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ABSTRACT 

This paper suggests a new normative model that attempts to analyze why improvement of versions of existing decision 
support systems do not necessarily increase the effectiveness and the productivity of decision making processes. More-
over, the paper suggests some constructive ideas, formulated through a normative analytic model, how to select a 
strategy for the design and switching to a new version of a decision support system, without having to immediately run 
through a mega conversion and training process while temporarily losing productivity. The analysis employs the in-
formation structure model prevailing in Information Economics. The study analytically defines and examines a system-
atic informativeness ratio between two information structures. The analysis leads to a better understanding of the per-
formances of decision support information systems during their life-cycle. Moreover, this approach explains norma-
tively the phenomenon of “leaks of productivity”, namely, the decrease in productivity of information systems, after they 
have been upgraded or replaced with new ones. Such an explanation may partially illuminate findings regarding the 
phenomenon known as the Productivity Paradox. It can be assumed that the usage of the methodology that is presented 
in this paper to improve or replace information structure with systematically more informative versions of information 
structures over time may facilitate the achievement of the following major targets: increase the expected payoffs over 
time, reduce the risk of failure of new versions of information systems, and reduce the need to cope with complicated 
and expensive training processes. 
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Productivity, the Productivity Paradox 

1. Introduction 

A major and continuing problem in the information te- 
chnology (IT) profession is the high rate of failure of 
new information systems (IS) or upgraded versions of 
them. From a rational point of view it may be assumed 
that IS professionals usually analyze and design IS “pro- 
perly”. But is it really so? Are they aware of the possibil-
ity of limits in perception among IS users, especially 
decision makers? Do they realize that “improvement” of 
decision support information systems might lead some-
times to a result opposite to what has been expected, 
namely degradation in the level of the productivity of the 
firms, since new and unfamiliar decision rules have not 
been fully implemented and adopted by the decision- 
makers? 

This article suggests a new normative model that at-

tempts to explain that improvement of versions of exist-
ing information systems do not necessarily increase the 
effectiveness and productivity of decision making proc-
esses. It also suggests some constructive ideas, formu-
lated through a normative analytic model, how to select a 
strategy of switching to new version of a system, without 
having to immediately run through a mega training pro-
gram, and to take a risk of losing productivity.  

The methodological and theoretical foundations for the 
analysis presented here anchor in the literature on infor-
mation economics. The earliest mathematical model pre-
senting the relaying of information in a quantitative form 
was that of Shannon [1]. The model distinguished be-
tween two situations: 

1) A noise-free system—a univalent fit between the 
transmitted input data and the received signals; 

2) A noisy system—the transmitted input data (denot-
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ing a state of nature) are translated into signals probabil-
istically. 

In assigning an expected normative economic value to 
information, some researchers made use of Microeco-
nomics and Decision Theory tools [2]. The combination 
of utility theory and the perception that information sys-
tems can be noisy led to the construction of a probabilis-
tic statistical model that accords to an information system 
the property of transferring input data (states of nature) to 
output (signals) in a certain statistical probability [3–5]. 
This model, which delineates a noisy information system, 
is called the information structure model. It is based on 
the assumption that a system is noisy but it does not ex-
amine the nature of the noise. This paper expands the 
analysis by examining some patterns of noise. The con-
sequences of that analysis are then demonstrated. 

Over the years significant research was conducted to 
explore aspects of the phenomenon termed by Simon [6] 
as “bounded rationality”1 and its main derivative—sa- 
tisficing behavior. Some of its aspects were presented 
comprehensively by Rubinstein [7]. Ahituv and Wand [8] 
showed that when satisficing is incorporated into the 
information structure model, there might be a case where 
none of the optimal decision rules will be pure anymore 
(unlike the results of optimizing behavior). 

Ahituv [9] incorporated one of the aspects of bounded 
rationality into the information structure model: the in-
ability of decision-makers to adapt instantaneously to a 
new decision rule when the technological characteristics 
of the information system, as expressed by the probabili-
ties of the signals, are suddenly changed. Moreover, Ahi- 
tuv [10] portrayed a methodology in which decision 
support systems are designed to act consistently during 
their lifecycle (in accordance with a constant decision 
rule). He suggested that this decision rule (that was an 
optimal decision rule in a previous version of the infor-
mation system) guarantees improvement of expected 
outcomes, although it is not necessarily the optimal deci-
sion rule for later versions of this information system.  

This study presents a conceptual methodology that 
combines aspects of bounded rationality [9,10] dealing 
with a rigid decision rule and the life-cycle of informa-
tion systems, with elements of rational behavior pre-
sented in the information structure model [5]. 

The article raises some questions: Is it possible to im-
prove an existing information system without adopting a 
new decision rule? What are the analytical conditions 
that enable a “smooth” (without much disturbance) up-
grading or replacement of an information system? In a 

decision situation where two information structures are 
activated probabilistically, and one of them is generally 
more informative than the other, are there analytical con-
ditions encouraging to enhance the percentage of usage 
of the superior system? 

A normative framework is suggested to cope with es-
sential processes (e.g.: implementation processes, correc-
tion of bugs, or upgrading of versions) during the life 
cycle of a decision support system [11]. By defining and 
analyzing a new informativeness relationship - “the sys-
tematic informativeness ratio”, this paper demonstrates 
situations where decision-makers are equipped with par-
tial information. Through these cases, it is explained how 
to assure a “smooth” implementation of new or upgraded 
information systems, as well as how to reduce the in-
vestment in implementation activities.  

Moreover, It is shown that the existence of this new 
relationship (ratio) between two information structures 
enables to improve the level of informativeness without 
the awareness and the involvement of the users (the deci-
sion makers). 

“The systematic informativeness ratio approach”, whi- 
ch is presented and analyzed for the first time in this pa-
per, contributes to better understanding of various as-
pects of the “productivity paradox” [12–14]. Furthermore, 
it portrays a methodology that suggests how to deal with 
some aspects of the “productivity paradox” which were 
explored in earlier studies [15,16]. 

The next section summarizes the information structure 
model and the Blackwell Theorem [5]. It describes the 
motivation to use convex combinations in order to de-
scribe processes during the life cycle of a decision sup-
port system. Section 3 describes, analyzes, and demon-
strates a new informativeness relationship between two 
information systems—“the systematic informativeness 
ratio”. Section 4 explores the existence of systematic 
informativeness ratio between un-noisy information str- 
uctures. Section 5 presents some implications that could 
be extrapolated to noisy information structures. The last 
section provides a summary and conclusions, and pre-
sents the contribution of the study and the directions it 
opens for further research. Proofs of the theorems and 
lemmas appear in the appendix. 

