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ABSTRACT 

This paper presents a novel modified particle swarm optimization algorithm (MPSO) for both offline and online 
parametric identification of dynamic models. The MPSO is applied for identifying a suspension system introduced by a 
quarter-car model. A novel mutation mechanism is employed in MPSO to enhance global search ability and increase 
convergence speed of basic PSO (BPSO) algorithm. MPSO optimization is used to find the optimum values of 
parameters by minimizing the sum of squares error. The performance of the MPSO is compared with other optimization 
methods including BPSO and Genetic Algorithm (GA) in offline parameter identification. The simulating results show 
that this algorithm not only has advantage of convergence property over BPSO and GA, but also can avoid the 
premature convergence problem effectively. The MPSO algorithm is also improved to detect and determine the variation 
of parameters. This novel algorithm is successfully applied for online parameter identification of suspension system. 
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1. Introduction 

A mathematical model can be provided to describe the 
behavior of a system based on obtained data for its inputs 
and outputs by system identification. It is necessary to 
use an estimated model for describing the relationships 
among the system variables for this purpose. The values 
of parameters in the estimated model of a system must be 
found such that the predicted dynamic response coincides 
with that of the real system [1]. 

The basic idea of parameter identification is to com-
pare the time dependent responses of the system and pa-
rameterized model based on a performance function giv-
ing a measure of how well the model response fits the 
system response. It should be mentioned that the model 
of system must be regarded fixed through identification 
procedure. It means that data are collected from the 
process under a determined experimental condition and 
after that, the characteristic property of system will stay 
the same.  

Many traditional techniques for parameter identifica-
tion have been studied such as the recursive least square 
[2], recursive prediction error [3], maximum likelihood 
[4], and orthogonal least square estimation [5]. Despite 
their success in system identification, traditional optimi-
zation techniques have some fundamental problems in-

cluding their dependence on unrealistic assumptions such 
as unimodal performance landscapes and differentiability 
of the performance function, and trapping in local min-
ima [6].  

Evolutionary algorithms (EAs) and swarm intelligence 
(SI) techniques seem to be promising alternatives as 
compared with traditional techniques. First, they do not 
rely on any assumptions such as differentiability, conti-
nuity, or unimodality. Second, they can escape from local 
minima. Because of this, they have shown superior per-
formances in numerous real-world applications. Among 
them, genetic algorithm (GA) and particle swarm opti-
mization (PSO) are frequently used algorithms in the 
area of EAs and SI, respectively. Owing these attractive 
features, these algorithms are applied in the area of sys-
tem identification [7–10]. 

Comparing GA and PSO, both are population based 
optimization tools. However, unlike GA, PSO has no 
evolution operators such as crossover and mutation. Easy 
to implement and the less computational complexity are 
advantages of PSO in comparing with GA. The basic 
PSO (BPSO) algorithm has good performance when 
dealing with some simple benchmark functions. However, 
it is difficult for BPSO algorithm to overcome local 
minima when handling some complex or multimode 
functions. Hence, a modified PSO (MPSO) is proposed 
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to overcome this shortage. In this paper, a novel mutation 
mechanism is introduced to enhance global search of 
algorithm. Then, it is demonstrated how to employ the 
MPSO method to obtain the optimal parameters of a dy-
namic system. 

In order to show the effectiveness of MPSO in system 
identification, a quarter-car model of suspension system 
is identified as an application. Although a linear model is 
proposed for a suspension system for control purposes 
[11–14], the MPSO can be applied well to identify the 
non-linear systems, as well. It should be noticed that a 
suspension system operates under various operating con-
ditions, where parameter variations are unavoidable. 
Accurate knowledge of these parameters is important to 
form the control laws. Therefore, it is of our interest to 
investigate an efficient model parameter tracking ap-
proach to achieve precise modeling results under differ-
ent conditions without using complicated model structures. 

In this paper, the MPSO is compared to GA and BPSO 
in offline parameter identification of suspension system. 
It can be shown that the MPSO has a better performance 
than the aforementioned algorithms in solving the pa-
rameter estimation of suspension system. Because of the 
superiority of MPSO in offline identification, it can be 
used for online parameter identification of suspension 
system, as well. In the propose method, the estimated 
parameters will not be updated unless any changes in 
system parameters is detected by algorithm. A sentry 
particle is introduced to detect any change in system pa-
rameters. If a change is detected, the algorithm scatters the 
particles around the global best position and forces the algo-
rithm to forget its global memory, then runs the MPSO to 
find the new values for parameters. Therefore, MPSO runs 
further iterations if any changes in parameters are detected.  

