# Characterization of the sequence spectrum of DNA based on the appearance frequency of the nucleotide sequences of the genome

—A new method for analysis of genome structure

Masatoshi Nakahara<sup>1</sup>, Masaharu Takeda<sup>2</sup>

<sup>1</sup>Department of Computer and Information Sciences, Sojo University, Ikeda, Japan; <sup>2</sup>Department of Materials and Biological Engineering, Taumula National Callege of Technology, Taumula

<sup>2</sup>Department of Materials and Biological Engineering, Tsuruoka National College of Technology, Tsuruoka, Japan. Email: <u>mtakeda@tsuruoka-nct.ac.jp</u>

Received 13 January 2010; revised 25 January 2010; accepted 30 January 2010.

# ABSTRACT

The nucleotide (base) sequence of the genome might reflect biological information beyond the coding sequences. The appearance frequencies of successive base sequences (key sequences) were calculated for entire genomes. Based on the appearance frequency of the key sequences of the genome, any DNA sequences on the genome could be expressed as a sequence spectrum with the adjoining base sequences, which could be used to study the corresponding biological phenomena. In this paper, we used 64 successive threebase sequences (triplets) as the key sequences, and determined and compared the spectra of specific genes to the chromosome, or specific genes to tRNA genes in Saccharomyces cerevisiae, Schizosaccharomyces pombe and Escherichia coli. Based on these analyses, a gene and its corresponding position on the chromosome showed highly similar spectra with the same fold enlargement (approximately 400-fold) in the S. cerevisiae, S. pombe and E. coli genomes. In addition, the homologous structure of genes that encode proteins was also observed with appropriate tRNA gene(s) in the genome. This analytical method might faithfully reflect the encoded biological information, that is, the conservation of the base sequences was to make sense the conservation of the translated amino acids sequence in the coding region, and might be universally applicable to other genomes, even those that consisted of multiple chromosomes.

**Keywords:** Appearance Frequency of Triplet in Genome Base Sequence; Self-Similarity; Analytical Method of Genome Structure

# **1. INTRODUCTION**

It was well known that there were structural hierarchies

in the genome, such as the chromosome, nucleosome, ORF (open reading frame) and so on [1]. Among them, much attention have been paid to the ORF, and many research projects were being performed from the viewpoint of protein function using methods such as proteome and transcriptome analyses [2-5]. Many studies of entire genome sequences have been reported [6-11], although complete genome base sequences have only been revealed within the last 10 years or so. However, we currently have limited tools to analyze a large-scale molecule such as a whole genome, including pertinent hard-and software. It was very important to investigate the structural features of the entire genome because the four bases could be arranged in a sophisticated fashion in the genome, and in principle the base sequences might be reflected in the conformations of protein, RNA and DNA. In other words, if we could identify a meaningful structure, or an analytical method for analysis of the genome, we could also obtain important information about the functions of protein, RNA and DNA from that structure

The four bases in genomic DNA were arranged sophisticatedly in all organisms and distinguish the coding-and the non-coding region clearly on the genome. By analyzing the appearance frequency of the bases, it was shown that first, the symmetry [8-11], second, the bias [12-15] and third, the fractality [16-19] could be necessary to generate genome base sequences. We analyzed genome structure based on the appearance frequency of genome base sequences [20]. We have studied many genome sequences down-loaded from databases like NCBI [21], and calculated the appearance frequencies of an optional base sequence (key sequence) in a genome.

Subsequently, we determined the sequence spectra of chromosome, gene and DNA from the key sequence of the genome (chromosome), and analyzed both the coding-and non-coding sequences because the key se-



quences were used throughout the genome in cells. However, in the coding regions in the DNA, the appearance frequencies of the key sequences of an individual gene should vary in the genome because the protein-encoding gene and the adjoining (5'- and 3'-) non-coding base sequences were different. In other words, the appearance frequencies of the base sequences should be different for each gene. Even if the base sequences of the gene were identical, the adjoining base sequences differ, suggesting that each DNA sequence might have an effect on the expression of the gene and function as an informative DNA molecule [20].

Each gene was transcribed to mRNA, and translated to a protein on the ribosome (polyribosome) according to the DNA sequence of each coding region. In other words, the biological information of DNA (base sequence) should be transferred to protein via mRNA (base sequence). That is, the information of the base sequence of DNA was transformed to the amino acid sequence by tRNAs corresponding to the base sequences of the mRNA on the ribosome [22].

However, the coding regions varied in individual genomes and species [23,24]. The non-coding sequences might be necessary to precisely, rapidly, and consistently regulate gene expression [24,25]. In other words, the genome might be a "field" on which the four bases were sophisticatedly arranged into genes that were regulated and expressed to carry out the biological phenomena of life. Therefore, analytical methods to characterize genome structure were needed to understand the encoded biological phenomena.

In this study, we developed an analytical method based on the frequencies of the nucleotide (base) sequences in the whole genome according to the flow of biological information, and focused on the self-similarity in the genomes of *S. cerevisiae* and *S. pombe*, where most of the genes had introns, and *E. coli*, in which most of genes were in operons.

#### 2. MATERIALS AND METHODS

#### 2.1. Sequence Spectrum Method (SSM)

The outline of the proposed method was as follows. The base sequence of interest was sectioned by a small number of bases from the top (5'-end). The sectioned base sequence was called the key sequence. In the case of three successive base sequences (d = 3), the appearance frequencies of the 64 triplets (the genetic codon) were shown in **Table 1** (key sequence at d = 3). The key sequences of the nine successive base sequences (d = 9) was 262,144 sequences (=  $4^9$ , ref. 20). The appearance frequency of the key sequence was counted in the entire genome, and was plotted at the position of the first base of the key sequence as described in the next paragraph of the Materials and Methods. These procedures were carried out for the entire base sequence of interest with one

base shift (p = 1). The next step was to average the appearance frequencies so that a recognizable pattern of appearance frequency was obtained for the base sequence. This pattern of the averaged appearance frequency was called the "sequence spectrum". Finally, the homology factor between two sequence spectra was calculated to determine the degree of homology. The exact procedure was explained below in a mathematical way.

Let S be an entire set of base sequences, and  $B = [b_i]$  be a partial set of interest in S. A base element was denoted by  $b_i$  (I=1, ..., M), and M was the base sequence size of B. The base element  $b_i$  become A (adenine), T (thymine), G (guanine) or C (cytosine). The key sequence  $k_i$  and the appearance frequency  $f_i$  were defined for  $b_i$  as follows.