2. The Basic Models 

2.1 The Information Structure Model and  
Blackwell Theorem 

The source model employed in the forthcoming analysis 
is the information structure model [5]. This is a general 
model for comparing and rank ordering information sys-
tems based on the rules of rational behavior.2 

The information structure model enables a comparison 
of information systems using a quantitative measurement 
reflecting their economic value. An information structure 

1Simon termed the human decision-making process, which is affected 
by bounded rationality as “satisficing”, and the decision-maker in ac-
cordance as a “satisficer” (aims to be satisfied with his or her decision). 
This is in contrast to the perception of the decision-maker under rational 
behavior assumptions in “classical” Utility theory who is an “optimizer” 
(aims to achieve the best out of his or her decision) 
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Q1 is said to be more informative than an information 
structure Q2 if the expected payoff of using Q1 is not 
lower than the expected payoff of using Q2. The expected 
payoff is trace (*Q*D*U)3, where trace is an operator 
that sums the diagonal elements of a square matrix. The 
objective function for maximizing the expected compen-
sation is  )( UDQtraceMax

D
*** 4. 

Let us examine a numerical example. Assume that an 
investment company serves its customers by using a web 
based information system. Let Q1 be an information 
structure that predicts the attractiveness of investing in 
various alternative channels. The IS supports the deci-
sion-making of the investors. For simplicity, suppose 
there are three categories of states of nature: S1 - acceler-
ated growth (probability: 0.2), S2 - stability (probability: 
0.6), and S3 - recession (probability: 0.2). Assume also 
that there are three possible decisions: A1 - Invest in bank 
deposits; A2 - Invest in stocks; A3- Invest in foreign cur-
rency; Q1 - The information system provides the follow-
ing signals: Y1- Accelerated growth is expected; Y2 - Sta-
bility is expected; Y3 - Recession is expected;  
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Y1 or Y2. Invest “A3”, while the signal is Y3. 
Given two information systems that deal with the same 

state of nature and are represented by the information 
structures Q1 and Q2, Q1 is defined as generally more in-
formative6 Given two information systems that deal with 
the same state of nature and are represented by the in-
formation structures Q1 and Q2, Q1 is defined as generally 
more informative.7 The rank ordering is transitive.8 

Over the years, a number of researchers developed 
analytical models to implement the concept of the infor-
mation structure model in order to evaluate the value of 
information technology. Ahituv [10], demonstrated the 
life cycle of decision support information system with 
the model. Ahituv and Elovici [17] evaluated the value of 
performances of distributed information systems. Elovici 

2According to the information structure model, four factors determine
the expected value of information. 
The a priori probabilities of pertinent states of nature. Let S be a 
finite set of n states of nature:  S={S1,..,Sn}. Let P be the vector of a
priori probabilities for each of the states of nature:  P=(p1,..,pn). 
The information structure – a stochastic (Markovian) matrix that
transmits signals out of states of nature. Let Y be a finite set of n sig-

nals, Y={Y1,..,Ym}. An information structure Q is defined such that its
elements obtain values between 0 and 1, Q: SxY[0,1]. Qi.j is the prob-

ability that a state of nature Sii displays a signal Yj 1
1




m

j

i,jQ  

The decision matrix – a stochastic matrix that links signals with the
decision set of the decision-maker.  Let A be a finite set of k possible
decisions, A={A1,..,Ak}. Let D be the decision function. Similar to Q, D
is a stochastic (Markovian) matrix, namely, it is assumed that the deci-
sion selected for a given signal is not necessarily always the same. D:Y 
x A[0,1] 
The payoff matrix – a matrix that presents the quantitative compensa-
tion to the decision-maker resulting from the combination of a decision
chosen and a given state of nature. Let U be the payoff function:  U :A 
x S    (a combination of a state of nature and a decision provides a
fixed compensation that is a real number). Ui,j – is the compensation
yields when decision maker decides –“Ai”, while state of nature “Sj”
occurs. 
3Sometimes Q represents an un-noisy (noise free) information struc-
ture. In these cases Q represents an information function f, Yf:S  [4]. 

Q is a stochastic matrix that contains elements of 0 or 1 only. This
means that for each state of nature the information structure will al-
ways act identically (will produce the same signal), although it is not
guaranteed that the state of nature will be exclusively recognized. 
4When the utility function is linear, that is, the decision-maker is of the
type EMV [2], a linear programming algorithm may be applied to solve
the problem, where the variables being the elements of the decision 
matrix D. It can be proved that at least one of the optimal solutions is in 
a form of a decision matrix whose elements are 0 or 1 (a pure decision 
rule), [5]. For numerical illustrations of the model, see [8–10]. 
5 *

D is a decision matrix which represent the optimal decision rules in
this decision situation. 

6It should be noted that when we deal with two information functions 
rather than structures we use the term “fineness” to describe the general 
informativeness ratio [4]. 
7In terms of the information structure model, if for every possible
payoff matrix U, and for every a priori probability matrix 

    )()( *D*U*QtraceMax*D*U*QtraceMax
DD 21 , then Q1 is generally 

more informative than Q2, Denoted: .21 QQ   Blackwell Theorem 

states that Q1 is generally more informative than Q2 if and only if there 
is a Markovian (stochastic) matrix R such that Q1*R = Q2. R is termed 
the garbling matrix 
8It should be noted that the general informativeness ratio is a partial rank 
ordering of information structures. There is not necessarily rank order 
between any two information structures. 
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et al [18] used this method to compare performances of 
Information Filtering Systems. Ahituv and Greenstein 
[15] used this model to assess issues of centralization vs. 
decentralization. Aronovich and Spiegler [19] use this 
model in order to assess the effectiveness of data mining 
processes. 

The model was expanded to evaluate the value of in-
formation in several aspects: the value of a second opin-
ion [20]; the value of information in non-linear models of 
the Utility Theory [21]; analyzing the situation of case 
dependent signals (the set of signal is dependent on the 
state of nature, [22]); a situation of a two-criteria utility 
function [23]. The model was also implemented to 
evaluate empirically the value of information in postal 
services [24], and in analysis of Quality Control methods 
[25,26]. 

2.2 The Use of Convex Combinations9 of  
Information Structures to Represent  
Evolution during Their Life-Cycle 

A possible reason why we should consider probabilistic 
combination of information systems is the existence of 
decision support systems that use Internet (or intranet) 
based search engines. These engines can retrieve infor-
mation from several information sources, and produce 
signals accordingly. The various sources are not always 
available. 

Information sources are essential for the proper sur-
vivability of competitive organizations. As a result, the 
importance of proper functioning of information systems 
is increasing. When a certain source in unavailable it is 
possible to acknowledge the users about it by alarming 
them with a special no-information signal [15]. Another 
option, which is presented in this paper, is to consider 
implementation of a “mixture” of information systems. 
For example: suppose there is “a state of the art” organ-
izational information center that can serve, during peak 
times only 90% of the queries. How will the rest 10% are 
served? One alternative is to reject them.10 Another one is 
to direct those queries to a simpler (perhaps cheaper) 
information system whose responses are less informative. 
This leads to consider probabilistic usage of information 
systems that can be delineated by a convex combination. 