The rest of the paper is organized as follow: Next sec-
tion describes problem description. Section 3 introduces 
optimization algorithms. The proposed algorithms in 
both offline and online parametric identification are pre-
sented in Section 4. Simulation results are shown in Sec-
tion 5. Finally, conclusion and future works are presented 
in Section 6. 

2. Problem Description 

This section presents a quarter-car model of suspension 
system and a proper fitness function for optimization 
algorithms. 

2.1 Suspension System Dynamics 

Modeling of vehicle suspension system has been stud-
iedfor many years. In order to simplify the model, a quar-
ter-car model was introduced in response the vertical force 
for the suspension system [15] as shown in Figure 1. In 
this figure, b is damping coefficient, and are un-

sprung and sprung mass, respectively, and are tire 
1m

1k
2m

2k

 
Figure 1. Schematic diagram of the quarter-car model 
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and suspension stiffness, respectively, u is the road dis-
placement and y is the vertical displacement of sprung 
mass. The linearized dynamic equations at equilibrium 
point with an assumption that the tire is in contact with the 
road are given as: 
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2.2 Problem Statement 

When the model of system is fixed through identification 
procedure, the parameter identification problem can be 
treated as an optimization problem. The basic idea of 
parameter estimation is to compare the system responses 
with the parameterized model based on a performance 
function giving a measure of how well the model re-
sponse fits the system response. Moreover, a common 
rule in identification is to use excitation signals that cor-
respond to a realistic excitation of the system such that 
the identified linear model is a good approximation of the 
system for that type of excitation. Consequently, in order 
to estimate the system parameters, excitation signal is 
chosen Gaussian band-limited white noise. The band-
width is set to 50 Hz, which is sufficiently higher than 
the desired closed-loop bandwidth [14]. 

Considering Figure 2 the excitation input is given to 
both the real system and the estimated model. Then, the 
outputs from the real system and its estimated model are 
input to the fitness evaluator, where the fitness will be 
calculated. The sum of squares error between real and 
estimated responses for a number of given samples is 
considered as fitness of estimated model. So, the fitness 
function is defined as follow: 
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where N is the number of given sampling steps,   )( skTy
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Figure 2. The estimation process 

and are real and estimated values in each sample 

time, respectively. The calculated fitness is then input to 
the identifier algorithms, i.e. GA- BPSO and MPSO, to 
identify the best parameters for estimated system in fit-
ting procedure by minimizing the sum of square of re-
sidual errors in response to excitation input. 
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3. Optimization Algorithms 

As mentioned before, the parameter identification prob-
lem can be treated as an optimization problem. The pro-
posed MPSO optimization algorithm is compared with 
frequently used algorithms in optimization problems, 
namely GA and BPSO in the optimization problem in 
hand. These algorithms are taken from two main optimi-
zation groups namely evolutionary algorithms (EAs) and 
swarm intelligence (SI). These algorithms are currently 
used for numerical optimization problems of stochastic 
search algorithms. 

3.1 Evolutionary Algorithms (EAs) 

EAs algorithms are population based, instead of using a 
single solution. EAs mimic the metaphor of natural bio-
logical evolution. EAs operate on a population of poten-
tial solutions applying the principle of survival of the 
fittest to produce better approximations to a solution. At 
each generation, a new set of approximations is created 
by two processes. First, selecting individuals according 
to their level of fitness in the problem domain. Second, 
breeding them together using operators borrowed from 
natural genetics. 

This process leads to the evolution of populations of 
individuals that are better suited to their environment 
than they were created from, just as in natural adaptation. 
Evolutionary algorithms model natural processes, such as 
selection, recombination, mutation, migration, locality 
and neighborhood. The majority of the present imple-
mentations of EA come from any of these three basic 
types, which are strongly related although independently 
developed: Genetic Algorithms (GA), Evolutionary Pro-
gramming (EP) and Evolutionary Strategies (ES). Hence, 
in this paper, the proposed method is compared to GA. 