Key sequence  $k_i$ : base sequence comprised of sequential base elements  $b_i \sim b_{i+d-1}$  (d : base size of the key sequence)

Appearance frequency f<sub>i</sub>: appearance count of k<sub>i</sub> in S

The key sequence  $k_i$  was compared with the base sequence of the entire set S, and the appearance frequency  $f_i$  was increased by one every time the key sequence  $k_i$ matches the partial base sequence of the entire set S. This procedure was iterated for all key sequences  $k_i$  to obtain  $f_i$  (I = 1, ..., M). Consequently, the appearance frequency vector  $F = [f_i]$  (I = 1, ..., M) was determined (actually, the appearance frequencies for the last (d-1) base elements of B could not be calculated; however, this was neglected because M >> d-1).

Next, the appearance frequency  $f_i$  was averaged as follows:

$$f_{si} = \frac{1}{2m+1} \sum_{j=i-m}^{i+m} f_j$$

where the parameter m was average width. This averaged appearance frequency  $Fs = [f_{si}]$  (I = 1, ..., M) was called the "sequence spectrum".

The next step was to calculate the homology factor to determine the degree of homology. The homology factor determines the homologous region of a target base sequence with respect to a reference base sequence. In order to derive the homology factor, the mutual correlation function MF was calculated as

$$\begin{split} MF_k(Fsr,Fst) &= \frac{1}{\|Fsr\|} \sum_{i=1}^{Mr} (fsr_i - \overline{fsr}) * (fst_{i+k} - \overline{fst_k}) \\ \|Fsr\| &= \sqrt{\sum_{i=1}^{Mr} (fsr_i - \overline{fsr}) * (fsr_i - \overline{fsr})} \\ \|Fst_k\| &= \sqrt{\sum_{i=1}^{Mr} (fst_{i+k} - \overline{fst_k}) * (fst_{i+k} - \overline{fst_k})} \\ \overline{fsr} &= \sqrt{\frac{1}{Mr} \sum_{i=1}^{Mr} fsr_i} \\ \overline{fst_k} &= \sqrt{\frac{1}{Mr} \sum_{i=1}^{Mr} fst_{i+k}} \end{split}$$

| Triplet           | Frequency        | Triplet | Frequency     | Triplet    | Frequency | Triplet | Frequency |  |
|-------------------|------------------|---------|---------------|------------|-----------|---------|-----------|--|
| (a) S. cerevisiae |                  |         |               |            |           |         |           |  |
| AAA               | 478,677          | AAT     | 359,378       | AAG        | 263,401   | AAC     | 219,288   |  |
| ATA               | 302,770          | ATT     | 358,051       | ATG        | 221,867   | ATC     | 214,197   |  |
| AGA               | 246,395          | AGT     | 184,087       | AGG        | 138,976   | AGC     | 139,262   |  |
| ACA               | 208,942          | ACT     | 183,292       | ACG        | 106,020   | ACC     | 141,084   |  |
| TAA               | 271,996          | TAT     | 301,699       | TAG        | 156,650   | TAC     | 172,399   |  |
| TTA               | 271,724          | TTT     | 475,621       | TTG        | 279,349   | TTC     | 286,655   |  |
| TGA               | 244,596          | TGT     | 207,422       | TGG        | 179,858   | TGC     | 150,406   |  |
| TCA               | 245,024          | TCT     | 244,505       | TCG        | 110,351   | TCC     | 154,145   |  |
| GAA               | 288,804          | GAT     | 213,000       | GAG        | 136,067   | GAC     | 118,074   |  |
| GTA               | 172,583          | GTT     | 218,208       | GTG        | 128,946   | GTC     | 117,316   |  |
| GGA               | 154,364          | GGT     | 139,691       | GGG        | 81,268    | GGC     | 95,122    |  |
| GCA               | 150,888          | GCT     | 139,012       | GCG        | 67,875    | GCC     | 95,478    |  |
| CAA               | 281,266          | CAT     | 222,808       | CAG        | 152,602   | CAC     | 129,575   |  |
| CTA               | 155,668          | CTT     | 261,471       | CTG        | 152,121   | CTC     | 135,857   |  |
| CGA               | 110,589          | CGT     | 105,859       | CGG        | 70,348    | CGC     | 68,463    |  |
| CCA               | 181,394          | CCT     | 138,308       | CCG        | 71,012    | CCC     | 82,880    |  |
|                   | <b>7</b> 40 40 4 |         | (b) S         | pombe      | 255 220   |         |           |  |
| AAA               | 569,684          | AAT     | 409,666       | AAG        | 277,238   | AAC     | 234,759   |  |
| ATA               | 310,191          | ATT     | 409,111       | ATG        | 227,572   | ATC     | 207,984   |  |
| AGA               | 225,118          | AGT     | 196,340       | AGG        | 128,892   | AGC     | 158,220   |  |
| ACA               | 212,145          | ACT     | 193,959       | ACG        | 110,332   | ACC     | 123,580   |  |
| TAA               | 334,648          | TAT     | 310,127       | TAG        | 162,059   | TAC     | 183,503   |  |
| TTA               | 334,208          | TTT     | 572,331       | TTG        | 296,280   | TTC     | 292,897   |  |
| TGA               | 244,964          | TGT     | 213,557       | TGG        | 156,002   | TGC     | 157,500   |  |
| TCA               | 245,161          | ТСТ     | 227,278       | TCG        | 123,339   | TCC     | 149,364   |  |
| GAA               | 291,250          | GAT     | 207,564       | GAG        | 134,381   | GAC     | 108,437   |  |
| GTA               | 185,292          | GTT     | 236,486       | GIG        | 113,029   | GIC     | 109,314   |  |
| GGA               | 148,699          | GGT     | 123,656       | GGG        | 67,242    | GGC     | 75,049    |  |
| GCA               | 157,454          | GCT     | 157,621       | GCG        | 64,622    | GCC     | 75,416    |  |
| CAA               | 295,764          | CAT     | 227,501       | CAG        | 134,892   | CAC     | 113,317   |  |
| CTA               | 160,646          | CIT     | 277,788       | CIG        | 135,142   | CIC     | 134,949   |  |
| CGA               | 122,848          | CGT     | 110,569       | CGG        | 62,511    | CGC     | 64,344    |  |
| CCA               | 156,714          | CCT     | 129,667       | CCG        | 61,979    | CCC     | 67,351    |  |
| ΔΔΔ               | 108 901          | ΔΔΤ     | (C)<br>82.992 |            | 63 364    | AAC     | 82 578    |  |
| ATA               | 63 692           | ATT     | 83 395        | ATG        | 76 229    | ATC     | 86 476    |  |
| AGA               | 56 618           | AGT     | 49 774        | AGG        | 50 611    | AGC     | 80,848    |  |
| ACA               | 58 633           | ACT     | 49 863        | ACG        | 73 263    | ACC     | 74 899    |  |
| ТАА               | 68 837           | ТАТ     | 63 279        | TAG        | 27 241    | ТАС     | 52 591    |  |
| ТТА               | 68 824           | ТТТ     | 109.825       | TTG        | 76 968    | TTC     | 83 846    |  |
| TGA               | 83 483           | тат     | 58 369        | TGG        | 85 132    | TGC     | 95 221    |  |
| TCA               | 84 033           | тст     | 55 469        | TCG        | 71 733    | TCC     | 56.025    |  |
| GAA               | 83,490           | GAT     | 86.547        | GAG        | 42,460    | GAC     | 54,737    |  |
| GTA               | 52 670           | GTT     | 82 590        | GTG        | 66 108    | GTC     | 54 225    |  |
| GGA               | 56 199           | GGT     | 74 291        | 666        | 47 470    | GGC     | 92 123    |  |
| GCA               | 96.010           | GCT     | 80 285        | 000<br>606 | 114 609   | GCC     | 92,123    |  |
| CAA               | 76 607           | CAT     | 76 974        | CAG        | 104 785   | CAC     | 66 752    |  |
| CTA               | 26 762           | CTT     | 63 653        | CTG        | 107,705   | CTC     | 42 714    |  |
| CGA               | 70 934           | CGT     | 73 159        | CLC        | 86 870    | CGC     | 115 673   |  |
| CCA               | 86 442           | ССТ     | 50.412        | CCG        | 87,031    |         | 47,764    |  |
| ~~··              | 00,774           | 001     | JU, T14       | 000        | 01,001    |         | 11,107    |  |

