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Abstract 
 
The true meaning of the constant  in the Robertson-Walker metric is discussed when the scalar factor 

( )R t  changes with time. By strict calculation based on the Riemannian geometry, it is proved that the spatial 

curvature of the R-W metric is  2 2R R  K . The result indicates that the R-W metric has no constant 

curvature when  and  is not spatial curvature factor. We can only consider  as an adjustable 

parameter with  in general situations. The result is completely different from the current understand-
ing which is based on the precondition that the scalar factor 

( ) 0R t 
0 

 

( )R t  is fixed. Due to this result, many conclu-
sions in the current cosmology such as the densities of dark material and dark energy should be re-estimated. 
In this way, we may overcome the current puzzling situation of cosmology thoroughly. 
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1. The R-W Metric has No Constant 
Curvature when Scalar Factor ( )R t  is 
Related to Time 

Standard cosmology takes the Robertson-Walker metric 
as the basic framework of space-time. According to the 
principle of cosmology, our universe is uniform and iso- 
tropic. It is proved that the space with homogeneity and 
isotropy is the one with constant curvature [1]. The R-W 
metric which is considered to be the one with maximum 
symmetry is 
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According to the current understanding, the constant 
 in (1) is considered to be a spatial curvature factor. 

That is to say, the R-W metric is with constant curvatures. 
When space is flat, we have 



0   and the metric be- 
comes 

2 2 2 2 2 2 2 2 2 2d d ( ) d d sin dS c t R t r r r         (2) 

According to the current understanding, the term of 

three dimensional spaces in bracket in (2) is flat. By 
multiplying a scalar factor  which does not depend 
on spatial coordinates, the spatial term can still be con- 
sidered as flat. However, this turned out to be not true. 
We will prove below that when , the R-W met- 
ric has no constant spatial curvature. The spatial curva- 
ture is related to , although it still does not depend 
on spatial coordinates. 

( )R t

( ) 0R t 

( )R t

To explain this result clearly, let’s first repeat the de- 
duction procedure of the R-W metric. As we know in 
geometry that the lower dimensional curved space can be 
embedded in the higher dimensional flat space. The three 
dimensional space with a constant curvature   can be 
considered as a super-curved surface embedded in the 
four dimensional flat space. The flat space-time metric of 
four dimensions can be written as 

 22
4d d d d d di iS x x x x x            (3) 

The condition of three dimensional super spherical 
surface in the four dimensional space-time is 

2 2 2 2
1 2 3 4

1 2x x x x x x G  
             (4) 
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Here  is the radius of super-spherical surface and 
constant  is the curvature of super-spherical surface. 
From the formula above, we get 
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Substituting (5) in (3) and introducing coordinate 
transformation 1 sin cosx r   , 2 sin sinx r   , and 

3 cosx r  , we get three dimensional super-curved sur-
face metric with a constant curvature  
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When co-moving coordinate ( )r R t r  is used and 
time is fixed with  and constant, (6) can 
be written as 
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Here  is considered as new space cur-
vature. When time is not fixed and constant, ac-
cording the current understanding, we can let 

 2
0R t  

( )R t 
   

and extend (7) into 
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On the other hand, the metric of four dimensional 
space-time in which the three dimensional space has a 
constant  is 
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We think that it possible to introduce united cosmic 
time in the expanding universe with homogeneity and 
isotropy. So at last, the four dimensional metric of space- 
time can be written as 
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This is the standard procedure to derive the R-W met-
ric. It is obvious that the deduction is not strict. We only 
prove that the metric (6) has a constant curvature  . 
When constant, we have not proved that the met-
rics (8) and (9) still have constant curvatures. In fact, 
when constant, by using 

( ) R t

( )R t  ( )r R t r  in (6), we 

get 
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Similarly, substituting ( )r R t r  in (9), we get 
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We can not get (8) and (10) from Equation (6) and (9). 
That is to say, when  or constant, we 
have not proved that the constant  is still the spatial 
curvature factor of the R-W metric!  