3.2 Swarm Intelligence (SI) 

SI is the artificial intelligence based on the collective be- 

havior of decentralized and self-organized systems. SI 
systems are typically made up of a population of simple 
agents interacting locally with one another and with their 
environment. The agents follow very simple rules. Al- 
though there is no centralized control structure dictating 
how individual agents should behave, local interactions 
between such agents lead to the emergence of complex 
global behavior. Natural examples of SI include ant colo-
nies, bird flocking, animal herding, bacterial growth, and 
fish schooling. Among them, PSO is a new and frequently 
used SI technique. 

3.2.1 Basic PSO 
PSO is used to search for the best solution by simulating 
the movement and flocking of birds [16]. The algorithm 
works by initializing a flock of birds randomly over the 
searching space, where every bird is called as a “particle”. 
These “particles” fly with a certain velocity and find the 
global best position after some iteration. At each iteration, 
each particle can adjust its velocity vector based on its 
momentum and the influence of its best position as well as 
the best position of the best individual. Then, the particle 
flies to a new computed position. Suppose that the search 
space is n-dimensional, and then the position and velocity of 

particle  are represented by  

and , respectively. The fitness of 

each particle can be evaluated according to the objective 
function of optimization problem. The best previously 
visited position of the particle  is noted as its personal 

best position denoted by . The 

position of the best individual of the swarm is noted as 

the global optimum position . At 

each step, the velocity of particle and its new position 
will be assigned as follows: 
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where  is called the inertia weight that controls the 
impact of previous velocity of particle on its current one. 

and  are independently uniformly distributed ran-

dom variables in a range of [0,1].  and  are posi-

tive constant parameters called acceleration coefficients 
which control the maximum step size. In the references 
[17,18], several strategies of inertial weight 

1r 2r

1c 2c

  were 
given. Generally, the inertial weight   should be re-
duced rapidly in the beginning stages of algorithm but it 
should be reduced slowly around optimum. If the veloc-
ity exceeds the predefined limit, another restriction called 

 is used. maxV

In BPSO, (4) is used to calculate the new velocity ac-
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cording to its previous velocity, the distance of its current 
position from both its own personal best position and the 
global best position of the entire population. Then the 
particle flies toward a new position according (5). This 
process is repeated until a stopping criterion is reached. 

3.2.2 The Proposed Modified PSO 
As mentioned before, possible trapping in local minima 
when handling some complex or multimode functions is 
a shortage of BPSO [19–21]. Hence, the motivation of 
the proposed method is to overcome this drawback. In 
BPSO, as time goes on, some particles become quickly 
inactive because their states are similar to the global op-
timum. As a result, they lose their velocities. In the sub-
sequent generations, they will have less contribution to 
the search task due to their very low global search activ-
ity. In turn, this will induce the emergence of a state of 
premature convergence.  

To deal with the problem of premature convergence, 
several investigations have been undertaken to avoid the 
premature convergence. Among them, many approaches 
and strategies are attempted to improve the performance 
of PSO by variable parameters. A linearly decreasing 
weight into PSO was introduced to balance the global 
exploration and the local exploitation in [17]. PSO was 
further developed with time-varying acceleration coeffi-
cients to modify the local and the global search ability 
[18]. A modified particle swarm optimizer with dynamic 
adaptation of inertia weight was presented [19]. More-
over, some approaches aim to divert particles in swarm 
among the iterations in algorithm. Mutation PSO em-
ployed to improve performance of PSO [20]. The con-
cepts of ‘‘subpopulation” and ‘‘breeding” adopted to 
increase the diversity [21]. An attractive and repulsive 
PSO developed to increase the diversity [22].  

In this paper, a modified particle swarm optimization 
(MPSO) algorithm is proposed to avoid premature con-
vergence and increase the convergence speed of algo-
rithm. In our proposed method, after some iteration, the 
algorithm measures the search ability of all particles and 
mutates a percentage of particles which their search abil-
ity is lower than the others. Our motivation is that parti-
cles with low search ability become inactive as their fit-
ness do not grow and need to mutate for getting a chance 
to search new areas in solution space, which may not 
been meet already. Also the mutation rate is not constant 
and if the global best doesn’t grow, the rate of mutation 
is increased. If the fitness of global optimum does not 
grow, the algorithm can get stuck in local minima forever 
or at least for some iteration, which lead to a slow con-
vergence speed. In the other words, if the global best of 
the present population is equal to that of the previous 
population (solution converges), mutation rate is set to a 
higher value , such that the diversity of particles is 

increased so to avoid premature convergence. Otherwise 
(solution diverges), Pm is set to a lower value Pml, since 
the population already has enough diversity. The adap-
tive mutation rate scheme is described as 

mhP

; if  G(t) = G(t-1)

