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ABSTRACT 

We analyze the phenomenon of semiquantum 
chaos in the classically regular triple well model 
from classical to quantum. His dynamics is very 
rich because it provides areas of regular be-
havior, chaotic ones and multiple quantum tun-
neling depending on the energy of the system 
as the Planck’s constant   varies from 0 to 1. 
The Time Dependent Variational Principle TDVP 
using generalized Gaussian trial wave function, 
which, in many-body theory leads to the Hartree 
Fock Approximation TDHF, is added to the tech-
niques of Gaussian effective potentials and both 
are used to study the system. The extended  
classical system with fluctuation variables non- 
linearly coupled to the average variables exhibit 
energy dependent transitions between regular 
behavior and semi quantum chaos monitored by 
bifurcation diagram together with some numerical 
indicators. 

Keywords: Nonlinear Dynamics; Semi Quantum 
Chaos; Effective Potential 

1. INTRODUCTION 

The quantum computer science, the quantal dynamics of 
hetero-structures, the mesoscopic behavior of some sys-
tems, the chaotic entropy production in open quantum 
systems, the zero momentum (long wavelength) part of 
the problem of pair production of charged scalar parti-
cles by a strong external electric field [1], the quantum 
suppression of diffusion (dynamic localization) [2] and 
the quantum unique ergodicity in statistical thermody-
namics are good candidates for a wide range of the study 
and the application of semiquantum chaos in experi-
mental physics, nuclear physics and quantum chemistry 
as well. The definition and observation of chaotic be-
havior in classical systems are familiar and well under-

stood [3,4]. However, the proper definition of chaos for 
quantum systems and its experimental manifestations are 
still unclear [5-8]. We use the term semiquantum chaos 
to refer to the study of the quantum dynamics of systems 
whose classical limit is regular (restriction to Hamilto-
nian systems). 

Over the last years, different approaches of studying 
chaos in classical and quantum systems have attracted 
increasing attention. For example, we have the prob-
lem of pair production of particles by strong external 
electric field, the two particles interaction through a 
biquadratic coupling, i.e., a two-degrees of freedom 
system of which one is classical and the other purely 
quantum non linearly coupled and which exhibit chaos 
[9-11]. In addition, great attention is focused on a sys-
tem of two particles non-linearly coupled, whose clas-
sical limit is chaotic, involving quantum properties. 
This is the case for the authors of [9], who studied the 
duality wave/particle to take into account the quantum 
dynamics, then combined Quantum Theory of Motion 
(QTM) with Quantum Fluid Dynamics (QFD) in clas-
sical chaos, and found quantum parameters being cha-
otic. For the full quantum dynamics, only experimental 
studies have been done up till date on hetero-structures 
undergoing multiple tunneling resonance, and leading 
to different approaches of building quantum computers 
[12,13]. In addition to all the aforementioned routes of 
analyzing non-classical chaos, many theories and for-
malisms are always used. One of the most important of 
these routes is the time dependent variational approach, 
which, in the many body theory, leads to the TDHF 
using a Gaussian trial wave function [14-20]. The ap-
pearance of this wave function has provided great and 
interesting results not only in general universe physics 
field, but also in nuclear physics and quantum chemis-
try [14,16]. This usage generally integrates the mean 
field theory [21-24]. The signature of the Gaussian 
Effective potential GEP [1,17,25,26] is also a good 
indicator of non-classical chaos. In fact, effective po-
tentials [26] are used to assess the impact of quantum 
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effects such as zero point fluctuation and tunneling on 
the magnitude and the geometry of classical potentials 
for which they are an extension because carrying 
quantum corrections. Since some of the diagnostics 
[17,27,28] for chaos are based on the geometry of the 
potential, the effective potential techniques are espe-
cially powerful in combination with such method. 

Our aim in this paper is to study the semiquantal dy-
namics of a triple-well potential hetero－structure. We 
introduce additional (fluctuation) degrees of freedom at 
order of the Planck’s constant, representing quantum 
counterpart. The non-linear coupled system of the first 
order autonomous flow is obtained and both analytically 
and numerically studied. The complete dynamics of the 
coupled quantum and classical oscillators is described by 
a classical effective Hamiltonian, which is the expecta-
tion value of the quantum Hamiltonian or equivalently 
the Dirac’s action. The utilization of the (GEP) to draw 
the scheme of the system evolution provides fixed points, 
tunneling and multiple resonant. The numerical simula-
tions are sometimes in good agreement, and bear some-
what surprises. 

