
Int. J. Communications, Network and System Sciences, 2010, 3, 273-279 
doi:10.4236/ijcns.2010.33035 blished Online March 2010 (http://www.SciRP.org/journal/ijcns/). 
 
 

Copyright © 2010 SciRes.                                                                                IJCNS 

 Pu

Short-Term Load Forecasting Using Soft 
Computing Techniques 

D. K. Chaturvedi1, Sinha Anand Premdayal1, Ashish Chandiok2 
1Department of Electrical Engineering, D. E. I., Deemed University, Agra, India 

2Department. of Electronics and Communication, B. M. A. S., Engineering College, Agra, India 
Email: dkc_foe@ rediffmail.com 

Received November 10, 2009; revised December 18, 2009; accepted January 21, 2010 

Abstract 

Electric load forecasting is essential for developing a power supply strategy to improve the reliability of the 
ac power line data network and provide optimal load scheduling for developing countries where the demand 
is increased with high growth rate. In this paper, a short-term load forecasting realized by a generalized neu-
ron–wavelet method is proposed. The proposed method consists of wavelet transform and soft computing 
technique. The wavelet transform splits up load time series into coarse and detail components to be the fea-
tures for soft computing techniques using Generalized Neurons Network (GNN). The soft computing tech-
niques forecast each component separately. The modified GNN performs better than the traditional GNN. At 
the end all forecasted components is summed up to produce final forecasting load. 
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1. Introduction 
 

Short-term load forecasting (STLF) is an essential tech-
nique in power system planning, operation and control, 
load management and unit commitment. Accurate load 
forecasting will lead to appropriate scheduling and plan-
ning with much lower costs on the operation of power 
systems [1–6]. Traditional load forecasting methods, 
such as regression model [7] gray forecasting model [8,9] 
and time series [10,11] do not consider the influence of 
all kind of random disturbances into account. At recent 
years artificial intelligence are introduced for load fore-
casting [12–17]. Various types of artificial neural net-
work and fuzzy logic have been proposed for short term 
load forecasting. They enhanced the forecasting accuracy 
compared with the conventional time series method. The 
ANN has the ability of self learning and non-linear ap-
proximations, but it lacks the inference common in hu-
man beings and therefore requires massive amount of 
training data, which is an intensive time consuming proc-
ess. On the other hand fuzzy logic can solve uncertainty, 
but traditional fuzzy system is largely dependent on the 
knowledge and experiences of experts and operators, and 
is difficult to obtain a satisfied forecasting result espe-
cially when the information is incomplete or insufficient.  

This paper aims to find a solution to short term load 

forecasting using GNN with wavelet for accurate load 
forecasting results. This paper is organized as follows: 
Section 2 discusses various traditional and soft comput-
ing based short term load forecasting approaches. Con-
cept of wavelet analysis required for prediction will be 
discussed in Section 3 while elements of generalized 
neural architecture needed will be described in Section 4. 
A prediction procedure using wavelets and soft comput-
ing techniques and its application to time series of hourly 
load forecasting consumption is discussed in Section 5. 
Section 6 includes discussion and concluding remarks. 
 
2. Traditional and Soft Computing Techni- 

ques for Short Term Load Forecasting 
 
2.1. Traditional Approaches 
 
Time Series Methods 

Traditional short term load forecasting relies on time 
series analysis technique. In time series approach the 
model is based on past load data, on the basis of this 
model the forecasting of future load is done. The tech-
niques used for the analysis of linear time series load 
signal are: 

1) Kalman Filter Method 
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The kalman filter is considered as the optimal solution 
to many data prediction and trend matching. The filter is 
constructed as a mean square minimization which re-
quires the estimation of the covariance matrix. The role 
of the filter is to extract the features from the signal and 
ignore the rest part. As load data are highly non linear 
and non stationary, it is difficult to estimate the covari-
ance matrix accurately [18]. 

2) Box Jenkins Method 
This model is called as autoregressive integrated mov-

ing average model. The Box Jenkins model can be used 
to represent the process as stationary or non stationary. A 
stationary process is one whose statistical properties are 
same over time, which means that they fluctuate over 
fixed mean value. On other hand non stationary time 
series have changes in levels, trends or seasonal behavior. 
In Box Jenkins model the current observation is weigh- 
ted average of the previous observation plus an error 
term. The portion of the model involving observation is 
known as autoregressive part of the model and error term 
is known as moving average term. A major obstacle here 
is its slow performance [19]. 

3) Regression Model 
The regression method is widely used statistical tech-

nique for load forecasting. This model forms a relation-
ship between load consumptions done in past hour as a 
linear combination to estimate the current load. A large 
data is required to obtain correct results, but it requires 
large computation time. 