; if  G(t) > G(t-1)

mh
m

ml

P
P

P





          (6) 

where  and are 0.2 and 0.1, respectively. Con-

sequently the mutation rate will be increased by 0.1, if 
the global optimum doesn’t grow, until a growth on the 
fitness of global optimum occurs. In order to measure the 
search ability for particle i at each iteration, we take 
advantage of the fitness increment of the local optima in 
a designated interval 

mhP mlP

T , from iteration Tt   to t. 
consequently; the parameter  is used to measure the 

search capability of particle .  
iC

i

))(())(( TtPFtPFC iii         (7) 

where is the fitness of the best position for i-th 

particle in t-th iteration , and  is a designated 

interval. Particles with low search ability (small ) have 

low increment in the best local value for their low global 
search activity and so in our algorithm, they have a big-
ger change to mutate to get a chance to search a new area 
in the search space.  

))(( tPF i

)(tPi T
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Generally, In MPSO algorithm, after iteration T , all 
particles are sorted according to their parameter. Then 
the swarm is divided into two parts: The active part includ-
ing the top 

C

SPm  )1(

S

 with higher C and the inactive 

part consisting of the rest  particles with smaller 

whereas  is size of the swarm. Particles in the first 
part update their velocities and position the same as BPSO 
algorithm. Finally, in order to increase the diversity of the 
swarm, the inactive particles are chosen to mutate by 
adding a Gauss random disturbance to them as follows: 

SPm 
C

ijijij xx                       (8) 

where is the j-th component of the i-th inactive parti-

cle.
ijx

ij  is a random variable, which follows a Gaussian 

distribution with a mean value of zero and a variance 
value of 1, namely (0,1)ij N  . This strategy prevents 

all particles to divert from the local convergence. Instead, 
only inactive particles are mutated. 

4. Implementation of the MPSO 

In this section, the procedure of MPSO in online and 
offline system parameter identification is described. 
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4.1 Offline Identification 

MPSO algorithm is applied to find the best system pa-
rameter, which simulates the behavior of dynamic system. 
Each particle represents all parameters of estimated model. 
The procedure for this algorithm can be summarized as 
follows: 

Step 1: Initialize positions and velocities of a group of 
particles in an M-dimensional space as random points 
where M denotes the number of system parameters;  

Step 2: Evaluate each initialized particle’s fitness 
value using (3); 

Step 3: Set  as the positions of current particles 

while  is the global best position of initialized particles. 
The best particle of current particles is stored; 

iP

G

Step 4: The positions and velocities of all particles are 
updated according to (4) and (5), and then a group of 
new particles are generated;  

Step 5: Evaluate each new particle’s fitness value. If the 
new position of i-th particle is better than , set  as the 

new position of the i-th particle. If the fitness of best posi-
tion of all new particles is better than fitness of , then 

 is updated and stored; 

iP iP

G
G

Step 6: If iteration , calculate the mutation rate 
( ) and search ability of each particle using (6) and (7), 

respectively. Then mutate  number of particle 

with lower search ability; 

T
mP

SPm 

Step 7: Update the velocity and location of each parti-
cle according to the (4) and (5). If a new velocity is be-
yond the boundary , the new velocity will be 

set as  or ; 

],[ maxmin VV

minV maxV

Step 8: Output the global optimum if a stopping crite-
ria is achieved, else go to Step 5. 

When a stopping criterion is occurred, the global op-
timum is the best answer for the problem in hand (the 
best estimated system parameters).  

4.2 Online Identification 

The proposed algorithm sequentially gives a data set by 
sampling periodically. The optimized values of parameters 
for the first data set are determined by using a procedure 
described in Subsection 4.1. The estimated parameters will 
not be updated unless a change in the system parameters is 
detected. In order to detect any change in system pa-
rameters, the global optimum in the later period is no-
ticed as a sentry particle. In each period, the sentry parti-
cle is evaluated at first and if the fitness of the sentry 
particle in the current period is bigger than the previous 
one, the changes in parameters are confirmed. If no 
changes are detected, the algorithm leaves this period 
without changing the positions of particles. When any 
changes in parameters occur, the algorithm runs further 
to find the new optimum values. For this purpose, a new 

coefficient ( ) is introduced as follows: 

p p

p

(S ( )) (S ( 1))