Our paper is organized as follows: in Section 2, we 
briefly describe our model of triple-well hetero-structure 
and apply the time dependent variational principle 
from which we obtain our basic set of equations. Sec-
tion 3 presents some analytical considerations and in-
troduces the GEP. Section 4 contains numerical simu-
lations to confirm assumptions made earlier in the 
previous sections. Finally, Section 5 summarizes the 
main results of the paper and provides discussion with 
perspectives for future works. 

2. MODEL AND EQUATIONS 

This section is to describe the triple-well hetero-structure 
model and draw the basic set of motions equations. Het-
ero-structures, besides offering very interesting new 
technological perspectives, represent a unique opportu-
nity to study fundamental question of mechanics such as 
many-body interaction, resonant tunneling, ergodicity 
and chaos [29-31]. A triple quantum well structure 
TQWS, all like a double quantum well structure DQWS 
constructed by the authors of the reference [13], can be 
constructed under several practical apparatus with GaAs/ 
AlGaAs. Physically, the structure presents the diagram 
of a tri-stable potential energy, which is the potential 
energy including stable and unstable equilibrium posi-
tions: 

2 4 6( )
2! 4! 6!

A B C
V Q Q Q Q          (1) 

where Q  is the coordinate and ( )V Q  the potential en- 

ergy; A , B , and C  are physical parameters on which 
depends the numerous variety of configurations. This 
type of potential is called 6  potential and exhibits 
several configurations according to the values of the 

constants A, B, and C. On the one hand, we can have 
mono- and bi-stable catastrophic potentials i.e. one and 
two potential wells, respectively. It corresponds to cases 
of beams, flexible or breakable structures. On the other 
hand, we have mono-, bi- and tri-stable non-catastrophic 
configurations, and it corresponds for example to the 
potentials of O-H chemical bound in ice. It can also de-
scribe the dynamics of some rigid structures, oscillators, 
hetero structures as well. We focus our attention on triple 
well configuration in order to study its various usages, to 
find out the importance and the rich dynamics offered by 
the additive potential well considering its symmetry. 
Note that more extensive works have recently been done 

on the 6 potential [32-34] and good results were ob-
tained about its higher precisions brought in the study of 
the various systems described by it. The graph of Fig-
ure.1 shows the potential energy. Our case belongs to 
mesoscopic physics, which deals with systems that are 
macroscopic but retain essential quantum features [30]. 

Consider a particle submitted to that potential energy. 
The classical action is given by: 
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From this action, we can derive the Lagrangian and 
through the Euler-Lagrange equations with respect to the 
coordinates, we come out with the first order autono-
mous system flow. This is the classical approach of our 
problem. It is obvious to realize, by solving the Sch- 
rödinger equation, that the corresponding quantum dy-
namics looks regular no matter whether this classical 
system behaves regularly or not: 
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As explained in the introduction, it is quite an interesting 
and difficult approach to find whether our system bears 
quantum features or not. It corresponds to a situation 
where a classical oscillator interacts with quantum one 
through bi-cubic non-linear coupling. This necessitates 
the introduction of additive degrees of freedom, namely 
 

 

Figure 1. The triple well oscillator potential, Eq.1 
with A=1.0; B=0.0706 and C=0.0034. 
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fluctuation ones. Their quantum nature belongs to the 
significance of the Planck’s constant  . We introduce 
classical and quantum coordinates [18] 

   Qtq ;   22  QQtG       (4) 

Together with classical and quantum momenta [18] 

   Pt ;   




Q

itp           (5) 

The < > has the sense of the mean value. We now 
consider a trial wave function, particularly the one that 
has been successfully introduced by Gauss [15,18,35] 
and whose results were in good convenience with the 
physics of the considered system 

     






  qQP

i
qQNtQ


2

2

1
exp,       (6) 

With    11
2

2
G t i t     from the authors of [15]. 

This wave function has to satisfy usual quantum re-
quirements such as the normalization condition and the 
Heisenberg uncertainty principle. The normalization 
condition gives   4

1
2  GN  and the mean values are 

easily calculated  
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Moreover, the uncertainty principle is obtained: 
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Q , P , G  and  are variational parameters and 

we demand that their variation vanishes at infinity. 
We now turn to the derivation of appropriate semi 

quantum equations of motion. The TDHF or Gaussian 
variational approximation can easily be performed with 
the help of Dirac’s variational principle [15]. We require 
the effective action 
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to be stationary against arbitrary variation of a nor-
malized wave function which vanishes at t : 