The analysis focuses on the convex combination of 
information structures reflecting a probabilistic employ-
ment of a variety of information systems (structures), 
where the activation of each one of them is set by a given 
probability. The various systems react to the same states 
of nature and produce the same set of signals.11 

The mechanism of convex combinations12 of informa-
tion systems is employed in an earlier research by Ahituv 
and Greenstein [15] which analyses the effect of prob-
abilistic availability of information systems on produc-
tivity, and illuminates some aspects of the phenomenon 
that are termed as “the productivity paradox” [12–14]. 

3. The Systematic Informativeness Ratio  

3.1 Definition of the Systematic  
Informativeness Ratio 

As mentioned in Section 2, when an information struc-
ture Q1 is more informative than an information structure 
Q2 irrespective of compensations and a priori probabili-
ties, a general informativeness ratio exists between the 
two of them [5]. 

If an information structure Q1 is more informative than 
Q2 when the optimal decision rule of Q2 is employed, and 
given some certain a priori probabilities of the states of 
nature, then under some assumptions on the payoffs, an 
informativeness ratio under a rigid decision rule is de-
fined between them [9].13 

9The convex combination of information structures was discussed in 
earlier studies. Marschak [4] notices that the level of informativeness of 
convex combination of two information structures (denoted Q1 and Q2) 
which produce the same set of signals is not equivalent to the level of 
informativeness of using Q1 with a probability p and Q2 with the com-
plementary probability (1-p). 
10Sulganik [27] indicates that a convex combination of information 
structure could be used to describe experimental processes (with a 
probability p of success and (1-p) of failure). For example, he investi-
gates the convex combination of two information structures: one pre-
sents perfect information and the other one no-information (its rows are 
identical). 
11It should be noted that in case that the two information structures do 
not produce the same set of signals, the non-identical signals can be 
represented in by columns of zeroes respectively [9]. 
12A convex combination of two information systems is defined as fol-
lows: Let Q1 and Q2 be two information structures describing informa-
tion systems.  Let S={S1,…,Sn} be their set of the states of nature. Let 
Y={Y1,…,Ym} be their set of signals. When a decision situation is given 
let p the probability that Q1 will be activated, and (1-p) that Q2 will be 
activated. Since, decision makers do not aware which information 
structure is activated, Q3, the weighted information structure, is repre-
sented by a convex combination of Q1 and Q2. 
Q3= p* Q1 + (1-p) * Q2 
13Given two information systems that deal with the same states of na-
ture, produce the same set of signals, and are represented by the infor-
mation structures Q1 and Q2 respectively, Q1 will be considered more 
informative than Q2 under a rigid decision rule if its expected payoff is 
not lower than that of Q2 for the following conditions:  
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The theorem which is proved by Ahituv [9], states that: 
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 then Q1 more informative than Q2 with 

regard to ΠandU . 

The ratio will be denoted: 21 QQ
R
  

The informativeness ratio under a rigid decision rule is a partial rank 
ordering of information structures. 
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Assume those two informativeness ratios can be con-
ceptually combined to a new informativeness ratio: Let 
Q1 and Q2 be two information structures that deal with 
the same state of nature and produce the same set of sig-
nals. Q1 will be considered systematically more informa-
tive than Q2 if for any decision situation (for any a priori 
probabilities vector-  and any payoff matrix-U ), its 
expected payoff is not lower than that of Q2 while Q1 
operates under an optimal decision rule of Q2. In terms of 
the information structure model, this is presented herein-
after by Definition 1. 

Definition 1: Let Q1 and Q2 be two information struc-
tures representing two information systems operating on 
the same set of states of nature S = {S1,…,Sn} and pro-
ducing the same set of signals Y = {Y1,…,Ym}. Q1 is de-
fined systematically more informative than Q2, denote 

21 QQ
S
 , if for any decision situation (irrespective of 

payoffs and a priori probabilities) Q1 is more informative 
than Q2 under an optimal decision rule of Q2. 

It means that if Q1 is systematically more informative 
than Q2, then for every decision situation14 there exists an 
optimal decision rule of the inferior information structure 
Q2, that can be used with the superior information struc-
ture Q1, and guarantees at least the optimal outcomes of 
using Q2. 

Mathematically it looks this way: 

2

2 22 1

2 2

{ max ( )} ( )

( ( * )) ( ))

Q Q

Q
D

D D Q  ,trace Π* Q * D *U

Max trace Q * D*U trace Π* Q * D *U

  
   

where 2{ max ( )}D Q  - denotes the set of optimal deci-

sion rules, when Q2 is activated in this specific decision 
situation. 

In contrast to the general informativeness ratio, in the 
systematic informativeness ratio the information struc-
ture Q2 can be replaced with the superior systematically 
information structure Q1, without an immediate aware-
ness of the decision makers (the users), since the decision 
rule does not necessarily have to be changed instantane-
ously. It means that when the systematic informativeness 
ratio exists between two information structures, at least 
the same level of expected payoffs is guaranteed when 
the superior15 information structure is activated. Hence 
the decision maker does not have to adopt a new optimal 
decision urgently. 

Let us now examine the informativeness ratio between 
two information systems from the point of view of “sm- 
ooth” implementation. This is presented in Definition 2. 

Definition 2: Let Q1 and Q2 be two information struc-
tures representing two information systems operating on 

the same set of states of nature S={S1,…,Sn} and produc-
ing the same set of signals  Y={Y1,…,Ym}. Assume Q1 is 
generally more informative than 2Q . A smooth imple-

mentation of Q1 instead of Q2 is defined if for any level 
of usage p  10  p  221 *)1(* QQpQp  .  

The importance of this ratio is that in any probabilistic 
level of usage of the superior information system Q1, the 
mean of the expected payoffs (compensation) that the 
decision-makers gain is not less than that achieved by 
using only the inferior information system. It contributes 
to a smooth implementation of the superior information 
structure Q1.  

In our study we argue that those definitions (1 & 2) are 
equivalent. Theorem 1 proves analytically the equiva-
lence of Definition 1 and 2.  

Theorem 116 
Let Q1 and Q2 be two information structures operating 

on the same set of states of nature S = {S1,…,Sn}, and 
producing the same set of signals Y = {Y1,…,Ym}. Then 

21 QQ
S
    221 *)1(*,10, QQpQppp   

This theorem shows that the two ratios which have been 
defined above are identical. Replacement (or improvement, 
or upgrade) of an information structure with a more sys-
tematically informative, information structure than it, 
guarantees smooth implementation, and vice versa.  

Moreover, from the aforementioned equivalence it is 
understood that during a smooth implementation of the 
superior information structure 1Q 17, we do not have to 

adopt a new decision rule, and we can stick to an optimal 
decision rule we used in the past with the inferior infor-
mation structure 2Q . In fact this theorem sets a new nor-

mative perspective that defines the necessary and suffi-
cient conditions for the ability to implement a superior 
information structure smoothly without immediate inter-
ference in the routine work of decision makers. 

Using this method facilitates information systems pro-
fessionals to plan systems under the assumption that 
during a certain transition period the decision-makers 
may act identically and stick to the same decision-rule 
[10]. The existence of this informativeness ratio reduces 
the criticality of an urgent implementation process.  