Table 1. Key sequences of the three successive base sequences\*1 in genome\*2.

\*1; 5'- to 3'-end correspond to the left to the right letter of each triplet. \*2; S. cerevisiae genome is composed of 16 chromosomes plus mtDNA.

S. pombe genome is composed of 3 chromosomes plus mtDNA.

where

Fsr: sequence spectrum of the reference base sequence with base size Mr

Fst: sequence spectrum of the target base sequence with base size Mt (> Mr)

The mutual correlation function MF ranges from -1 to 1, and then the homology factor HF was defined as

$$HF_k(Fsr, Fst) = \frac{(MF_k + 1)}{2} * 100[\%]$$

The higher the homology factor, the more homologous the sequence spectra were. The homologous regions of the target base sequence with respect to the reference base sequence were obtained by calculating the homology factors  $HF_k$  for all k (k = 0, ..., Mt-Mr), and targeting the regions with higher homology factors.

When the target base sequence was very large, elements of the target sequence spectrum were skipped by the size factor p to reduce the size as follows.

$$fst_i \rightarrow fst_{(i-1)*p+1}$$

For instance, when p = 2

$$fst_1, fst_2, fst_3 \dots \rightarrow fst_1, fst_3, fst_5 \dots$$

This operation reduced the size to 1/p.

The base sequences of the genomes were obtained from the databases listed below.

*Saccharomyces cerevisiae*: http://www.mips.biochem.mpg.de/

Schizosaccharomyces pombe:

http://www.sanger.ac.uk/

Escherichia coli:

http://bmb.med.miami.edu/Ecogene/ecoWeb/

# 2.2. Appearance Frequencies of Bases or Base Sequences.

In order to analyze the structure of the base sequence, the most appropriate parameter was considered to be the appearance frequency. For three successive bases (triplets), the appearance frequency was counted for the entire genome by matching the triplet from the start of the base sequence in a genome with one base shift (p = 1) as follows.

Ex. Triplet bases: <u>AAT</u> <u>AAT</u>  $\longrightarrow$  (one base shift) BaseSequence: 5'-ATCG<u>AAT</u>CCGT<u>AAT</u>TCGGAGTCG<u>AAT</u>T-3' Count of <u>AAT</u>: 1 2 3

#### **3. RESULTS**

#### **3.1. Sequence Spectrum**

**Figure 1** showed the sequence spectrum of the  $F_1F_0$ -ATPase subunit gene *ATP*1 [26, YBL099W] in *Saccharomyces cerevisiae*. In this figure, the vertical parameter of the

sequence spectrum  $f_{si}$  was not designated, and it was scaled properly because the shape of the sequence spectrum only makes sense in this manuscript. The horizontal parameter was the base sequence number i (I=1, ..., M), and it was also omitted in the following figures because it was easily derived from the base sequence size M.

Controllable parameters in the sequence spectrum were the base size d of the key sequence, the average width m, and the size factor p (skipped base numbers). The parameter d determines the highest resolution for extracting the structural features of the base sequence. In this report, we used the key sequence as d = 3 (appearance frequency table of triplet, **Table 1**) for numerical experiments of the homologous structure discussed in the following sections.

However, as shown in **Figure 1**, smaller m-values caused a harder zigzag pattern of the sequence spectrum, and eventually it become more difficult to identify the structure of the base sequence (**Figure 1(a)**). Therefore, large m-values were usually used to obtain the overall features of the structure, and smaller m-values were applied to investigate the structure in detail (**Figure 1(b)**). The value of m normally ranges from 1/10 to 1/100 of the base sequence size. In this manuscript, m = 2 for a tRNA, m = 60 for a gene, and m = 8,000 for a chromosome. The size factor p was adjusted to the base sequence size especially when the homology factor between a small reference and a large target was calculated.

The possible appearance frequencies  $f_i$  of key sequences  $k_i$  were calculated for the entire set S in advance. The appearance frequency table depended on the entire set S, and in general S was the genome of the target species.

# **3.2. Reverse-Complement Symmetry in the** Appearance Frequency Table

Table 1 showed the appearance frequencies (3 successive base sequences = triplet, d = 3) of the key sequence for Saccharomyces cerevisiae (a), Schizosaccharomyces pombe (b), and Escherichia coli (c). This table gave some important features about the genome. In the case of S. cerevisiae, first, it was notable that the appearance frequencies of the key sequence and its reversecomplementary key sequence were almost the same. The reverse-complement key sequence was derived from reversing the base order of the original key sequence in S. cerevisiae, exchanging A and T, and exchanging G and C. For example, the appearance frequency of 5'-ATT is 358,051 and that of 5'-AAT was 359,378. The difference was less than 1%. The largest difference was about 2% for 5'-GGG (81,268) and 5'-CCC (82,880). This fact is valid regardless of the species, such as Escherichia coli (Table 1(b)) or Schizosaccharomyces pombe (Table 1(c)). This reverse-complement symmetry led to the fact that the numbers of A and T were almost equal, and the numbers of G and C were almost equal.