0
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
 for all  , with 1 . This is equ- 

ivalent to the exact time dependent Schrödinger equation. 
With this variational principle, one can solve the quan-
tum mechanical time evolution problem approximately 
by restricting the variation of the wave function to a sub 
space of Hilbert space. The effective action is therefore 
given by: 
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This contains higher order additive term in 33G  
symbolizing higher quantum correction as compared to 
Eq.6 of [18] and Eq.18 of [35]. The appearance of the 
additive term may increase the richness of the studied 
systems dynamics. The semi quantum variational equa-
tions of motion are therefore derived via the Euler La-
grange equation for the effective action, Eq.9, by inde-
pendent variation with respect to Q , P , G  and  : 
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As compared to Eq.7 of [18] and Eqs.22-25 of [35], 
there appear additive non-linear terms. We expect more 
corrections on the dynamics of the aforementioned stud-
ied system. The above equations are the TDHF ones 
because using the Gaussian wave function in Dirac’s 
principle. The validity of this TDHF approximation, 
which has been widely tested [11,18] by being applied to 
various quantum mechanical problems and drawing 
good results, is awaited here. Since the equations are 
highly nonlinear, we expect the trajectories to be regular 
and irregular providing chaotic behavior. It is important 
to note that our equations are coupled, showing the link 
between classical and quantum interactions. At 0  
classical limit, only the first two equations remain, con-
firming that the fluctuation variables are responsible for 
quantum effects. In addition, the Ehrenfest theorem is 
then verified to confirm the validity of our system [17]. 
 
3. GEP AND THEORETICAL ANALYSIS 
 
The purpose of this section is to derive the Gaussian 
Effective Potential (GEP) and to report some analytical 
considerations, which may help to better understand the 
dynamics of the semiquantum equations of motion. 

3.1. The Static GEP 

The variety of techniques used to study dynamical sys-
tems comes about because the measures (such as K en-
tropy [36], Lyapunov numbers [36-39]), the diagnostics 
(the Melnikov functions [38-40]), and the signatures of 
chaos, which generally lie in phase space, are dynamic 
and have no direct interpretation in quantum dynamics. 
We consider a parallel approach, that of using classical 
techniques of analysis by reducing the problem to that of 
an effective classical system i.e. looking at Hamiltons’ 
equations in a modified potential. Effective potentials 
are therefore used to assess the impact of quantum ef-
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fects such as zero-point fluctuations and tunneling on the 
magnitude and the geometry of the classical potentials. It 
was introduced by Stevenson [26] and successfully 
tested in the Henon Heiles and four leg potentials prob-
lem. Most of the diagnostics for chaos are based on the 
geometry of the potential. The effective potential tech-
nique is especially powerful in combination with such 
method [17]. The idea of Stevenson is to approximate 
the effective potential of a system by using Gaussian 
wave function. In general, the effective potential of a 
system gives us a picture of how the quantum fluctua-
tions modify the classical potential. Following the con-
served total energy for our non-dissipative model with 
its complicated functions of q , p , G  and  , we 

choose the simplest initial conditions with zero momenta 
    000  ttp ; then, evaluating the initial total energy 
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At the minima of the classical potential, (i.e. q = 0 or 
q = ± 17.2, numerically), we obtain the initial energy for 
the correspondent minimum q = 0, 
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which is a function of the initial value of G: this is the 
relevant control parameter for our model. We now derive 
the GEP. In analogy to a classical system, we consider 
the effective potential which is defined as the total minus 
the kinetic energy, from Eq.8, the kinetic part being zero 
according to the initial conditions. Thus,  
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In Figure 2, we present equipotentials for the GEP 
corresponding to couples of (q,G) varying through  

 

 

Figure2. The effective semi-quantum potential (GEP), 
Eq.13 restricted in the q-G positive plane. 

Eq.10 for the same conservative energy. It shows how 
the classical potential is modified. 