( ) 0R t  ( )R t 


However,   is generally considered as the curvature 
constant of the R-W metric and the spatial part of the 
metric is considered being flat when  at present. 
This is because that the spatial part of three dimension 
metric in the bracket of (2) is flat. When it multiplies a 
scalar factor which does not depend on spatial coordi-
nates, the space can be still considered flat. On the other 
hand, when 

0 

( )R t  constant, we have metric tensor 

11g  constant, (2) is obviously not the metric of flat 
space. In fact, the metric of the four dimensional flat 
space-time is 

 2 2 2 2 2 2 2 2 2d d d d sin dS c t r r r          (13) 

By using co-moving coordinate    r t R t r , we get 
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This form is completely different from the R-W metric 
(2) when 0  . The space-time of metric (14) seems to 
be curved, but it is flat essentially. According to the 
principle of the Riemannian geometry, if we can find a 
transformation to turn a curved space into flat, then the 
original space is flat essentially. If we can not find such a 
transformation, the original space is a really curved space. 
Now, because we can find a transformation to turn (14) 
into (13), the metric (14) is flat essentially. Because we 
can not find a transformation to turn (2) into (13) when 

( ) 0R t  , the spatial part of (2) can not be flat! 
On the other hand, in order to make the spatial dis- 

tance of the R-W metric be positive, we should have 
2 2

2
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So we have 21 0r  , i.e.,  or 0  20 1 r  . 
For the observable universe today, we have 2610r  m. 
So for 20 1 r  , we should have . There-
fore, if  is a positive number, it should be very small. 
If the universe is infinite, we should have . In the 
current cosmology, we take 

5210 

0 


1    and 1 as well as 0 
to represent the different universes with negative and 
positive curvatures as well as flat individually. However, 

 is improper to describe the universe, for we have 
to take 

1 
1r   to ensure the R-W metric meaningful. 

Unfortunately, this problem is completely neglected in 
the current theory. 

2. The Spatial Curvature of the R-W Metric 

Now let’s precisely calculate the curvatures of (10) under 
the condition constant. As we know that curva-
ture has concrete definition in mathematics. We should 
judge the flatness of space by strict calculation, not by 
apparent estimation. In the Riemannian geometry, the 
Riemannian curvature at a certain point of  dimen-
sional space is defined as [2] 

( )R t 

N

 
R p q p p

K
g g g g p q p p

   


   
   




      (16) 

K  is related to the selections of direction vectors 
p  and q  at each point in space. We define the co-

variant tensor R R g
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If curvatures are the same at all points in space, we 
have K  constant with 
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Further, if space is flat, the Riemannian-Christoffel 
tensors becomes zero everywhere with  or  

. 
0R

 
0R 

Now we calculate the space-time curvatures of the 
R-W metric. The non-zero Christoffel signs are 
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The non-zero curvature tensors of the R-W metric are 
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The corresponding curvatures are 
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Here 0iK  are the curvature of space-time crossing 
part, and klK  ( , 0k l  ) are the curvatures of pure space. 
For 0K 0i  , we take 0R   or  constant. In this 
case, 

R 
2

klK R  becomes a constant. This is just the 
result that physicists think of the R-W metric at present. 
In order to make purely spatial curvature 0klK  , we 
have two chooses. The first is to set  and 0R  0   
simultaneously, representing static space-time. Another 
is to set  2R t    at certain moment t t . In this 
case, we have 0klK   but still have 0 0iK  . When 

0   but ( ) 0R t  , we have 2 2 0R kl . The 
result is completely different from the current under-
standing. 

