series. 
Qureshi ([12,13]) have determined the degree of ( )f x , 
conjugate of a function ( )f x Lip  and ( , )pLip   
by Nörlund means of conjugate series of a Fourier series. 

The purpose of this paper is to determine the degree of 
approximation of ( )f x

( )), (t p
, conjugate of a function 

( ) ( , 1),pf x W L    by lower triangular matrix 
means.  

We prove: 
x a b  such that Theorem 2.1. Let ,( )n kT a  be an infinite regular 
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lo ix such twer triangular matr hat the elements ,( )n ka  
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4. Proof of Theorem 2.1 
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Since A has non-negative entries and row sums one, 

Combining 1I  and 2I  yields 
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This completes the proof of our Theorem 2.1. 
 
5. Applications 
 
The following corollaries can be derived from heo- 
rem 2.1. 

If 

 our T

Corollary 5.1. 0   and 
generalized weighted class 

( ) , 0 1,t t     
 , ( )pW L t  re- then the 

duces to class ( ,Lip )p  and 
( ) Lip

the 
tion of a functi

degree of approxima- 
)on f x ( , p  is given by 

 1 p ( ; ) ( ) .n p
f x f x O n    

Proof of corollary 5.1. From our Theorem 2.1 for 
, we have 0 

p
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1
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e proof of corollary 5.1. 

O n n O p
n    

 

This completes th
Corollary 5.2. If p in corollary 5.1, then for  
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Corollary 5.5. If  such that 
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(5.1) 
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