In the particular case of a potential well, the Heisen-
berg uncertainty principle implies that, if the centroid is 
concentrated in a small region ΔQ then the uncertainty 
on the conjugate momentum ΔP is very large ΔP ≥ 
ћ/2ΔQ; there appears a large kinetic contribution in the 
total energy. In the triple well, the quantum fluctuations 
lower the potential barriers such that a particle with clas-
sical insufficient energy to spray over the barrier finds it 
possible: that is quantum tunnel effect [21-24]. The most 
interesting features are the valleys in the potential energy 
surface that lead to the saddle point regions separating 
the three effective potential wells. They are observable at 
q = 10.9, corresponding to the maximum of the classical 
potential. The GEP, in its analytical expression, shows 
the quantum corrections on the classical potential. New 
phenomena are expected as shown in Figure 2. In some 
situations, this potential is shown to exhibit chaotic be-
havior for some restricted energy ranges [41]. According 
to the graph, we expect multiple quantum tunnel effects, 
as well as energy (medium value) dependent transitions 
between regular and chaotic motion in the GEP; this 
needs to be confirmed in the numerical study. Quantum 
tunneling must be observable in our system, for energy 
range between the potential wells. Since the potential 
has symmetric wells, we expect on resonance [18] tun-
neling process to occur. One can also explain this using 

the static effective potential  effV q  that is obtained by 

eliminating G  in  ,effV q G  via. From Eq.13: 
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where G(q) is the solution of the following equation: 
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Figure 3, we realise that  qVeff
~  (Static GEP) changes 

from  qV and  GqVeff ,  as if there were a phase transition. 

 

 

Figure 3. The static effective potential. 
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3.2. Fix Points and Instabilities 

Our potential shows the classical contribution plus the 
higher order quantum corrections. Note that the num-
ber of valleys is in increase as compared to the one in  
[35]; so does the number of fixed points by two. This 
increase was earlier predicted by those authors be-
cause of the higher order term corrections considered 
( 33G ) in the GEP. In the fix points’ theory, a hetero 
structure bears additive properties whose importance 
is over the aim of this paper. Nevertheless, we focus 
on the variety of its usage while considering it. Our 
system offers various possibilities and useful aspects 
therewith into its rich dynamics (see stationary condi-
tions 0  Gqp ). Concavities observed in the pic-

ture are good diagnostics for chaos [30-32]. Really, since 
there are various combinations of initial conditions cor-
responding to the same total energy, numerically unob-
servable chaos may exist at all energies. Nevertheless, it 
did not happen so; that is why it was difficult to find 
energy ranges where chaos occurred. As G increases in 
the GEP, three minima appear in the half plane, corre-
sponding to the well minima of the original problem; 
two saddle points also emerge, interestingly. In addition, 
the  pq,  system, as driven by the  ,G  system, is like 

a non-linearly driven Duffing oscillator [17,39] with 
back reaction. With these ingredients, added to the 
highly non-linearity, it is not surprising that our semi 
quantum equations exhibit chaos. On the other hand, the 
instabilities are important and their study is based on the 
motion equations Eq.10 in the second order form to 
show the similarity to coupled oscillators: 
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Two coupled parametric oscillators then describe the 
dynamic of the system. Both oscillators can become un-
stable due to exponentially growing modes for a finite 
range of initial values for q and G. Taking the both ef-
fective mass squared terms to be negative, gives the 
conditions 
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with the range  
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for Eq.18. 
The both ranges of q indicate the relationship among 

the parameters A, B and C to be satisfied for a given po-
tential in order to present oscillations with possible in-
stabilities: 

0
²

²2


C

B

C

A  that is C
BA 2

²        (23) 

 For G to remain positive, the previous conditions 
give  
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(24) 
Hence, the instability zone added to the q range ob-

tained from Eq.17 gives 
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Note that our parameters satisfy the condition Eq.23 
and the q range for instability is 9.10q  or 9.10q , 

corresponding to domains containing the two extreme 
classical potential wells. We can conclude that the equi-
librium positions q = 17.2 and q =17.2 of our potential 
are unstable ones. Nevertheless, note that condition Eq.25 
provides the criterion not only for a better choice of ini-
tial G, but also for sensitivity to initial conditions. 

 
4. NUMERICAL STUDIES 

 
In this section, we present the results obtained by direct 
numerical integrations of our semi quantum equations of 
motion. Numerical integration is necessary for us in or-
der to confirm the estimates of the theoretical predictions 
and/or to obtain other results in domains where the GEP, 
and the analytical study cannot be successful. In fact, it 
is the principal mean that allows knowing about the ex-
act behavior of the solutions for non-trivial nonlinear 
ordinary differential (semi quantum) equations Eq.16. 