K R 

Now let’s estimate the curvature’s magnitudes of the 
R-W metric. Taking 0   in (24), we get 
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In cosmology, we define the Hubble constant  
( ) ( ) ( )H t R t R t  . At present moment , we have 0t
  18 1

0 0 2 10H t H s   . So we have 364 10Kkl
  , 

i.e., the spatial curvature of the expansive universe is very 
small. On the other hand, from the equation of cosmology, 
we have       2 36 1

04π 2 10R t R t G t H s0 0 03 2      , 
e have so w 36

0 2 10iK   .
and tine is also 

 The curvat f crossinure o g 
part of space very small. 
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curvature of the 
m

ever, the result of WMAP showed that the space 
of 

Next, how do we recognize the spatial 
etric (2)? In the Riemannian geometry, the intuitive 

picture is that when a vector moves along a loop and then 
returns to its starting point, if it can superimpose with 
original vector, the space is considered flat. If it can not, 
the space is curved. Therefore, if the space expands with 
time in the manner of the metric (2), a vector will not 
superimpose with the original vector when it moves 
along a loop and returns to the original point. We should 
recognize the space curvature of the metric (2) in this 
way. 

How
our universe seems nearly flat [3,4]. According to (24), 

the difference between constant   and  2
0R t  should 

be very mall at present moment. If we thin the con-
stant   has same magnitude with  2

0R t , the spatial 
curvat e of the expansive universe m out 3610

k that 

e abur ay b  . 
As we know that the precision of WMAP is about 310 , 
so the experiment is unable to find such small curvature. 

3. Influence on the Densities of Dark 

The result above may cause great influence on cosmol-

Material and Dark Energy 

ogy. By taking into account of cosmic constant  , the 
Friedmann equation of cosmology is 

2 8πR G
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                (26) 
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The formula is used to estimate the material density of 
the universe. If   represents space curvature factor, we 
have 0   for e flat universe so that the current ma-
terial y is equal to the critical density. Defining 

 th
densit

c   , we have 0 0 1c     for the universe 
ever, observat  that we only have 

0 0.04   for normal material, greatly less than 1. 
non-baryon dark material and dark energy 

have to be introduced to fill the universe. 
However, if   is adjustable parameter, in

today. How

Therefore, 

ions indicate

 stead of 
curvature factor, for the nearly flat universe and practi-
cally observed 0 , we can chose proper   to satisfy 
(28). We take th ubble constant 1 1

0 65K s MpcHe H m      

and obtain 27 37.9 10 kg mc
   -

tical measur
at present. By prac

ements, we have 28 32 10 kg m   for 
luminous material [5-7]. Suppo nsity 
of baryon material in the universe is about 10 times more 
than that of luminous material, i.e., suppose  

0
se that practical de

27 3
0 2 10 kg m   , by taking 363.3 10    , we can 

make (28) to be satis
 unnecessary for us to assume 

th

fied. 
In this way, it becomes
at the non-baryon material is about 6 times more than 

baryon material if they really exist. As for dark energy, it 
becomes surplus. We can make theory and observations 
consistent by adjusting the value of constant   without 
the hypotheses of dark energy. At last, if 0  , from 
(27) we have 

2
2
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3
eG t
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It means that the Hubble constant is not only related to 
material density, but also relative to scalar factor. At 
present moment, we have  0 1R t  . According to (28), 
we have 

0
0 2

0

8π 8π

3
cG G

H
R 3

 
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Therefore, the Hubble constant is the same. 
In fact, if   is an adjustable parameter in stead of a 

cu

4. Conclusions 

By the strict calculation based on the Riemannian ge-

rvature factor, many conclusions of the current cos-
mology should be re-evaluated. These problems will be 
discussed later. 

ometry, the paper proves that when the scalar factor 
( )R t  is related to time, the spatial curvature of the R-W 

c is metri  2 2K R R   , in stead of 2R . That is 
to say, the o constant spa rvature in 
general situations. Therefore, if the Friedmann equation 
is used to describe the expansionary universe, even space 
is flat, we can only consider   as an adjustable and 
non-zero parameter. The result ay greatly impact cos-
mology. We need to re-estimate the values of dark mate-
rial and dark energy densities. 

According to the current e

R-W metric has n ce cu

m

stimation in cosmology, 
no

 mat

uzzling for dark energy. 
In

rmal baryon material only makes up 4% , non-baryon 
dark material makes up 26%  and dar ergy makes 
up 70%  of the universal m rial. However, nonbaryon 
dark erial with such huge amount of quantity can not 
been found up to present days, though physicists have 
struggled to find it for decades. 