3.2 A Framework to Examine the Existence of  
the Systematic Informativeness Ratio 

In order to identify the existence of a systematic infor-
mativeness ratio between two information structures 
when one of them is generally more informative than the 
other, we would analyze a special case in which the 
number of signal and the number of states of nature are 
identical. In this case, the identity square matrix I is a 
complete and perfect information structure. We will try 
to find out whether I is systematically more infor-   
mative than any other square stochastic matrix of similar    

14A given set of a-priori probabilities - Π , and a given utility matrix 
- .U  
15Systematically more informative than the other. 
16The proof is provided in the appendix. 
17Since 

221
*)1(*,10, QQpQppp  , 

21
QQ

S
 . 
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dimensions. 
The motivation to do this is provided by Lemma 1. 

Assume two information structures Q1 and Q2 act on the 
same set of states of nature, and respond with the same 
set of signals, and ,*12 RQQ   where R is a stochastic 

matrix (Blackwell Theorem’s condition). In Lemma 1 it 
is shown that the existence of systematic informativeness 
ratio between I and R sets a pre-condition (sufficient 
condition) to the existence of the general informativeness 
ratio between Q1 and Q2. 
Lemma 118 

Let Q1 and Q2 be two information structures operating 
on the same set of states of nature S = {S1,…,Sn}, and 
producing the same set of signals Y = {Y1,…,Ym}. As-
sume that Q1 is generally more informative than Q2, im-
plying that Q2= Q1*R, where R is a stochastic matrix [5].  

If ,0 1, * (1 )*p p p I p R R      ,  

Then 221 *)1(*,10, QQpQppp   
From Lemma 1 it can be shown that if Q1 is generally 

more informative than Q2, namely Q2 = Q1*R (R is a 
stochastic matrix) and 

S
I R  (I is systematically more 

informative than R) then 21 QQ
S
  (Q1 is systematically 

more informative than Q2). 

3.3 The Monotony of the Systematic  
Informativeness Ratio 

The following lemma deals with the improvement of the 
accuracy level of information systems by enhancing the 
probability to receive perfect information. 

Lemma 219 
Let I be an information structure that provides perfect 

information. Let Q be any information operating on the 
same set of states of nature 1{ }nS S ,..,S   and producing 

the same set of signals Y = {Y1,…,Yn}. 
If: for Qp)*Q(,p*Ip  110  (every convex 

combination of I and Q is generally more informative 
than Q)  
Then:  

q)*Q(q*Ip)*Q(,p*Ipqq,  1110  

Conclusion: 
If: Qp)*Q(,p*Ipp,  110  

Then:  
q)*Q(q*Ip)*Q(,p*Ipqq,p,  1110  

This lemma proves the monotony of the systematic 
informativeness ratio. Actually it is shown that an im-
provement in the accuracy level of information (ex-
pressed by increasing the probability of perfect informa-

tion) is positively correlated with the general informa-
tiveness ratio of a convex combination. 

3.4 The Systematic Informativeness  
Ratio – An Example 

We continue the example of Q1, an Information system 
for choosing an investment option, which was first dem-

onstrated in Section 2. 

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Suppose it is intended to replace the information sys-

tem with an improved one, Q2: 



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
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2Q   

Due to technological and organizational limitations, 
e.g.: inability to implement the system simultaneously all 
across the organization and the need to monitor carefully 
the system’s performances, the system is implemented 
step by step.  

By using some of the lemmas and theorems presented 
above, it can be demonstrated that the information struc-
ture Q2 is systematically more informative than Q1. 

Let Q0 be an information system: 

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Let Q3 be an information structure, which represents 

perfect information.

















100

010

001

3Q  

Since,
  0003 **)1(*,10, QQQpQppp  20 
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then, from Theorem 1 it is clear that Q3 is systematically 
more informative than Q0. 

Let us present Q1 and Q2 as convex combination of Q3 
and Q0. 

032 *2.0*8.0

100

09.01.0

01.09.0

QQQ 

















 

 

18The proof and an example are provided in the Appendix. 
19The proof is provided in the Appendix. 
20We use the information structure Q0, as a garbling (stochastic) matrix, 
either. 
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

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According to Lemma 2 Q2 is systematically more in-
formative than Q1. Table 1 demonstrates the implication 
of the existence of the systematic informativeness ratio 
between Q2 and Q1. 

This example illustrates that if an upgrading of an in-
formation system is based on the implementation of later 
versions of it which are systematically more informative 
than the earlier versions, then sticking to the old and fa-
miliar decision rule will not harm productivity. 

The principle of developing information systems to be 
systematically more informative provides the luxury of 
training and on-site implementation which is “life-cycle 
independence”. It facilitates the implementation of a new 
version of information system or insertion of minor 
changes, without the immediate awareness of the deci-
sion makers. Therefore, organizations can schedule the 
optimal timing of wide training processes. That is in con-
trary to the usual situation, when the scheduling of train-
ing and on-site implementation might interfere with other 
organizational considerations and requirement (e.g.: pe- 
riodically tasks). Moreover, development of new deci-
sion support systems without adopting this principle may 

explain, normatively, “leaks of productivity”. In other 
words it may explain the decrease in user performance of 
information systems, although they have been improved. 
This degradation in the expected outcomes while using 
improved information systems can be attributed to the 
inability of users to adapt immediately to new decision 
rules.  

4. The Systematic Informativeness  
Ratio – A Noise Free Scenario. 

4.1 Conditions for Existence of the Systematic  
Informativeness Ratio  

Historically, the starting point for analyzing the value of 
information in noisy information structures was the ana- 
lysis of the value of information in noise free information 
structures. These are also termed information functions 
[4,5]. Following this approach, we will start with a sim-
ple presentation of the informativeness ratio between in 
formation functions, which could be classified as un- 
noisy information structures.  

In order to identify the existence of a systematic in-
formativeness ratio between two information functions, a 
new aggregation ratio (a fineness ratio that keeps orders 
of signals) between information functions is defined, 
hereinafter. 

Definition 3 
Let  If  be the identity information function. Let 

}{ n,..,SSS 1  be its set of states of nature and 

}{ n,..,YYY 1  the set of signals  If  produces. Hence, 

 YS f iiI )( . 

Assume for simplicity that {1 } S ,..,n , {1 } Y ,..,n  

then I ( )f i i  

 
Table 1. Comparison of two information structures, one of them is systematically more informative than the other 

 
The current information  

structure 
The improved information  

structure 

Information structure 

















100

06.04.0

04.06.0

1Q
 




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










100

09.01.0

01.09.0

2Q
 

The matrix of a priori probabilities for the states of nature + The matrix of compensation (percentage): 


















2.000

06.00

002.0
   




















311

050

103

U
 

The Decision rules: 
A1 – Invest in Bank Deposits 

A2 – Invest in stocks 
A3 – Invest in foreign currency 




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






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001

D  


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


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
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100
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D
 

Expected compensation (percentage) 2.4 2.4 3.12 
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Let F be a set of information functions that acts on 
the same decision environment of  If . 