**Figure 1.** Sequence spectrum of *ATP*1. Sequence spectra of *ATP*1 [26-28] from *Saccharomyces cerevisiae* with different average widths (a) m = 0, and (b) m = 60. The vertical parameter (appearance frequency of the triplet, d = 3) of the sequence spectrum is not designated, and it is scaled properly. The horizontal axis is the base sequence of *ATP*1 (1,638 nt designated as M, ATG = start codon – TAA = stop codon). The skipped base numbers (p) are shown in the figures. The zigzag motif becomes more moderate and the resolution becomes lower as the average width of m becomes larger.

Generally it was well known that the numbers of A and T and the numbers of G and C were the same due to the double helix structure of DNA. However, in this case, this coincidence of base numbers occurred in the genome, so it had nothing to do with the double helix structure. Therefore, the coincidence of base numbers occurred when the base sequence size was very large even in a single strand. Actually this reverse-complement symmetry occurred in each chromosome as well.

On the other hand, it did not occur when the base sequence size was not large enough. For instance, the base sequence size of a single gene was not adequate. The fact that the appearance frequencies of the key sequence and its reverse-complementary key sequence were almost equal implies that there must be a certain amount of symmetry in the genome.

Second, the appearance frequency (in parentheses) for each key sequence was not random, but some of the key sequences had very close appearance frequencies even when they did not have a complementary relationship. For example, in the case of *S. cerevisiae*, the key sequences 5'-AAC (219,288), 5'-ATC (214,197) and

Copyright © 2010 SciRes.

5'-ACA (208,942) had close appearance frequencies of about 210,000, and those of the key sequences 5'-ACG (106,020), 5'-CGA (110,589) and 5'-GAC (110,874) were about 110,000. These different key sequences with close appearance frequencies might have a similar effect on the sequence spectrum. In other words, single-stranded DNA with base-symmetry might be able to make many double-helical stems in a molecule, and the peaks of the sequence spectrum, the "up" of the double-helical stem might have the same effect on the "down" of it. Needless to say, these facts were valid regardless of the species.

#### **3.3. Homologous Structure in Genomes** (Enlargement-Reduction of the base Sequence)

ATP1 (YBL099W) of S. cerevisiae was present on the left arm of chromosome II (37,045-38,679 from the left telomere). Figure 2 showed the spectra of ATP1 (1,638 nt, Figure 1(b)), and (a) chromosome II (813,139 nt), respectively. The red arrowhead indicated the position of ATP1 on chromosome II [27, 28]. When the spectrum of ATP1 (1,638 nt) was skipped 3 bases and the homology analyzed between chromosome II and the skipped-ATP1, the red-region (20,401 ~ 60,401 = 40,000 nt) of chromosome II was homologous to the 3 bases-skipped-ATP1 (1,341 ~ 1,638 = 297 nt) (Figure 2(b), HF of the red-region of chromosome II to the purple-region of ATP1 = 95%).

When ATP1 was skipped 10, or 16 bases, the homologous area of ATP1 to the red-region of chromosome II was enlarged to 990 nt (Figure 2(c), 648 ~ 1,638), or 1,584 nt (Figure 2(d), 54 ~ 1,638), respectively. That is, the base sequence of the complete ATP1 gene had self-similarity to the gene-position on chromosome II. Other genes of *S. cerevisiae* were highly homologous with the gene-position of each chromosome irrespective to the sizes, the order, the direction of transcription and the chromosome was calculated as approximately 400-fold (Table 2(a)).

The same relationship of the enlargement-reduction of the chromosome-gene was observed in *S. pombe* (eukaryotic cells, **Table 2(b)**) and *E. coli* (prokaryotic cells, **Table 2(c)**). In the case of small intron-containing genes in *S. pombe*, and genes in operons in the *E. coli* genome, the homology condition of the base width was also 100 nt, like that of the *S. cerevisiae* genome. Therefore, the homology pattern in a wide range of organisms might be dependent on the base sequence sizes for the gene analyzed. In any case, in the *S. cerevisiae*, *S. pombe* and *E. coli* genomes, genes and the base sequence near the chromosomal position of the gene had self-similarity with each other in the same ratio, approximately 400-fold. In some preliminary experiments, we observed the self-



**Figure 2.** Homology of chromosome II to *ATP*1. (a) *Saccharomyces cerevisiae* chromosome II (813,139 nt, from the left telomere sequence to the right telomere sequence), m = 8,000, d = 3, p = 400. The *ATP*1 gene is located 37,001 bases from the left telomere of chromosome II (arrowhead) [26-28]. The red-region is composed of 40,000 nt (the numbers on the abscissa 20,401 – 60,401). The numbers on the abscissa indicate the base number from the left telomere according to MIPS. (b) *ATP*1 gene (1,638 nt,  $F_1F_0$ -ATPase complex  $\alpha$  subunit) (26), m = 60, d = 3, p = 3. (c) *ATP*1 (1,638 nt), m = 60, d = 3, p = 10. (d) *ATP*1 (1,638 nt), m = 60, d = 3, p = 16. The homologous region (purple) of *ATP*1 to the red-region was designated the base number of the initiated base "A" (the start codon, ATG) of the coding region of *ATP*1 as 1 [26, 28].

similarity of a gene to the chromosomal position in H. sapiens (for instance, Hs.5174 and chromosome 22; data not shown). This self-similarity might be universal in all species.

# **3.4. Homologous Structure in tRNAs** (Enlargement-Reduction of the Base Sequence)

If a homologous structure was general, it must exist not only in protein-coding genes but also in RNA genes. Acthan 80% similar to the tRNA genes in S. cerevisiae, S. pombe and E. coli (Table 3). Most amino acids have plural genetic codons. Each genetic codon had plural tRNA genes on several different chromosomes. How were the plural tRNA genes used properly to construct proteins during the transformation of the biological information in organisms? The genetic codons for glutamate (Glu) were 5'-GAA and 5'-GAG. In S. cerevisiae, the nuclear-encoded Glu(GAA)-tRNA genes were 14 on various chromosomes, and all of them were composed of 72 identical nucleotides (bases). Three out of these 14 Glu(GAA)-tRNA genes were present on chromosome V (576.869 bp), located at positions 177.098 ~ 177.169. 354,930 ~ 355,001 and 487,397 ~ 487-326, and were designated Glu (GAA-1), Glu (GAA-2) and Glu (GAA-3), respectively [29-31, Figure 3 lower panel]. Figure 3 showed that the sequence spectra of these 3

tually, the sequence spectrum of each gene was more

Glu (GAA)-tRNA genes on chromosome V and *ATP*1 [26-28] were depicted. The window length of the tRNA gene was 70 nt in the analysis because Glu (GAA)-tRNA genes were composed of 72 nt (bold-black bar in upper panel). In addition, the Glu (GAA)-tRNA spectra analysis used DNA sequences (112 bp) adjoined to the 5'-, 3'-20 nucleotides (green letters) added to these three Glu (GAA)-tRNA genes (72 bp, black letters). As a result, the homology factors (HF) of *ATP*1 to these three Glu (GAA)-tRNA genes were different; that is, 77.0% for GAA-2 and 88.5% for GAA-3, respectively, although these Glu (GAA)-tRNA genes were all composed of 72 identical nucleotides.