(S ( ))

fitness i fitness i

fitness i

 
  (0 1)   (9)

where  is the sentry particle in the i-th period. pS ( )i   

will be bigger than zero if the fitness of the sentry parti-
cle at the current period is bigger than the previous one. 
Thus, changes in model parameters are detected by in-
specting   at each period. In this case, the particles in 
population must forget their current global and personal 
memories in order to find the new global optimum. The 
fitness of global optimum particle and personal bests of 
all particles are then evaporated at the rate of a big 
evaporation constant. As a result, other particles have a 
chance of fitness bigger than the previous global opti-
mum. Moreover, the velocities of particles are increased 
to search in a bigger solution space for new optimal solu-
tion. When a change in system parameters is detected, 
the following changes are considered. 

SiTPfitnessPfitness ii ,...,1)()(      (10) 

G G( ) ( )new oldfitness fitness T        (11) 

maxnew oldV V V                       (12) 

T is an evaporation constant. Also (12) shows that the 
velocity of particles increase by only in one 

iteration. Notice that a bigger , i.e. greater changes in 
parameters, causes a bigger velocity. This means that if 
significant changes in system parameters occur, the par-
ticles must search a bigger space and if a little change 
occurs, particle search around the previous position to 
find the new position. This strategy accelerates conver-
gence speed of the algorithm, which is an important issue 
in online identification. 

maxV


5. Simulation Results 

In this section the proposed MPSO algorithm is applied 
to identify parameters of a suspension system, which its 
nominal parameters are summarized in Table 1 [15]. In 
order to show the performance of the proposed MPSO in 

Table 1. Suspension parameters [15] 

Parameters Nominal value 

1m  26 kg 

2m  253 kg 

1k  90000 N/m 

2k  12000 N/m 

b 1500 N·sec/m 
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the problem in hand, it is compared to two frequently 
used optimization algorithms, including GA and BPSO. 
Simulation results have been carried out in two parts. 

In the first part, in order to show the effectiveness of 
the proposed MPSO in offline identification, it has been 
compared with GA and BPSO. In the second part, the 
proposed MPSO is applied to online parameter identifi-
cation for suspension system. In both BPSO and MPSO 
algorithms, , and the inertia weight is set to 0.8. 

Also, the simulation results are compared with GA, 
where the crossover probability  and the mutation 

probability  are set to 0.8 and 0.1, respectively. 

1 2 2c c 

mP
cP

5.1 Offline Parameter Identification 

Owing to the randomness of the heuristic algorithms, 
their performance cannot be judged by the result of a 
single run. Many trials with different initializations 
should be made to acquire a useful conclusion about the 
performance of algorithms. An algorithm is robust if it 
gives consistent result during all the trials. The searching 
ranges are set as follows: 

120 30m 

210000 1k 

, , ,

, . 
2200 300m 

1200 1700b 

185000 90000k 

5000

In order to run BPSO, MPSO and GA algorithms, a 
population with a size of 10 for 100 iterations is used. 

Comparison of results on sum of squares error resulted 
from 20 independent trials with N = 1000, 2000 and 2500 
are shown in Tables 2–4, respectively. This comparison 
shows that the MPSO is superior to GA and BPSO. 
Moreover, MPSO is significantly more robust than other 
algorithms because the best and the mean values ob-
tained by MPSO are very close to the worst value. In 
addition, the convergence speed of GA, BPSO and 
MPSO are compared. Figure 3 shows the convergence 
speed of these algorithms during 100 iterations which 
proves that the convergence speed of the proposed 
MPSO is faster than GA and BSO which can be conclude 
that MPSO is more proper than aforementioned algo-
rithms. Figure 4 confirms the success of optimization 
process by using MPSO algorithm. The identified pa-
rameters are , , ,  and b , respectively. In 

this figure, the data set is formed by 1000 samples. In 
addition, to compare computational time of these algorithms, 
a threshold of is considered as stopping condition, in 
contrast to a predefined number of generation. Then each 
algorithm runs 20 times and the average of elapsed time is 
considered as a criteria for computational time. Table 5 
illustrates the results obtained by GA, BPSO, and MPSO. It 
is clearly obvious that, the proposed algorithm spends ex-
tremely fewer iteration and less computational time to reach 
a predefined threshold as compared with other algorithms. 
Hence, it can be concluded that IPSO is more proper than  

1m

10

2m

5

1k 2k

Table 2. Comparison of GA, BPSO and MPSO in offline 
identification for N=1000 

SSE 
 

Best Mean Worst 

GA 3.11
6

10


  2.11  
4

10


 3.1117
3

10


  