)( )(()( kkgtheni,kigiforiigFg  )  

Since there is an isomorphism between the representa-
tion of information functions and a set of information 
structures representing them, F can be defined analogi-
cally as a set of un-noisy information structures. 

)111 1111  k,ki,ki,i Ftheni,,kFifor(FFF  

Following that   If  is equivalent (for example) to I , 

an information structure that produces perfect information 
I  is represented by the identity Matrix of the order nxn. 

In fact F  is a complete set of information functions 
that could be termed as aggregations of  If . If Fg its 

way of transforming of states of nature into signals does 
not contradict the way  If  transforms states of nature 

into signals. In other words it can be said that  If  is a 

higher resolution of every information function belong-
ing to the set F . 

Theorem 2 sets the necessary and sufficient conditions 
for the existence of systematic informativeness ratio be-
tween I (the identity information structure), and any 
non-noisy information structure: 

Theorem 221 
Let F1 be an information function. Let  ,..,SSS n}{ 1  

be its set of states of nature. Let  }{ n,..,YYY 1  be its set 

of signals. Let I be the identity information function, 
which represent perfect information, then 1FI

S
  if and 

only if 1F F . 
It is shown in Theorem 2 that for every information 

function (non-noisy information structure) F1, the neces-
sary and sufficient condition that I  is systematically 

more informative than F1, is that 1
2

1 FF  . In fact, 
four equivalent conditions are found as we will show 
below. 

Let 1F  be an information function. Let 
 ,..,SSS n}{ 1 be its set of states of nature. Let 

 }{ n,..,YYY 1 be its set of signals. The following condi-

tions are equivalent.22 

1) 1FI
S
  

2)  F-p)*F(p*Ipp, 11110   

3) FF 1  

4) 1
2

1 FF   

The equivalence of the first and second conditions 
(which was demonstrated earlier by Definition 1 and 2 
respectively) was proven by Theorem 1. Conditions 1 

and 2 are not specific to un-noisy information structures, 
and can hold for any type of structure. In contrast to 
Conditions 1 and 2, the third and fourth conditions are 
relevant only to un-noisy information structures. By us-
ing those two latter conditions we can explicitly classify 
un-noisy and diagonal information structures into two 
separate classes:  

1) Structures that the identity information structure is 
systematically more informative than them,  

2) Structures that the identity information structure is 
not systematically more informative than them. 

4.2 The Implications of the Systematic  
Informativeness Ratio – An Example 

In the example that follows, two scenarios are presented, 
analyzed, and compared. The first scenario: upgrading an 
un-noisy information structure F1 to I—the identity in-
formation structure, while I is systematically more in-
formative than F1.  

The second scenario: upgrading an un-noisy informa-
tion structure F2 to I—the identity information structure, 
while I is not systematically more informative than F2.  

We use the situation of choosing an investment alter-
native, that was shown earlier in Section 3, except the 
fact that the current information structures are F1 or F2 

respectively.  
Suppose an un-noisy information structure that pre-

dicts the attractiveness of an investment in various chan-
nels is installed. This information structure does not dis-
tinguish between S1 – accelerated growth, and S2 – stabil-
ity. It is intended to replace the information system with I 
- an information function that provides perfect informa-

tion: 


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Due to technological and organizational limitations, 
e.g.: inability to implement the system simultaneously all 
across the organization and the need to monitor carefully 
the system’s performance, the system is implemented 
step by step.  

First Scenario: The existing information structure is 
F1. 

2
1 1

1 1

1 0 0 1 0 0 1 0 0

1 0 0 1 0 0 * 1 0 0

0 0 1 0 0 1 0 0 1

1 0 0

1 0 0

0 0 1

F F

F F F





     
           
     
     

 
    
 
 

 

Since FF 1 , it can be shown from Theorem 2 that 

1FI
S
 . Table 2 demonstrates that while the probability 

21The proof is provided in the Appendix. 
22While, Theorem 1 proves the equivalence between expressions 1&2,
Theorem 2 proves the equivalence between expressions 3&4, and then
proves the equivalence between expressions 1&3. 
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for perfect information increases, the expected compen-
sation increases too. 

Second Scenario: Suppose the decision situation is 
identical to the previous one, but instead of F1 the exist-
ing information structure is F2 where: 

 
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Since FF 2
, according to Theorem 2 I is not sys-

tematically more informative than F2.  
Table 3 demonstrates that although the probability of 

perfect information increases the level of informativeness 
declines. 

The comparison between those two scenarios is dem-
onstrated in Figure 1: 

By observing the aforementioned example it can be 
concluded that, when a new (improved) information sys-
tem is systematically more informative than the current 
information system two important goals are achieved: 

1) “Decision situation independence” -The ability to 
implement the information system step by step and to 
improve the level of informativeness is guaranteed.   

2) “Life-cycle independence” -The ability to imple-
ment the information system without interfering the users 
(the decision makers) and while existing expected out-
comes are guaranteed (without the necessity to start 
training and testing processes). 

5. Towards Assessing the Systematic  
Informativeness Ratio between Noisy  
Information Structures – the Dominancy  
of Trace 

A characteristic of F is that its diagonal elements are 
(weakly) dominant (in accordance with Definition 4). 
From Theorem 3 it can be shown that this characteristic 
is a necessary condition for existence of the systematic 
informativeness ratio between I and Q: 

Theorem 334 
Let I (the identity matrix), and Q be two information 

structures.  ,..,SSS n}{ 1 is the common set of states of 

nature, and  }{ n,..,YYY 1  is their same set of signals 

they produce. 

1 i,i j,iS
I Q i,i ,..,n, Q Q i j      (The diagonal el- 

ements are weakly dominant in each and every column). 
This theorem implies that the dominancy of the di-

agonal elements in each and every column of an infor- 

Table 2. Expected compensation in various levels of prob. 
for perfect information (1st scenario) 

Expected 
compen-

sation 

The prob-
ability to 
receive F1 

The probability 
to receive I. 

Characteristics 
of the Decision 

situation 

2.6 1 0 

2.76 0.8 0.2 

2.92 0.6 0.4 

3.08 0.4 0.6 

3.24 0.2 0.8 

3.4 0 1 
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probabilities: 
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Table 3. Expected compensation in various levels of prob-
ability of perfect inf. (2nd scenario) 

Expected 
compen-

sation 

The prob-
ability to 
receive F2 

The probability 
to receive I 

Characteristics 
of the Decision 

situation 

2.6 1 0 

2.52 0.8 0.2 

2.4666 0.666 (2/3) 0.333 (1/3) 

2.56 0.6 0.4 

2.84 0.4 0.6 

3.12 0.2 0.8 

3.4 0 1 

A-priory   
probabilities: 
(0.2,0.6, 0.2) 
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mation structure is a necessary condition for the exis-
tence of a systematic informativeness ratio between the 
identity information structure (which represents complete 
information) and the non-identity information structure. 
This casts a preliminary condition for the existence of the 
informativeness ratio.  