Unfortunately, unlike an analytical relation from which 
one can discuss the appearance of chaos for different 
initial conditions, the numerical integration has the draw 
back of requiring a discrete variation of the control pa-
rameter of the system. Consequently, numerically study-
ing such a semi quantum system for several values of its 
control parameter, which may vary within intervals of 
relatively long length, will demand a cumbersome quan-
tity of plots. Thus, despite the fact that we focus great 
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attention only on the influence of the control parameter, 
the numerical description involves quite a large number 
of plots, where lie the key results of this paper. The 
fourth-order Runge - Kutta algorithm is the scheme we 
have used. The time step is fixed at Δt = 1e – 3. We al-
ways fixed     000  ttp  initially and chose G, 
together with various values for q to represent initial 
configurations corresponding to varying total energy. 
Generally, we did not explore the full set of all initial 
conditions at a given energy. This would require much 
more extensive numerical calculations which is beyond 
the scope of the present paper. 

We have used five standard indicators including Bi-
furcation diagrams, phase portraits, frequency spectrum, 
Poincare sections displays and computation of maximal 
Lyapunov exponent to characterize the long time dy-
namics of our model under slight perturbation of initial 
conditions. These indicators complement each other in 
the following way: The bifurcation diagram indicates a 
range where values can be found to obtain regular or 
chaotic behavior; phase portraits are basically used to 
appreciate the shape of trajectories in the phase space on 
which the system evolves in time. They may be suffi-
cient to state whether the dynamic is regular or not.  

Nevertheless, they are not practical when the phase 
space is of dimension greater than two. Moreover, we 
cannot easily distinguish roughly between chaotic states 
and some quasi-periodic ones using only phase portraits. 
Poincare surfaces of section are useful to determine in 
particular the periodicity of the systems evolution. Strange 
attractors correspond to surfaces of section made up of 
an infinite number of points that occupy a bounded do-
main of the cross section without forming a smooth 
closed curve. They may be chaotic or not. Thus, we need 
the maximal Lyapunov exponent to know the nature of 
the strange attractor, in this case. The frequency spec-
trum is also useful here to determine, in particular, the 
value of the frequency in the case of regular periodic 
motion. Regular spacing shows regular motion.  

For a system of first order equations of the form 

 ,X F X t , where  1 2, ,..........
T

nX X X X , the Lya- 

punov exponents are defined as the asymptotic values of 
the eigen values of the solution of the matrix differential 
equation   FB D X t B  , assuming the initial condi-

tions   nnIB 0 , where 
nnI   is the n × n square identity 

matrix.   tXDF
 represents the Jacobean matrix of the 

function F evaluated at the solution X(t). The involved 
Eigenvalues can be computed using the code stated by 
Wolf et al. [37,40]. 

A chaotic state is the one for which at least one expo-
nent is positive. The bifurcation diagram (see Figure 4) 
shows here the increase of chaotic behavior of the sys-
tem when moving from classical ( =0) to quantum 
( =1). We present here phase portraits and correspond-

ing Poincare sections in the phase space planes of the 
two conjugate pairs of variable  pq,  and  ,G  for 

some values of the total energy closer to the minimum of 
the classical potential energy. Figure 5 shows some 
regularity in the motion of the centroid at low energies. 
  The first row presents the phase space at E = 4, G = 
0.4 together with the corresponding frequency spectrum, 
which is regularly spaced; indicating regularity. Indeed, 
the value of the Lyapunov exponent is negative -0.0004. 
The remaining rows indicate the aspects of the Poincare 
sections in the both phase spaces for energies 0.9; 4 and 
5, respectively. The motion still looks regular and pre- 

 

 

Figure 4. Bifurcation diagrams as ћ moves from 0 to 1, for (a): 
q = 0.01, G = 0.1, (b): q = 0.01, G = 0.1, (c): q = 5.3, G = 0.09, 
(d): q = 17.2, G = 0.09. 

 

 

Figure 5. Phase portrait and frequency spectrum in the first 
line for E = 4, G = 0.4; Poincaré sections in the remaining lines 
and from top to bottom for E = 0.9, G = 1.2; E = 4, G=1.2 and E 
= 5, G = 4. 
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sents a double periodicity with negative values of 
Lyapunov exponent. This situation is somewhat evident 
and the analytical studies predicted it. Once the energy 
keeps increasing, around the secondary minimum E = 12, 
G = 2.2, the motion starts to be irregular as shown in 
Figure 6 with multi-periodicity. The number of fixed 
points (five) is clearly observable at this particular state. 
Regular spacing starts vanishing in the frequency spec-
trum; Poincare sections present separate closed curves; 
the Lyapunov exponent remains negative with oscilla-
tions over the positive values. This is a sort of phase tran-
sition. The significance of this type of motion lies on the 
definition of KAM tori. At E = 17, G = 10.8, there is 
chaos (see Figure 7) since the frequency spectrum has 
irregular spacing and the Lyapunov exponent is positive 
(not shown). 