4) Spectral Expansion Technique 
This method is based on Fourier series. The load data 

is considered as a periodic signal. Periodic signal can be 
represented as harmonic summation of sinusoids. In the 
same way electrical load signal is represented as summa-
tion of sinusoids with different frequency. The drawback 
of this method is that electrical load is not perfect peri-
odic. It is a non stationary and non linear signal with 
abrupt variations caused due to weather changes. This 
phenomenon results in the variation of high frequency 
component which may not be represented as periodic 
spectrum. This method is not suitable and also requires 
complex equation and large computation time. 
 
2.2. Soft Computing Approach 
 
Soft computing is based on approximate models working 
on approximate reasoning and functional approximation. 
The basic objective of this method is to exploit the tol-
erance for imprecision, uncertainty and partial truth to 
achieve tractability, robustness, low solution cost and 
best results for real time problems. 

1) Artificial Neural Networks (ANN) 
An artificial neural network is an efficient information 

processing system to perform non-linear modeling and 
adaptation. It is based on training the system with past 

and current load data as input and output respectively. 
The ANN learns from experience and generalizes from 
previous examples to new ones. It is able to forecast 
more efficiently the load as the load pattern are non lin-
ear and ANN is capable to catch trends more accurately 
than conventional methods. 

2) Rule Based Expert Systems 
An expert system is a logical program implemented on 

computer, to act as a knowledge expert. This means that 
program has an ability to reason, explain and have its 
knowledge base improved as more information becomes 
available to it. The load-forecast model can be built us-
ing the knowledge about the load forecast domain from 
an expert in the field. The knowledge engineer extracts 
this knowledge from the load domain. This knowledge is 
represented as facts and rules using the first predicate 
logic to represent the facts and IF-THEN production 
rules. Some of the rules do not change over time, some 
changes very slowly; while others change continuously 
and hence are to be updated from time to time [20]. 

3) Fuzzy Systems 
Fuzzy sets are good in specialization, fuzzy sets are 

able to represent and manipulate electrical load pattern 
which possesses non-statistical uncertainty. Fuzzy sets 
are a generalization of conventional set theory that was 
introduced as a new way to represent vagueness in the 
data with the help of linguistic variable. It introduces 
vagueness (with the aim of reducing complexity) by 
eliminating the sharp boundary between the members of 
the class from nonmembers [21,22]. 

These approaches are based on specific problems and 
may represent randomness in convergence or even can 
diverge. The above mentioned approaches use either reg- 
ression, frequency component or mean component or the 
peak component to predict the load. The prediction of the 
load depends upon both time and frequency component 
which varies dynamically. In this paper, an attempt is 
made to predict electrical load that combines the above 
mentioned features using generalized neurons and wave-
let. 
 
3. Elements of Wavelet Analysis 
 
Wavelet analysis is a refinement of Fourier analysis [9– 
15,23–29] which has been used for prediction of time 
series of oil, meteorological pollution, wind speed, rain-
fall etc. [28,29]. In this section some important vaults 
relevant to our work have been described. The underly-
ing mathematical structure for wavelet bases of a func-
tion space is a multi-scale decomposition of a signal, 
known as multi-resolution or multi-scale analysis. It is 
called the heart of wavelet analysis. Let L2(R) be the 
space of all signals with finite energy. A family {Vj} of 
subspaces of L2(R) is called a multi resolution analysis of 
this space if 
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1) intersection of all Vj, j = 1, 2, 3, ...... be non-empty, 
that is jj

V    

2)This family is dense in L2(R), that is, = L2(R) 
3) f (x)  Vj if and only if f (2x)  Vj + 1   
4) V1 V2  ..... Vj  Vj + 1  
There is a function preferably with compact support of 

such that translates  (x – k) k  Z, span a space V0. A 

finer space Vj is spanned by the integer translates of the 
scaled functions for the space Vj and we have scaling 
equation 



( ) (2 1)kx a x                    (1) 

with appropriate coefficient ak, kZ.   is called a scal-

ing function or father wavelet. The mother wavelet   

is obtained by building linear combinations of  . Fur-

ther more   and   should be orthogonal, that is, 

( ) ( ) 0k , l ,l ,k Z                 (2) 

These two conditions given by (1) and (2) leads to 
conditions on coefficients bk which characterize a mother 
wavelet as a linear combination of the scaled and dilated 
father wavelets : 

( )= (2 )k
k z

x b x k 


               (3) 

Haar, Daubechies and Coefmann are some well known 
wavelets. 