The following example demonstrates, by using Theo-
rem 3, that the systematic informativeness ratio is not 
always transitive. 
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Figure 1. A comparison between the two scenarios 
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Since FF 1 , from Theorem 2 it is concluded that 
1QI

S
 . Moreover, since FF 2 , from Lemma 1 it is 

concluded that 21 QQ
S
 . However, from Theorem 3, it is 

concluded that since 2,222,32 QQ  , I is not systematically 

more informative than Q2.  
Since the systematic informativeness ratio is not al-

ways transitive, when there is a multi stage implementa-
tion and improvement program during the life-cycle of a 
decision-support information system and the informa-
tiveness ratio of this information system can be improved 
systematically, the preservation of systematically infor-
mativeness ratio is not automatically guaranteed during 
the whole life-cycle of information system. Hence, the 
importance of a long-range perspective arises. This can 
be achieved in one of two ways, depending on the ability 
to guarantee whether the last version of information 
structure can be systematically more informative than 
any previous version, or only superior to its predecessor 
version: 

When the systematic informativeness ratio can be ob-
tained between each and every two sequential versions of 
an information system during its lifecycle, then a long- 
range plan of the versioning mechanism is required. This 
could guarantee that the latest version of an information 
system will be systematically more informative than any 
of the previous versions. Moreover, it will guarantee a 
growth (or at least stability) in expected outcomes during 
the lifecycle of the decision support system, without 
alerting the decision makers. Hence, implementation and 
training processes between versions of the information 
system become less critical. 

When the systematic informativeness ratio can be 
achieved only between the last version of an information 
system and its predecessor version, then a training and 
implementation plan is required. However, the existence 
of systematic informativeness ratio between consequent 
versions reduces the costs and lowers the criticality of the 
implementation and training processes.  



Evolution or Revolution of Organizational Information Technology – Modeling Decision Makers’ Perspective 

Copyright © 2010 SciRes                                                                                 JSSM 

61

6. A Summary and Conclusions 

This paper analytically examines and identifies the sys-
tematic informativeness ratio between two information 
structures. The methodological approach presented here 
may lead to a better understanding of the performances 
of decision support information systems during their 
life-cycle. 

This approach may explain, normatively, the pheno- 
menon of “leaks of productivity”. In other words it may 
explain the decrease in productivity of information sys-
tems, after they have been improved or upgraded. This 
degradation in the expected outcomes can be explained 
by the inability of the users to adapt immediately to new 
decision rules. 

It can be assumed that the usage of the methodology 
that was presented in this paper to improve or replace 
information structure with systematically more informa-
tive versions of information structures over time may 
facilitate the achievement of the following major targets: 

1) Increase the expected payoffs over time. 
2) Reduce the risk of failure of new information sys-

tems as well as new versions of information systems. 
3) Reduce the need to cope with complicated and ex-

pensive training processes during the implementation 
stages of information systems (as well as the implemen-
tation of new versions of the systems). Moreover, some-
times this process can be completely skipped during the 
installation of a new version of an information system.  

The paper analyzes the conditions for the existence of 
a systematic informativeness ratio between I -the identity 
information structure which represents complete infor-
mation, and another information structure. In the case of 
non-noisy information structures the necessarily and suf-
ficient conditions for existence of the systematic infor-
mativeness ratio between I and a second information 
structure are set and proved comprehensively. As a result, 
some necessary and sufficient conditions are set, proved 
and demonstrated for the noisy information environment 
as well. 

Further research can be carried out in some directions: 
1) Exploration of additional analytical conditions for 

the existence of the systematic informativeness ratio be-
tween I, the identity information structure and noisy in-
formation structures. 

2) Classification of cases where the systematic infor-
mativeness ratio inheritably exists by using the condi-
tions those are set so far. 

3) Devising empirical methods to examine the impact 
of using the principle of developing decision support 
information systems is systematically more informative 
over time, on the performance of decision-makers, as 
well as on their perceived satisfaction from using those 
systems. 

4) Designing empirical studies (experiments, case 
studies and surveys) to validate the theoretical analysis 

provided here. 
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Appendix 

Theorem 1: 
Let Q1 and Q2 be two information structures operating 

on the same set of states of nature S = {S1,…,Sn}, and 
producing the same set of signals Y = {Y1,…,Ym}. Then 

21 QQ
S
    221 *)1(*,10, QQpQppp   

First, Lemma 1.1 is proven. 
Lemma 1.1: 
Let 1Q and 2Q  be two information structures de-

scribing information systems. Let S = {S1,…,Sn} be their 
set of the states of nature of 1Q  and 2Q . Let 

Y={Y1,…,Ym} be their set of signals. Then for any given 
decision situation described by  (a matrix of a-priori 
probabilities of states of nature), U (a matrix of utilities 
or compensations), A (a set of decisions), where 

 max 2pure -D (Q )  is the set of optimal decision rules when 

Q2 is used, there exists >0, such that if 0<p, and Dp is 
an optimal decision rule of the Information structure 

1 21p* Q ( p)* Q   

Then  max 2p pure -D D (Q ) . 

Proof (of Lemma 1.1): 
1) It can be assumed that every optimal decision rule is 

a convex combination of pure decision rules [10]. So we 
try to find the optimal decision rule of 

1 21p* Q ( p)* Q   in the set of the optimal pure deci-

sion rules of Q2,  max 2p pure -D D (Q ) . 

2) Let k be the number of possible decisions in this 

given decision situation. This means that there are km  

pure decision rules, denoted 1
m

kD ,..,D . 

Let  pureD  the full set of the possible pure decision 

rules for this given decision situation 
3) If    max 2pure - pureD (Q ) D , that means that every 

pure decision rule is an optimal decision rule it is obvious 
that  max 2p pure -D D (Q ) . 

4) So, assume that    max 2pure - pureD (Q ) D


. 

5) Hence:    max 2pure pure -D \ D (Q )    

6) Let’s calculate for every pure strategy Di the fol-
lowing values: 1 1*i iV trace(Π Q * D *U),   

2 2*i iV trace(Π Q * D *U)  

7) 1 2* 1 itrace(Π (p* Q ( p)* Q )* D *U))    

8) 
1

21

i

i

p* trace(Π* Q * D *U))

( p)* (trace(Π* Q * D *U))


  

 

9) 1 21i ip*V ( p)*V    

10) Let’s define in this specific decision situation: 

  1 1max i
D

V Max V  - The (optimal) expected 

value when using the information structure Q1. 
  1 1

max 2

i

Di Dpure- (Q )

V Max V


  - The (optimal) expected 

value when using the information structure Q1, when the 
set of decision rule is limited to the optimal set of pure 
decision rules when using the information structure Q2. 

  2 max 2

max 2

i

Di Dpure- (Q )

V Max V


  - The (optimal) expected 

value when using the information structure Q2. 
  2 2

max 2

i

Di Dpure- (Q )

V Max V


  - The (optimal) expected 

value when using the information structure Q2, when the 
set of decision rule is limited to the non-optimal set of 
pure decision rules when using the information structure 
Q2. 