An attractor seems to appear in its limit cycle around 
the secondary minimum of the potential energy. However, 
just at E = 17.49, G = 0.39, regular motion appears once 
more (see Figure 8) with negative Lyapunov exponent 
and a four－periodic motion in Poincare sections. Around 
E = 18 and E = 19, strange attractor seems to appear, once 
more, as plotted in Figure 9. We find it strange and cha-
otic since the Lyapunov exponent shifts from positive 
value ( + 0.224 at E = 19) to negative value (－0.0005 at E 
= 19.5). Regular motion is then observed at E=19.5. The 
particle located in the right potential well evolves regu-
larly, and, chaotically sprays out from the right to the left 
well and remains there in highly chaotic 
 

 

 

 
Figure 6. Phase portrait and Poincaré sections in the two first 
lines and at last, frequency spectrum with Lyapunov exponent 
for E = 12, G = 2.2. 

 

 
Figure 7. Phase portrait and Poincaré sections for E = 
17, G = 10.8. 

   

   
Figure 8. Poincaré sections and Lyapunov exponent for 
E = 17.49, G = 0.39. 
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evolution as indicated in Figure 10, with Lyapunov ex-
ponent equal to + 0.2295. Multiple quantum tunneling arises 
from E = 20 to E = 23. Between E = 25 and E = 37, chaos 
dominates with complicated trajectories and positive 
Lyapunov exponents + 0.264 and + 0.297 (not shown). At 
very high energy, chaos persists (see Figure 11) in its 
different forms of limit cycle, KAM tori or attractors. It 
is surprising here because, analytically, regular behavior 
at high energy was awaited. The energy dependent regu-

lar and chaotic behaviors hence alternate and make the 
dynamics very rich. 
 
5. CONCLUSIONS 
 
In this paper, we have analyzed the dynamics of a semi 
quantum system that has the interesting feature of pos-
sessing three potential wells. We focused our attention, 
in particular, on the non-linearity of the basic set of the 

 

 

 

Figure 9. Phase portrait for E = 18, G = 0.09; E = 19, G = 4 and E = 19.5, G = 0.2, respectively and at last, Poincaré 
section for E = 19.5, G = 0.2. 

 

 

Figure 10. Phase portrait for E = 20, G = 6.3; E = 22, G = 0.2 and E = 23, G = 0.39, respectively. 
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Figure 11. Phase portrait and Poincaré section for E = 38.5, G = 1.2 and E = 50.5, G = 0.2, respectively. 

 
semi quantum equations of motion derived by a Time 
Dependent Variational Approximation using a general 
Gaussian as the trial wave function. Proceeding first ana-
lytically, we especially used the GEP in both its static and 
dynamical forms to catch the various instabilities areas 
and fixed points, tunneling roll over, regions where the 
system could behave unexpectedly and the non-regular 
behavior that we characterized as chaotic for the sake of 
the nonlinear aspect of the equations of motion. Under 
the control parameter, we turned to numerical investiga-
tions to verify and complement these analytical assump-
tions. With the use of indicators such as phase portraits, 
Lyapunov Exponents and Poincare sections, the results of 
numerical analysis on which we definitely rely can be 
summarized as follows. At energies closer to the mini-
mum, periodic evolution starts. As energy increases, multi- 
periodic behavior arises leading to chaotic one through mul-
tiple tunneling and roll over as earlier predicted by the 
GEP. Regular and irregular motions hence alternate. Fi-
nally and remarkably, at very high energy, the system 
supposed to behave regularly because the whole structure 
would be regarded as a unique potential well does not. It 
rather exhibits chaotic motion. There are not rooms of 
regular motion at that high energy. This may be related to 
its complex structure.  

The bifurcation diagram earlier predicted that as we 
move from classical to quantum, chaos increases rele-
vance. The dynamics is found to be very rich because 
exhibiting various interesting behaviors, which may help 
to better understand complex phenomena occurring at 
sub atomic and mesoscopic levels. 

However, its complexity makes us ask a question 
whether the energy is the only parameter to control the 
system; particularly, at very high energy and in the re-
gions where there occur quantum tunnel effects and cha-
otic motion. It will be interesting to look for additive 
parameter on which the system may depend to behave so 
or the novel phenomena that this chaos may hide. Also, 
may these results be a bit precise from t he one obtained 
by the authors of [17] in Gaussian wave packets. 
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