The sequence spectra of ATP1 (1,638 nt) and the nuclear-encoded 14 Glu (GAA)-tRNA (72 nt) were fairly homologous. The red area of the Glu (GAA)-tRNA gene was homologous to the homologous area (purple) of the ATP1 gene (1,638 bp), and the bracket in Figure 3 showed the Glu (GAA)-tRNA gene consisting of 72 bp. The homologous area (red) of the Glu (GAA)-tRNA to the ATP1 gene overlapped with a part of the adjoining sequences of the tRNA-gene (the homologous region of the tRNA gene with the ATP1 gene was also indicated from the red-base to the red base in the lower panel of Figure 3). In other words, the sequence spectrum analyses based on the frequencies of the base sequences in the genome indicated that the sequence spectrum of the gene might be influenced by the adjoined DNA sequences. The smaller the base numbers of the DNA sequence, such as for the tRNA-genes, the greater these effects.

In the same way, other nuclear-encoded 11 Glu (GAA)tRNA genes on several different chromosomes were generally homologous to the ATP1 gene on chromosome II, which encoded the subunit of the F<sub>1</sub>F<sub>0</sub>-ATPase complex [26-28], but their homology factors (HF) varied. The maximum homologous Glu (GAA) tRNA gene was on chromosome IX (HF = 89.2%, position, 370,414-370,485,

 Table 2. Self-similarity with a gene to the chromosome.

| Gene              | nt (*1) | Chromosome (*2) | nt (*3)      | intron # | p-value (*4) | HF (%) (*5) |  |
|-------------------|---------|-----------------|--------------|----------|--------------|-------------|--|
| (a) S. cerevisiae |         |                 |              |          |              |             |  |
| SEO1              | 1,779   | 1, left         | 230,203      | 0        | 17           | 61.2        |  |
| FLO1              | 4,611   | 1, right        |              | 0        | 46           | 73.3        |  |
| ATP1              | 1,638   | 2, left         | 813,139      | 0        | 16           | 92.4        |  |
| SUP45             | 1,311   | 2, right        |              | 0        | 13           | 72.4        |  |
| PRD1              | 2,136   | 3, left         | 315,350      | 0        | 21           | 77.7        |  |
| PHO87             | 2,769   | 3, right        |              | 0        | 27           | 75.2        |  |
| ATP16             | 480     | 4, left         | 1,531,929    | 0        | 4            | 93          |  |
| RAD9              | 3,927   | 4, right        |              | 0        | 39           | 74.2        |  |
| PAU2              | 360     | 5, left         | 576,870      | 0        | 3            | 85.2        |  |
| GLC7              | 1,461   | 5, right        |              | 0        | 14           | 73.6        |  |
| EMP47             | 1,335   | 6, left         | 270,148      | 0        | 13           | 81.4        |  |
| PHO4              | 939     | 6, right        |              | 0        | 9            | 82.8        |  |
| POX1              | 2,244   | 7, left         | 1,090,936    | 0        | 22           | 80.9        |  |
| TFC4              | 3,075   | 7, right        |              | 0        | 30           | 69.9        |  |
| GUT1(STE20)       | 2,127   | 8, left         | 562,638      | 0        | 21           | 61.6        |  |
| IRE1(NDT80)       | 3,345   | 8, right        |              | 0        | 33           | 80          |  |
| HOP1              | 1,815   | 9, left         | 439,885      | 0        | 17           | 64.5        |  |
| MRS1(PAN1)        | 1,089   | 9, right        |              | 0        | 10           | 91.7        |  |
| CYR1              | 6,078   | 10, left        | 745,440      | 0        | 61           | 79.7        |  |
| ATP2              | 1,533   | 10, right       |              | 0        | 15           | 75.1        |  |
| SDH1              | 1,920   | 11, left        | 666,445      | 0        | 17           | 71.1        |  |
| CCP1((NUP133)     | 1,083   | 11, right       |              | 0        | 10           | 76.2        |  |
| HSP104            | 2,724   | 12, left        | 1,078,173    | 0        | 27           | 68.4        |  |
| MAS1              | 1,386   | 12, right       |              | 0        | 13           | 81.2        |  |
| CYB2(CAT2)        | 1,773   | 13, left        | 924,430      | 0        | 17           | 88.4        |  |
| HXT2(AAC1)        | 1,623   | 13, right       |              | 0        | 16           | 70.1        |  |
| RAS2              | 966     | 14, left        | 784,328      | 0        | 9            | 86.1        |  |
| POP2              | 1,299   | 14, right       |              | 0        | 13           | 75.4        |  |
| ADH1              | 1,044   | 15, left        | 948,061      | 0        | 10           | 85.2        |  |
| ADE2              | 1,713   | 15, right       |              | 0        | 17           | 78.8        |  |
| TBF1(PHO85)       | 1,686   | 16, left        | 948,061      | 0        | 16           | 67.7        |  |
| PZF1              | 1,287   | 16, right       |              | 0        | 12           | 91.2        |  |
|                   |         |                 | (b) S. pombe |          |              |             |  |
| ATP2              | 1,578   | 1 (968,783)     | 5,579,133    | 0        | 15           | 78.6        |  |
| RPL37             | 337     | 1 (1,275,535)   |              | 1        | 3            | 81.3        |  |
| RPL37(exon)       | 270     |                 |              |          | 2            | 77.5        |  |
| CDC24             | 1,823   | 1 (2,863,965)   |              | 6        | 18           | 81.3        |  |
| CDC24(exon)       | 1,506   |                 |              |          | 15           | 77.5        |  |
| ATP1              | 2,049   | 1 (5,256,781)   |              | 2        | 20           | 75          |  |
| ATP1(exon)        | 1,611   |                 |              |          | 16           | 76.1        |  |
| MEU6              | 2,083   | 2 (454,230)     | 4,539,804    | 2        | 20           | 82.3        |  |
| MEU6(exon)        | 1,956   |                 |              |          | 19           | 82.3        |  |
| CDC2              | 1,189   | 2 (1,500,340)   |              | 4        | 11           | 76.4        |  |
| CDC2(exon)        | 894     |                 |              |          | 8            | 78.8        |  |
| ATP16             | 483     | 2 (3,046,873)   |              | 0        | 4            | 90.4        |  |
| SPO4              | 1,672   | 2 (3,827,178)   |              | 2        | 16           | 85.1        |  |
| SPO4(exon)        | 1,290   |                 |              |          | 12           | 74.6        |  |
| RAF1              | 1,917   | 3 (100,255)     | 2,455,984    | 0        | 19           | 73          |  |
| HIF2              | 1,875   | 3 (194,552)     |              | 3        | 18           | 71.9        |  |
| HIF2(exon)        | 1,695   |                 |              |          | 16           | N.D.(*6)    |  |
| SRK1              | 3,932   | 3 (1,302,900)   |              | 1        | 39           | 64          |  |
| SPK1(exon)        | 1,743   |                 |              |          | 17           | 69          |  |