The situation is even more p

k en
ate

 fact, the concept of dark energy is similar to the con-
cept of ether in the nineteen century. Classical physics 
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to the twenty-first century, the history is
re

 l
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Appendix: The Curvatures of Two 
Dimensional Curved Surfaces in the Three 
Dimensional Flat Space 
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
 


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The form of (34) is similar to (6). We see that the met- 
ric

Because the geometrical figure of three dimensional 
supper spherical surface is abstract and not visualized 
easily, in order to have a direct visualization, we discuss 
two dimensional curved surfaces in three dimensional 
flat spaces further in this section. Similar to (3) and (4), 
the metric of three-dimensional flat space and the condi-
tion of spherical surface are individually 

 of (32) is flat, but the metric of (34) becomes curved. 
The reason is that the transformation (33) is non-linear. 
That is to say, non-linear transformations may change 
spatial curvatures. Similarly, by introducing nonlinear 
transformation ( )r R z r  and let ( ) ( )R z dR z dz   in 
(34), we obtain 

2 2 2 2d d d dx x x1 2 3
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Here constant is the curvature and is the ra- 
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Let 
2     (36) 

and substitute (35) in (36), we get 

   G  
Byus of two dimensional spherical surface.  using co- 

lumn coordinates 1 sinx r  , 2 cosx r   and 3x z , 
(31) becomes 
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2 2
1 2r x x   is the radius of a circle on the  

pl constant. A
ure

ane z ccording to the same calculation 
proced , we have 
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The form of (37) is similar to that of (12). The equa- 
tions corresponding to (8) and (9) are 
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    (39) 

It is obvious that the curvature of (39) can not be con-
stant  when constant. In fact, by considering  z 

( )zr R r , the spherical surface equation (32) becomes 

2 2 2 1
( )R z r z


               (40) 

Because new variables are r  and , (40) is not the 
equation of spherical surface and constant 

z
  is no 

longer curvature. When  constant, according to 
(40), we have 
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02
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r z2 1
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Only in this case, constant  represent the curvature 
of circle with radius 

K
r  on the plane 0 constant. 

Similarly, by using 
z 

( )r R t r  in supper spherical sur-
face equation (4), we obtain 

2 2 2 2 1
( )R t r c t


               (42) 

Because new variables are r  and , (42) is not the 
equation of three dimensional supper spherical surface 
and the constant  is no longer curvature again. When 

 constant, we have 

t
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Only in this case, constant  can be considered as 
the curvature of supper spherical surface with radius 

K
r . 

We calculate the curvature tensor of the metric (38). 
The non-zero metric tensors of (38) are 
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The non-zero Christoffel signs are 

 1 1 2
11 22 122

1
1

1

kr
r r

rr



       


2    (45) 

According to (20), the only non-zero curvature tensor 
is 

2 2

1212 21
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So according to the formula (16), the Riemannian cur-
vature of (38) is 
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That is to say, the curvature of (38) is 2 ( )R z , 
rather then  . In fact when constant, let 

 in (38), we get (34).  
( )R z 

2 ( )R z 
Next, we calculate the curvature of (39). We consider 
 as z 0x . The metric tensors of (39) are 
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The non-zero Christoffel signs are 
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The non-zero curvature tensors are 
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According to (16), we have 
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Because 12K  contains , the result is different 
from (47). It means that the spatial curvatures of (38) and 
(39) are different. It implies that the dimensions of space 
can change curvature, despite that the metric form (39) 
of two dimensional curved surface is completely the 
same as (38). In fact, as we know that the metric 

2R

2n d2 2 2 2d d sis r r2dr 2  
2
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2 2 2d dr r

 is flat with zero curva-
ture, but 2sin d 2      is curved with 
curvature 21 r  . Related to the radius of spherical 
surface, the curvature is not a constant. 
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