11) According to expression (4)    purepure- D)(QD

2max  

Hence: 0222 max  )V-(VVΔ   

12) Moreover: 0111 max  )V-(VVΔ  
13) Let’s examine for   )(QD\DDi pure-pure 2max  when 

it is not an optimal decision rule of p*Q1+(1-p)*Q2. We 
try to identify a small value of p that will always give 

max2121 11 p)*V(p*Vp)*V(p*V ii  . In fact, the 

purpose is to find an “environment” of Q2 where an opti-
mal decision rule of Q2 is also an optimal decision rule of 
p*Q1+(1-p)* Q2. 

14) From (9) it is concludes that  
2121 11 max p)*V(p*Vp)*V(p*V ii   

15) Let’s examine weather exists:  
max max1 2 1 21 1p*V ( p)*V p*V ( p)*V      

16)
   

221

222211 maxmaxmax

V)VVp*(

-VV-VVp*-VVp*

ΔΔΔ 




 

21

2
0

VV

V
p

ΔΔ

Δ


  

That’s according to (10), (11)  
00 21201  VV,VV ΔΔΔ,Δ  

17) Let’s pick: 10
21

2





VV

V
ε

ΔΔ

Δ
  

18) And in this environment (for every  p0 ) at 

least one optimal decision rule of Q2 is an optimal deci-
sion rule of p*Q1+(1-p)* Q2 

Q.E.D (Lemma 1.1)  
Proof (of the theorem itself): 
First direction: assume that for every decision situa-

tion: 

1) 
))(trace(ΠMax

U)*D*Q*trace(Π, )}(QDD

2
D

Q12max{Q 22

*D*U*Q
 

 

where max 2{ ( )}D Q  is the set of optimal decision rules 
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when Q2 is used in this specific decision situation. 
Then implies:  
2) 1 2Π 1

D
Max(trace( * (p* Q ( p)* Q )* D*U))    

3) 
1

2

( (Π )

(1 ) ( ( ))
D

Max p* trace * Q * D*U

p * trace Π* Q * D*U



 
 

4) 
1 2

2 21

Q

Q

p* trace(Π* Q * D *U)

( p)* trace(Π* Q * D *U)


 

 

5) 
2 2

2 21

Q

Q

p* trace(Π* Q * D *U)

( p)* trace(Π* Q * D *U)


  

 

6) 2
D

Max(trace(Π* Q * D*U))  (first direction is 

proven) 
Second Direction: 
7) 1 2 20 1 1p, p , p* Q ( p)* Q Q        

8) According to the lemma there exists >0, such that 
if 0<p1<1, then exists Dp1 an optimal decision rule of 
the IS: 1 1 1 21p * Q ( p )* Q   that implies  

 1 max 2pure -Dp D (Q ) . 
9) Let DQ2  this optimal decision rule  

 )(QDD pure-Q 2max2  

10)  )*D*U))Q)p(*Q(p(trace(Max *
D

2111 1*Π  

11)  *U)))*D)*Qp(*Q(p(trace( Π Q 22111 1*  

12) 
2

2

11

21

Π

1 Π

Q

Q

p * trace( * Q * D *U)

( p )trace( * Q * D *U)  
 

13) *U)*D*Qtrace( Q 22Π  (According to (7)) 

14) 
2

2

1 2

1 2

Π

1 Π

Q

Q

p * trace( * Q * D *U)

( p )trace( * Q * D *U)


 

 

15) From (12), (13), (14)  21Π Qtrace( * Q * D *U)  

22Π Qtrace( * Q * D *U)  

That is correct for every decision situation (any given 
Π and U) 

Q.E.D   
Lemma 1 
Let Q1 and Q2 be two information structures operating 

on the same set of states of nature S={S1,…,Sn}, and pro-
ducing the same set of signals Y={Y1,…,Ym}. Assume that 
Q1 is generally more informative than Q2, implying that 
Q2= Q1*R, where R is a stochastic matrix [5].  

If ,0 1, * (1 )*p p p I p R R      ,  

then 221 *)1(*,10, QQpQppp   
Proof: 
1) According to the second condition of Blackwell’s 

theorem [5] for every p there exists Rp, where Rp is a 
stochastic matrix of the order nxn. 

(p * I + (1-p) * R)*Rp = R  

2) Therefore: Q1*(p * I + (1-p) * R)*Rp =Q1 * R  
3) Hence:   221 **)1(* QRQpQp p   
Q.E.D. 
Lemma 2: 
Let I be an information structure that provides perfect 

information. Let Q be any information operating on the 
same set of states of nature  ,..,SSS n}{ 1  and produc-

ing the same set of signals  }{ n,..,YYY 1 . 

If: for Qp)*Q(,p*Ip  110  (every convex 
combination of I and Q is generally more informative 
than Q)  

Then:  

0 1 (1 ) (1 )q, q p , p* I p * Q q* I q * Q          

Proof: 
1) According to the 2nd condition of Blackwell’s theo-

rem, pp RR , is a stochastic matrix, such that: 
(p*I+(1-p)*Q) *Rp=Q 

2) Since, p
q p q

p q, * I * R
p p

 
  

 
 is a stochastic 

matrix. 
3) Let’s examine:  

[ (1 ) ] [ ]p
q p q

p* I - p * Q * * I * R
p p


    

4) 

[ 1 ]

[ (1 ) ] p

q q
p* * I ( - p)* Q* * I

p p

p q
* p* I - p * Q * R

p

 


  

 

5) 
1

q- p*q p q
q* I * Q * Q q* I

p p

q- p*q p-q
* Q q* I ( q)* Q

p


   


     

 

6) According to the 2nd condition of Blackwell’s theo-
rem )5(   

0 1 1 1q, q p , p* I ( p)* Q q* I ( q)* Q          
Q.E.D 
Theorem 2: 
Let F1 be an information function. Let  ,..,SSS n}{ 1  

be its set of states of nature. Let  }{ n,..,YYY 1 be its set 

of signals. Let I be the identity information function, 
which represent perfect information, then 1FI

S
  if and 

only if 1F F  
First 3 lemmas are demonstrated and proven: 
Lemma 2.1 
Let fI be the identity information function. Let 

 ,..,SSS n}{ 1 be its set of states of nature. Let 

 }{ n,..,YYY 1 be its sets of signals. ( )I i if S Y . 
Without loosing generality (for the sake of simplicity) 
Assume {1 } S ,..,n , {1 } Y ,..,n . 
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Let F  be the set of information functions (without 
garbling of signals) that fI is systematically more infor-
mative than each one of them:  

))()(()( kkgtheni,kigiforiigFg  (
Let F,gg 21 and g1 is finer than g2 then: 

)())((1 212 igigg,..,n,i,i   

Proof (of Lemma 2.1): 
1) Let’s check all the possible situations, given: 