| M. Nakahara et al | / J. Bior | nedical Scien | ce and Eng | gineering 3 | 3 (2010) | 340-350 |
|-------------------|-----------|---------------|------------|-------------|----------|---------|
|-------------------|-----------|---------------|------------|-------------|----------|---------|

| Gene       | nt (*1) | Chromosome (*2) | nt (*3)           | intron # | p-value (*4) | HF (%) (*5) |
|------------|---------|-----------------|-------------------|----------|--------------|-------------|
| GAF1       | 2,568   | 3 (1,666,310)   |                   | 0        | 25           | 76.2        |
| TIF6       | 1,104   | 3 (2,223,154)   |                   | 2        | 11           | 86.4        |
| TIF6(exon) | 735     |                 |                   |          | 7            | 76          |
| ATP5       | 838     | 3 (2,268,884)   |                   | 2        | 8            | 74.8        |
| ATP5(exon) | 651     |                 |                   |          | 6            | 93          |
|            |         |                 | (c) E. coli (K12) |          |              |             |
| araA       | 1,503   | 66,835          | 4,639,221         | 0        | 15           | 74.5        |
| lacZ       | 3,075   | 362,455         |                   | 0        | 30           | 66.3        |
| galE       | 1,017   | 790,262         |                   | 0        | 10           | 87.7        |
| trpD       | 1,596   | 1,317,813       |                   | 0        | 15           | 77.5        |
| cybB       | 531     | 1,488,926       |                   | 0        | 5            | 87.8        |
| galF       | 894     | 2,111,458       |                   | 0        | 8            | 88          |
| argA       | 1,332   | 2,947,264       |                   | 0        | 13           | 68.9        |
| secY       | 1,332   | 3,440,788       |                   | 0        | 13           | 82.8        |
| atpA       | 1,741   | 3,916,339       |                   | 0        | 17           | 73.9        |
| purA       | 1,299   | 4,402,710       |                   | 0        | 12           | 83          |

\*1, Base numbers of the gene without intron.

\*2, Gene position on the chromosome (from the left to the right = S. pombe).

\*3, Size (base numbers) of chromosome or genome.

\*4, Skipped base numbers of the gene (max.p-value).

\*5, Entire gene in the max.p-value-chromosome HF (%) in the homologous region.

\*6, not determined.

Table 3. Self-similarity with a protein to tRNA gene.

| Gene            | size (nt) (*1) | chromosome (*2) | tRNA (*3)  | size (nt, *4) | chromosome (*5) | p (*6) |  |  |
|-----------------|----------------|-----------------|------------|---------------|-----------------|--------|--|--|
| (S. cerevisiae) |                |                 |            |               |                 |        |  |  |
| ATP1            | 1,638          | 2               | Glu(GAA)   | 72            | 12              | 16     |  |  |
| RAS2            | 936            | 14              | Lys(AAG)   | 72            | 6               | 9      |  |  |
| ADH1            | 1,047          | 15              | Arg(AGG)   | 72            | 10              | 10     |  |  |
| TFC4            | 3,075          | 7               | Ser(TCG)   | 103           | 3               | 30     |  |  |
| PAU2            | 360            | 5               | Ser(AGC)   | 101           | 6               | 3      |  |  |
| CYR1            | 6,078          | 10              | Ser(AGC)   | 101           | 6               | 60     |  |  |
|                 |                |                 | (S. pombe) |               |                 |        |  |  |
| ATP1            | 1,611          | 1               | Tyr(TAC)   | 84            | 2               | 16     |  |  |
| YPT3            | 645            | 1               | Arg(AGA)   | 73            | 2               | 6      |  |  |
| CDC2            | 894            | 2               | Ser(TCT)   | 82            | 1               | 8      |  |  |
| SPO4            | 1,290          | 2               | Thr(ACT)   | 72            | 3               | 12     |  |  |
| GAF1            | 2,568          | 3               | Ser(AGC)   | 95            | 2               | 25     |  |  |
| TIF6            | 735            | 3               | Arg(AGA)   | 73            | 3               | 7      |  |  |
| (E. coli)       |                |                 |            |               |                 |        |  |  |
| galE            | 1,017          | K12 genome      | Ser(TCC)   | 88            | K12 genome      | 10     |  |  |
| atpA            | 1,735          |                 | Ser(AGC)   | 93            |                 | 17     |  |  |
| cybB            | 531            |                 | Ser(TCC)   | 88            |                 | 5      |  |  |
| lacZ            | 3,075          |                 | Arg(CGT)   | 77            |                 | 30     |  |  |

\*1; base numbers of gene without intron

\*2; Chromosome presented the gene \*3; Homologous tRNA gene.

\*4; Size of tRNA gene.\*5; Chromosome presented the tRNA gene.

\*6; Skipped base numbers of the gene.

Copyright © 2010 SciRes.



Upper panel: Sequence spectrum of (a) Glu(GAA-1)-tRNA gene; (b) Glu(GAA-2)-tRNA gene; (c) Glu(GAA-3)-tRNA gene on chromosome V of *S. cerevisiae*; (d) Sequence spectrum of *ATP*1. The bold black line indicates the area of the Glu(GAA)-tRNA gene consisting of 72 bp.