BPSO 6.45
8

10


  1.78  
6

10


 2.18
5

10


  

MPSO 3.12
10

10


  1.64  
9

10


 8.46
9

10


  

 
Table 3. Comparison of GA, BPSO and MPSO in offline 
identification for N = 2000 

SSE 
 

Best Mean Worst 

GA 6.98
6

10


  1.24  
3

10


 4.65
3

10


  

BPSO 7.75
8

10


  3.32  
6

10


 5.13
5

10


  

MPSO 2.32
9

10


  8.68  
9

10


 6.98
8

10


  

 
Table 4. Comparison of GA, BPSO and MPSO in offline 
identification for N = 2500 

SSE 
 

Best Mean Worst 

GA 7.24
6

10


  2.31  
3

10


 1.12
2

10


  

BPSO 8.12
7

10


  5.21  
6

10


 4.65
5

10


  

MPSO 5.43
9

10


  1.95  
8

10


 7.63
8

10


  

 
Table 5. Iterations and time required  

Algorithm GA BPSO MPSO 

Iterations 182 121 49 

Elapse Time (sec) 28.21 10.34 4.69 

 

 

Figure 3. Comparison of convergence speed for GA, BPSO 
and MPSO 
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(a) Unsprung mass m1 

 
(b) Sprung mass m2 

 
(c) Tire stiffness k1 

 
(d) Suspension stiffness k2 

 

(e) Damping coefficient b 

Figure 4. MPSO process for identification of suspension 
parameters 

aforementioned algorithms in terms of accuracy and con-
vergence speed. 

5.2 Online Parameter Identification 

Based on the pervious section, the MPSO has more ac-
curacy and faster convergence speed than GA and BPSO 
in off-line identification. Because of this, the proposed 
method is applied for online identification of suspension 
system parameters. During online simulation, the sam-
pling frequency is set to 100 kHz such that 1000 pairs of 
data are sampled within 0.01 msec in each period to form 
a data set. If a change in the model parameter is detected 
by sentry particle in a period, the MPSO continues to run. 
When the fitness of global best becomes lower than a 
threshold, the simulation for this period is then stopped. 
There will be no MPSO iteration unless another change 
in system parameter detect. 

Figure 5 shows the fitness evaluation of the proposed 
method when some changes in system parameters are 
occurred. First nominal values of parameters are used 
and MPSO detects these parameters after 37 iterations 
for a threshold 10-5. If changes in parameters occur the 
MPSO algorithm runs further. To show the performance 
of the proposed method in tracking time-varying pa-
rameters, two sudden changes are applied to suspension 
parameters. At the first stage, damping coefficient is 
changed from 1500 to 1550. At the second stage, tire 
stiffness is varied from 90000 to 95000. It can be seen 
that after the first change the algorithm detects new op-
timal parameters after only 19 iterations. And, after the 
second change the algorithm finds the new optimal pa-
rameters after only 27 iterations. It can see that the pro-
posed method can track any change in parameters. Also 
since the particles are scattered around the previous 
global optimum depending on the values of changes in 
parameters, the new global optimum is found fast. Fig-
ures 6 and 7 show the online identification results of the 
proposed algorithm when k1 and b are considered as time 
varying parameters. It can be seen that the proposed ap-
proach can identify time-varying parameters successfully. 
The dashed lines in Figures 5–7 signify the moment that 
the sentry particle has detected some change in system 
parameters. 

Change b  
1500         1550 

  Change 1k  

90000      95000 

 

Figure 5. MPSO process in online identification of suspen-
sion system 
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Figure 6. Identifying a time-varying damping coefficient 
parameter by MPSO 

 

   Change 1k    

90000     95000 

Change b  
 1500        1550 

 

Figure 7. Identifying a time-varying tire stiffness parameter 
by MPSO 

6. Conclusions 

A quarter-car model of suspension system was used to 
show the effectiveness of MPSO in system identification. 
It has been shown that MPSO is superior to GA and 
BPSO in offline identification. Owing these attractive 
features, MPSO is applied to online identification. The 
estimated parameter will be updated only if a change in 
system parameters is detected. Thus, the proposed algo-
rithm is a promising particle swarm optimization algorithm 
for system identification. Future works in this area willin-
clude considering variable parameters in nonlinear sus-
pension model. 
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