Haar wavelet (Haar mother wavalet) denoted by ψ is 
given by 

1, 0 1 2

( ) = 1, 1 2 < 1

0, < 0, > 1

x

x

x x


 

 



x             (4) 

Can be obtained from the father wavelet 

1, 0 1
( )= 

0, 0, 1

x
x

x x


 
  

             (5) 

In this case coefficients ak in (1) are a0 = a1 = 1 and ak 
= 0 for k  0, 1. The Haar wavelets is defined as a linear 
combination of scaled father wavelets (x) =  (2x) – 

 (2x – 1) which means that coefficients bk in (3) are b0 = 

1, b1 = –1 and bk = 0 otherwise, Haar wavelets can be 
interpreted as Daubechie’s wavelet of order 1 with two 
coefficients. In general Daubechies’ wavelets of order N 
are not given analytically but described by 2N coeffi-
cients. The higher N, the smoother the corresponding 
Daubechies’ wavelets are (the smoothness is around 0-2N 
for greater N). Daubechies’ wavelets are constructed in 
a way such that they give rise to orthogonal wavelet 
bases. It may be verified that orthogonality of translates 
of   and  , requires that  k

k

a  = 2 and  = 2.  
k

kb

It is quite clear that in the higher case the scaled, trans-
lated and normalized versions of  are denoted by 

   /2
,   2 2j j

j k t x  k               (6) 

With orthogonal wavelet  the set {j, k | j, k    Z} 

is an orthogonal wavelet basis. A function f can be rep-
resented as 

j ,k j ,k j ,k
j Z k Z

f = c   ( ,c < f >) 
 

      (7) 

The Discrete Wavelet Transform (DWT) corresponds 
to the mapping f  cj,k. DWT provides a mechanism to 
represent a data or time series f in terms of coefficients 
that are associated with particular scales [24,26,27] and 
therefore is regarded as a family of effective instrument 
for signal analysis. The decomposition of a given signal f 
into different scales of resolution is obtained by the ap-
plication of the DWT to f. In real application, we only 
use a small number of levels j in our decomposition (for 
instance j = 4 corresponds to a fairly good level wavelet 
decomposition of f). 

The first step of DWT corresponds to the mapping f to 
its wavelet coefficients and from these coefficients two 
components are received namely a smooth version, nam- 
ed approximation and a second component that corre-
sponds to the deviations or the so-called details of the 
signal. A decomposition of f into a low frequency part a, 
and a high frequency part d, is represented by f = a1 + d1. 
The same procedure is performed on a1 in order to obtain 
decomposition in finer scales: a1 = a2 + d2. A recursive 
decomposition for the low frequency parts follows the 
directions that are illustrated in Figure 1. 

The resulting low frequency parts a1, a2, ..... an are ap-
proximations of f, and the high frequency parts d1, d2, ..... 
dn contain the details of f. This diagram illustrates a 
wavelet decomposition into N levels and corresponds to 

1 2 3 1       N N Nf d d d d d a     (8) 

In practical applications, such decomposition is ob-
tained by using a specific wavelet. Several families of 
wavelets have proven to be especially useful in various 
applications. They differ with respect to orthogonality, 
smoothness and other related properties such as vanish-
ing moments or size of the support. 

 

 

Figure 1. Wavelet decomposition in form of coarse and de-
tail coefficients. 
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4. Neuro Theory of Generalized Neuron 
Model 

 
The following steps are involved in the training of a 
summation type generalized neuron as shown in Figure 2. 
 
4.1. Forward Calculations 
 
Step 1: The output of the part of the summation type 

generalized neuron is 
 1

* _

1

1 
 s s net

O
e               (9) 

where _ i i os net W X X    

Step 2: The output of the  part of the summation type 
generalized neuron is 

2* _
  p pi netO e 

             (10) 

where  _ *i i opi net W X X 
Step 3: The output of the summation type generalized 

neuron can be written as 

*(1 ) *pkO O W O W            (11) 

 
4.2. Reverse Calculation 
 
Step 4: After calculating the output of the summation  

 
 s_bias 

Input, Xi 

pi_bias 

Output, Opk

 

 
 s_bias 

Output, Opk

Input, 
Xi 

pi_bias  

Figure 2. Learning algorithm of a summation type general-
ized neuron. 

 neural network, it is compared with the 

Then, the uared error for
patterns is 

type generalized neuron in the forward pass, as in the 
feed-forward
desired output to find the error. Using back-propagation 
algorithm the summation type GN is trained to minimize 
the error. In this step, the output of the single flexible 
summation type generalized neuron is compared with the 
desired output to get error for the ith set of inputs: 

Error ( )i i iE Y O                 (12) 

sum-sq  convergence of all the 
 

20 5p iE . E                     (13) 

A multiplication factor of
plify the calculations. 

ron

 0.5 has been taken to sim-

Step 5: Reverse pass for modifying the connection 
strength. 