Glu (GAA) tRNA gene on chromosome V. Chr. V (576,869 bp)

```
177061 atatteatga agaataaggt tttteaaeet aetttgatee gatatagtgt aaeggetate
177121 acateaeget tteaeegtgg agaeeggggt tegaeteee gtateggagt aetttttga
177181 tggetaeaat eataatttga eataeeteat atgaatatga tgtggtagta aattaaatag
(a) (GAA-1) 177,098 ~ 177,169 (Watson strand, left to right)
354901 ttgagatgea acaeataegt gtattgtaat eegatatagt gtaaeggeta teaeateag
```

354961 ettteacegt ggagaceggg gttegactee cegtategga gtactttttt gacateatae 355021 agtgtatgta tggggttagg agecacette caacaaagea teacgetgte gtateteaat

(b) (GAA-2) 354,930 ~ 355,001 (Watson strand, left to right)

487261 ttacacggta aaaaaaatgt tttcaaaget tttgategta agegattgaa aaaatataac 487321 gaatacteeg atacggggag tegaaceeg gteteeaegg tgaaagegtg atgtgatage 487381 egttacacta tateggatta aatteatgaa ttttttaggg eteegaatat tgtaaatteg

(c) (GAA-3) 487,397 ~ 487,326 (Crick strand, right to left)

Lower panel: The adjoining DNA sequences of each Glu(GAA)-tRNA gene, and the orientation of each tRNA gene. The base sequences of Glu(GAA)-tRNA (72 bp, black letter), adjoining sequences (5'-20 bp, 3'-20 bp, green letter), and the outside sequences that were analyzed are shown in pink letters [29-31]. *ATP*1-homologous region of each Glu(GAA)-tRNA gene from the underlined red base to the underlined red base (70 bp).

Figure 3. Homology of Glu(GAA)-tRNA gene to ATP1 gene.

Watson-strand) and the minimum was on chromosome VII (HF = 73.8%, position, 328,586-328,657, Watson-strand). These results indicated that the analyses of such small DNA sequences were deeply affected by the adjoining sequences.

Other protein-encoding genes were highly homologous to the appropriate tRNA genes in the yeast *S. cervisiae*. Similar homology of protein-encoding genes to appropriate tRNA genes in the same organism was observed for other genes in *S. pombe* and *E. coli* (data not shown). These results showed that the homologous structures spread consistently from a very small gene (tRNA) to a complete chromosome with the same scale regardless the species.

#### 4. DISCUSSION

The results obtained in this study might lead to the development of generation-rules for the base sequence of the genome. The reason why genomes possess homologous structure regardless of the size of the base sequence could be related to the physical hierarchy in the structure of the genome, such as the double helix structure of DNA, nucleosome structure, super helix structure, and so on. The phenomenon in which homologous patterns appear in various size levels is known as "self-similarity" or "fractal". Therefore, the structure of the genome could be essentially related to the fractal.

During the 1990s, many papers reported that the genome bases should follow the fractal-rule [15-18 etc], and Genome Projects for many species had revealed genomic base sequences in the last 10 years. Therefore, analyses of the concrete biological phenomena based on the structures of genomes should be in progress.

In this paper, the analyses of the sequence spectrum, m = 2 for a tRNA, m = 60 for a protein, and m = 8,000 for a chromosome were used. In the case of the sequence spectrum of protein, m = 10 (average of 20 nt) or m = 60 (average of 120 nt) was easier to use for the analysis of the sequence spectrum when the m-value corresponded to  $6 \sim 7$ , or 40 amino acid residues, respectively [32].

In the case of the chromosome, m was adjusted to 8,000 (average of 16,000 nt = 80 nucleosomes) or 10,000 (average of 20,000 nt = 100 nucleosomes). In any case, the smaller the adjusted m-value is, the higher the resolution of the sequence spectrum. These results suggested that "m" might be reflected in the higher order structure of a molecule, a gene for tRNA, or protein or chromosome, but the detailed biological meaning of the m-value is in progress [33, 34].

In addition, as described previously, each genetic codon had multiple tRNA genes on several different chromosomes. How were the multiple tRNA genes used properly to construct proteins during the transformation of biological information in organisms? In biological processes, the base sequence of DNA was transcribed to mRNA, and then the base sequence of mRNA was transferred to the amino acid sequence by tRNAs. In such cases, the higher homologous structure (HF) of tRNA genes might be one of the distinctions of an appropriated protein. In other words, the base sequence of DNA was reflected in the amino acid sequence through the base sequence of RNA. Therefore, the above method might be applicable to the interactive-sites of DNA, RNA, and protein. In such analyses, the selection of the d- and p-values might be important to obtain the highest resolution of the sequence spectrum corresponding to the structural features of the target DNAs or proteins.

Genomic DNA might be enlarged and reduced because the base sequence of the genomic DNA had fractality; therefore, it had similarity to related sites and was able to prefer a gene over the chromosome. The codingand non-coding regions of a genome were different with respect to bases as described. As a result, biases of the four bases occurred on genomic DNA [20].

The analyses based on the appearance frequency of the base sequences in a genome should be universally applicable to everything that was expressed by base sequences, not only in *Saccharomyces cerevisiae*, but also *Homo sapiens*, *Escherichia coli* and all genomes; therefore, this method might be applied as a first screen to characterize interaction-sites in biological phenomena.

# **5. CONCLUSIONS**

The results obtained in this study were summarized as follows. 1) Homologous structure exists in the appearance frequency of short base sequences such as triplets over an entire chromosome in the genome, and the 5'and 3'-adjoining base sequences of the DNA were deeply affected by the homology factor when the target DNA was small in size or located at the boundary, 2) homologous structure was universally observed in a variety of species, 3) the homology of the sequence spectrum of a gene was observed in the appropriate tRNA genes, and the analysis (SSM) of the DNA base sequences might be reflected in that of protein; in other words, 4) the SSM might be reflected as a vehicle of biological information, and a suitable prediction method to identify interacting regions DNA, RNA or protein by the appropriate conditions of "m", "d" and "p", in each gene, or genomic DNA, 5) SSM was faithfully reflected the biological information, therefore, the conservation of the bases sequences of genomic DNA were also conserved the translated amino acids sequence, the protein sequence, in the coding region, 6) SSM could deal consistently with molecules that consists of base sequences.

### 6. ACKNOWLEDGEMENTS

The authors wish to thank to Dr. Hiroshi Shibata at Sojo University for his comments about the fractal analysis in this research.