))()(()( kkgtheni,kigiforiigFg  (
 2) 1st Case: 1 2 2 1 2( ) ( ) ( ( )) ( )g i g i i g g i g i i      

3) 2nd Case: 1 2 2

2 1 2

( ) ( ) ( )

( ( )) ( )

g i g i k i g k

k g g i g k k

   
   

 

4) 3rd Case: 1 2 2 1 2( ) ( ) ( ( )) ( )g i i, g i k i g g i g i k       

5) 4th Case: 1 2 1( ) ( ) ( )g i k i,g i i g k k      

6) Since g1 is finer than g2: 2 ( )g k i  

7) Hence: 2 1 2 2(5) (6) ( ( )) ( ) ( ), g g i g k i g i     
8) 5th Case:  

1 2 1 2( ) ( ) ( ) ( )g i k i,g i j i g k k, g j j        

9) Moreover, since g1 is finer than g2: 2 ( )g k j  

10) Hence: 2 1 2 2(8) (9) ( ( )) ( ) ( ), g g i g k j g i     
11) It is proved for any possible situation that: 

)())((1 212 igigg,..,n,i,i   

Q.E.D (Lemma 2.1) 
Following that an Adaptation to the information struc-

ture model is concluded straight forward: Let fI be the 
identity information function. Let  ,..,SSS n}{ 1 be its set 

of states of nature. Let  }{ n,..,YYY 1 be its sets of signals. 

iiI Y)(Sf  . 
Without loosing generality (for the sake of simplicity) 
Assume {1 } S ,..,n , {1 } Y ,..,n . Let F  be the set 

of information functions (without garbling of signals) that 
fI is systematically more informative than each one of 
them: 

Let F21 g,g and g1 is finer than g2 .g1 is equivalent 

to 1G , and g2 is equivalent to 2G . 
Then 221 * GGG   
Lemma 2.2: 
Let F1, F2 and F3 be information structures. F1 repre-

sents information functions accordingly. Let 
 ,..,SSS n}{ 1 be their set of states of nature. Let 

 }{ n,..,YYY 1 be their set of signals. 

1 2 3

1 2 3

0 1

(1 )

F F F p, p ,

F p* F p * F

     
  

 

Proof (of Lemma 2.2): 
1) First direction - Assume: 321 FFF   then nec-

essarily: 321 110 p)*F(p*FF,pp,  . 
2) Second direction - Assume:  

1 2 30 1 (1 )p, p , F p* F p * F      . without loos-

ing generality suppose (on the negative form)  there 
exists an index i,ji,j FFi, 21  . 

3) Then (by calculating): 

3 1 2
1

( ) 0
1

i, j i, j i, jF * F - p* F  
p

 


. It is a contradiction. 

Q.E.D (Lemma 2.2) 
Lemma 2.3 
Let F1 be an information structure, which represents 

information function. Let  ,..,SSS n}{ 1 be its set of 

states of nature. Let  }{ n,..,YYY 1 be its set of signals. 

Then: 2
1 1 1F F F F    

Proof (of Lemma 2.3): 
1) 1st direction: From the definition of F , and 

Lemma 2.1 it is obvious that  2
1 1 1F F F F    

2) 2nd direction: Assume (on the negative form) 
2

1 1F F  and 1F F  
3) Let’s examine f1, which is described by 

F1.    1 1 1f : ,..,n ,..,n  

4) 1F F , Hence there exist an index i, f1(i)=j, f1(j)j 
5) f1(i) = j = f1(f1(i))j , a contradiction.  
6) Hence, 1F F  
Q.E.D (Lemma 2.3) 
Proof of the theorem:  
1) 1st direction: it is clear from Lemma 2.3 that 

1 1 1

1 1 1 1

( (1 ) )

(1 )

F F q* I - q * F * F

q* F - q * F * F F   

  
  

  

2) Hence: 1 10 1 (1 )q, q q* I - q * F F        

3) From Theorem 1 it is proven that,  

1 1 10 1 (1 )
S

q, q q* I - q * F F I F          

4) 2nd direction: From Theorem 1 it is proven that,  

1 1 10 1 (1 )
S

q, q q* I - q * F F I F          . 

5) According to the 2nd condition of Blackwell’s theo-
rem [5], there exists a stochastic matrix R, 

 1 1(1 )F  q* I -q * F  * R  . 

6) 1 1(1 )F  q* R - q * F  * R   

7) From Lemma 2.2 it is obvious that: R=F1 

8) Moreover, from Lemma 2.2 it is understood that 
F1*R = F1. 

9) Hence: 2
11 FF  . 

Q.E.D 
Theorem 3 
Let I (the identity matrix), and Q be two information 

structures.  ,..,SSS n}{ 1 is the common set of states of 

nature, and  }{ n,..,YYY 1  is their same set of signals 

they respond with. 

1 i,i j,i
S

I Q i,i ,..,n, Q Q i j      (The diagonal 
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elements are weakly dominant in each and every col-
umn). 

Proof: 
1) Suppose (on the negative way): There exists an in-

dex j jiQQ, j,ii,i   then 01  ΔQQ i,ij,i
where 

(without loosing generality) 
j,iQ  is the maximal element 

in the i column. 
2) Let’s examine a specific decision situation: suppose 

there are n possible decisions, and  

1
1 k,kk,k ,...,n, Π

n
   . 

Let’s define U (the utility matrix) as follows: 

1 1

,

0

r,s

r,r ,...,n, s,s ,...,n

A, (A Δ), r j,s i

A - Δ r i,s i
U

Δ, r i,s j

, else

   

  
     


 

3) 

     1
D

D

Max trace Π*Q*D*U * Max trace U*Q* D
n

  

4) 

 

 
1

1 1

0

r,s

i,s
n

r,m m,s j,s i,s
m

r,r ,...,n, s,s ,...,n Q*U

A* Q , r j

Q *U Δ* Q A Δ * Q , r i

, else


    




    




 

5)  

     
    2

i,i j,i i,ij,i i,i

i,i i,i i,i

Q*U A* Q Q*U Δ* Q A Δ * Q

Δ* Q Δ A Δ * Q A* Q Δ

     

     
 

6) Suppose D1 represents the optimal decision rule. 
1(5) 1i,iD  . 

7) Moreover,    
1

1
n

i,ij,m
m
m i

Q*U A* -Q



  

. 

8) From (5), (7) it is derived that:  

    

 

2
1

2

1
1

1

i,i i,itrace Π*Q* D *U * A* -Q A* Q Δ
n

* A Δ
n

 

 
 

9) Moreover, 1 11 0i,i i, jD D    

 

10) Hence, 
   

 

1
1

1 1

i, j i,itrace Π* I*D *U * U U
n

* Δ A Δ * A
n n

 

   
 

 

11) It means that:  

   1 1trace Π* I* D *U trace Π*Q*D *U  

12) Under this decision situation Q is precisely more 
informative than I. Hence I is not systematically more 
informative than Q. 
Q.E.D 
 

 
 
 