1) Weight associated with the 1 and 2  part of the 

summation type Generalized Neu  is: 

( ) ( 1)W k W k W                 (14) 

where     ( ) i
kW O O X   ( 1)W k       

and       ( )i i
k Y O     

ts associated with e inputs of th2) Weigh  th e 1 part 

of the summation type Generalized Neuron are: 

( ) ( 1)i i iW k W k W                 (15) 

where     ( 1i j iW Xi W k )        

and       (1 )*j kW O O       

s associated with the input of the  part of 
the summation type generalized Neuron are: 

3) Weight

( ) ( 1)i i iW k W k W                (16) 

 ( 1i j iW Xi W kwhere    )      

O

 

and       (1 )*( 2* _ )*j k W pi net      

M comentum factor for better convergen e. 

Rang ed 
by expe

d Neuron–Wavelet Approach 

en 
sed to predict the electrical load. In this approach, Dau- 

Learning rate. 

 from 0 to 1 and is determine of these factors is
rience. 

 
. Generalize5

 
The Generalized Neuron–Wavelet approach has be
u
bechies wavelets Db8 have been applied in the decom-
position for the give data pattern. There are four wavelet 
coefficients are used. All these wavelet coefficients are 
time dependent (the first three wavelet coefficients from 
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-
re

  

1

d1 to d3 and the coarse approximation a3. These coeffi-
cients are illustrated in the Figure 3. We observe the 
substantial difference of variability of the signals at dif-
ferent levels. The higher is the wavelet level, the lower 
variation of the coefficients and easier prediction of them.
Our main idea is to substrate the prediction task of the 
original time series of high variability by the prediction 
of its wavelet coefficients on different levels of lower 
variability’s, and then using Equation (4) for final pre-
diction of the power load at any time instant n. Since 
most of the wavelet coefficients are of lower variability 
we expect the increase of the total prediction accuracy. 

The wavelet tool available in Matlab is used for the 
process of wavelet decomposition of the time series rep

senting average of the power load data for 120 hours. 
This step involves several different families of wavelets 
and a detailed comparison of their performance. In our 
case, The Daubechies wavelets of order 8 are performed. 
Three level wavelet decomposition of the given time 
series XN = f : is performed 

3 3  2f a d d d                (17) 

The smooth part of f is stored in a3

ferent levels are captured by d , d , 
de

, and details on dif-
d . Consequently a 1 2 3

composition of the time series in three different scales 
is obtained. Figure 4 illustrates the decomposition of the 
original signals. The forecasting procedure methodology 
explained in Section 4 is used to predict the next value. 
The basic idea is to use the wavelet transforms and pre-
dict the data by soft computing techniques for individual 
coefficients of wavelet transform represented by a3, d1, 
d2, d3. The input to the architecture to predict the wavelet 
coefficients is explained in Figure 5. 

 

 

 

Figure 4. Mechanism for forecasting Procedure. 

 

 

Figure 5. Actual and predicted training output using gener
alized neuron model (GNN). 

load at an instant (i) is given 
y 

-

 
The total predicted power 

b

         1 2 3 4    F i f i f i f i f i       (18) 

 
. Results and Discussions 

ollected for 120 hours  
om Gujarat system and normalized them in the range 

6
 
The electric load data have been c
fr
0–1. The Daubechies wavelet Db8 is used for decompo-
sition and the wavelet coefficients d1–d3 and a3 have 
been calculated. The trend of coefficients has been used 
for GN training and predicting the wavelet coefficients 
for future loads. So wavelet is used to extract the feature 
coefficients from data and then GN is implemented to 
predict the trend of the wavelet coefficient. The results of 
GN and actual load have been compared and shown in 

Figure 3. Wavelet decomposition of hour load data into 
wavelet coefficient. 
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Figures 5 and 6. The root means square error for training 
and testing results are .1127 and .1152 mega watts (MW) 
as in Table 1. When using generalized neuron and wave-
let conjunction model, training each coefficient and 
combining to get the predicted output, a very high im-
provement is obtained in both training and testing results 
as shown in Figures 7 and 8. The root means square er-
ror for training and testing data are .0554 and .0763 re-
spectively as in Table 1. The improvement in the results 
shows that accuracy of forecasting increases in the com-
bined model and can give correct output for short term 
load forecasting. 

 

 

Figure 6. Actual and predicted testing output using ge e
alized neuron model (GNN). 

GNN Wavelet
chnique. 

pe 
Min. Error

(Mw) 
Max. Error 

(Mw) 
RMSE 
(Mw) 

n r

 

-

 
Table 1. Comparison between GNN and 
te

Ty

GNN (training)  0. 1000952 0.3663 0.1127 

GNNW(training) 0.002184 0.1706 0.0554 

GNN(testing) 0.1306 0.2094 0.1152 

G  NNW(testing) 0.00462 0.1913 0.0673 

 

 

 

Figure 8. Actual and predicted testing output using gene
alized neuron wavelet model (GNNW). 
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