# REFERENCES

- [1] Singer, M. and Berg, P. (1991) Genes & genomes A changing perspective-. *University Science Books*.
- [2] Garrel, J.I. (1997) The yeast proteome handbook. Third edition, Beverly, Proteome Inc.
- [3] Velculescu, V.E., Zhang, L., Zhou, W., Vogelstein, J., Basral, M.A., Bassett, D.E.Jr., Hieter, P., Vogelstein, B. and Kinzler, K.W. (1997) Characterization of the yeast transcriptome. *Cell*, 88, 243-51.
- [4] Wan, X.F., VerBerkmoes, N.C., McCue, L.A., Stanek, D., Connlly, H., *et al.* (2004) Transcriptomic and proteomic characterization of the fur modulon in the metal- reducing bacterium Shewanella oneidensis. *The Journal of Bacteriology*, **186**, 8385-8400.
- [5] Sakharkar, K.R., Sakharkar, M.K., Culiat, C.T., Chow, V. T. and Pervaiz, S. (2006) Functional and evolutionary analyses on expressed intronless genes in the mouse genome. *FEBS Letters*, **580**, 1472-1478.
- [6] Karkas, J.D., Rudner, R. and Chargaff, E. (1968) Separation of *B. subtilis* DNA into complementary strands. II. Template functions and composition as determined by transcription by RNA polymerase. *Proceedings of the National Academy of Sciences of the United States of America*, **60**, 915-920.
- [7] Bell, S. J., Fordyke, D. R. (1999) Accounting unit of in DNA. *Journal of Theoretical Biology*, **197**, 51-61.

349

- [8] Abe, T., Kanaya, S., Kinouchi, M., Kudo, Y., Mori, H. et al. (1999) Gene classification method based on batch- learning SOM. Genome Informatics Seris, 10, 314-315.
- Baisnee, P.-F., Hampson, S. and Baldi, P. (2002) Why are complementary DNA strands symmetric? *Bioinformatics*, 18, 1021-1033.
- [10] Chen, L. and Zhao, H. (2005) Negative correlation between compositional symmetries and local recombination rates. *Bioinformatics*, 21, 3951-3958.
- [11] Albrecht-Buehler, G. (2006) Asymptotically increasing compliance of genomes with Chargaff's second parity rules through inversions and inverted transpositions. *Proceedings of the National Academy of Sciences of the United States of America*, **103**, 17828-17833.
- [12] Wilson, J. T., Wilson, L. B., Reddy, V. B., Cavallesco, C., Ghosh, P. K., *et al.* (1980) Nucleotide sequence of the coding portion of human alpha globin messenger RNA. *Journal of Biological Chemistry*, **255**, 2807-2815.
- [13] Wada, A., Suyama, A. and Hanai, R. (1991) Phenomenological theory of GC/AT pressure on DNA base composition. *Journal of Molecular Evolution*, **32**, 374-378.
- [14] Nakamura, Y., Itoh, T. and Martin, W. (2007) Rate and polarity of gene and fission in Oryza sativa and Arabidopsis thaliana. *Molecular Biology and Evolution*, 24, 110-121.
- [15] Paila, U., Kondam, R. and Ranjan, A. (2008) Genome bias influences amino acid choice: analysis of amino acid substitution and re-compilation matrices exclusive to an AT-biased genome. *Nucleic Acids Research*.
- [16] Voss, R.F. (1992) Evolution of long-range fractal correlation and 1/f noise in DNA base sequences. *Physical Review Letters*. 68, 3805-3809.
- [17] Bains, W. (1993) Local self-similarity of sequence in mammalian nuclear DNA is modulated by a 180 bp periodicity. *Journal of Theoretical Biology*, **161**, 13-143.
- [18] Weinberger, E.D. and Stadler, P.F. (1993) Why some fitness landscape are fractal. *Journal of Theoretical Biology*, **163**, 255-275.
- [19] Lu, X., Sun, Z., Chen, H. and Li, Y. (1998) Characterizing self-similarity in bacteria DNA sequences. *Physical Review E—Statistical*, 58, 3578-3584.

- [20] Takeda, M. and Nakahara, M. (2009) Structural Features of the Nucleotide Sequences of Genomes. *Journal of Computer Aided Chemistry*, **10**, 38-52.
- [21] NCBI Genome Data Base (2009) <u>http://www.ncbi.nlm.</u> <u>nih.gov/sites/entrez?db=genome</u>.
- [22] Crick, F.H. (1968) The origin of genetic code. Journal of Molecular Biology, 38, 367-379.
- [23] International Human Genome Sequencing Consortium. (2001) Initial sequencing and analysis of the human genome. *Nature*, **409**, 860-921.
- [24] Mattick, J.S. (2004) RNA regulation: A new genetics? *Nature Reviews Genetics*, 5, 316-323.
- [25] Lynch, M. (2007) The frailty of adaptive hypothesis for the origins of organismal complexity. *Proceedings of the National Academy of Sciences of the United States of America*, **104**, 8597-8604.
- [26] Takeda, M., Chen, W.-H., Saltzgaber, J. and Douglas, M.G. (1986) Nuclear genes encoding the yeast mitochondrial ATPase complex-analysis of *ATP*1 coding the F<sub>1</sub>-ATPase α-subunit and its assembly-. *Journal of Biological Chemistry*, **261**, 15126-15133.
- [27] Takeda, M., Okushiba, T., Hayashida, T. and Gunge, N. (1994) *ATP*1 and *ATP*2,  $F_1F_0$ -ATPase  $\alpha$  and  $\beta$  subunit genes of *Saccharomyces cerevisiae*, are respectively located on chromosome II and X. *Yeast*, **10**, 1531-1534.
- [28] Mewes, H. W., Albermann, K., Bähr, M., Frishmann, D., Gleissner, A., *et al.* (1997) Overview of the yeast genome. *Nature*, **387** (supp), 7-65.
- [29] Dietrich, F. S., Mulligan, J., Hennessy, K., Yelton, M. A., Allen, E., *et al.* (1997) The nucleotide sequence of *Saccharomyces cerevisiae* chromosome V. *Nature*, **387** (supp), 78-81.
- [30] Saccharomyce Genome Database. (2009) (<u>http://www.yeastgenome.org/</u>).
- [31] Transfer RNA data base. (2009) (http://gtrnadb.ucsc.edu/).
- [32] Matthews, B.W. (1993) Structural and genetic analysis of protein stability. *Annual Review of Biochemistry*, 62, 139-160.
- [33] Kornberg, R.D. (1974) Chromatin structure: a repeating unit of histones and DNA. *Science*, **184**, 868-871.
- [34] van Holde, K. and Zlatonova, J. (1995) Chromatin higher order structure: Chasing a mirage? *Journal of Biological Chemistry*, 270, 8373-8376.

350