
J. Software Engineering & Applications, 2008, 1: 20-25
Published Online December 2008 in SciRes (www.SciRP.org/journal/jsea)

Copyright © 2008 SciRes JSEA

1

A New Communication Framework for Networked
Mobile Games

Chong-wei Xu

Computer Science and Information Systems, Kennesaw State University, USA
Email: cxu@kennesaw.edu

Received November 27th, 2008; revised November 30th, 2008; accepted December 2nd, 2008.

ABSTRACT

This paper introduces a two-layer UDP datagram-based communication framework for developing networked mobile
games. The framework consists of a physical layer and a data-link layer with a unified interface as a network
communication mechanism. A standalone two-player mobile game, such as a chess game and the like, can be easily
plugged on to the communication framework to become a corresponding networked mobile game.

Keywords: Software Framework, Games, Networked Mobile Games, Network Programming, Games in Education

1. Introduction

The game industry is growing very rapidly with a speed
of “a near doubling in size in a two-year period” [1]. The
mobile devices, especially cell phones, are getting
popular and have been a solid part of our daily life. In
turn, mobile games are growing even faster than desktop
games. According to Informa Telecoms and Media, the
worldwide market for mobile games will grow from
$2.41 billion in 2006 to $7.22 billion by 2011. Juniper
Research projects that global revenues of mobile games
will grow from $3 billion in 2006 to $17.5 billion by
2010 [2].

In addition to the growing and the demand of industry
market, technically games including mobile games are
the integration of Humanities, Mathematics, Physics,
Graphics, Multimedia (images and audios) technologies,
Artificial Intelligence, Visualization and Animation,
Network Structures and Distributed Computing,
programming knowledge and skills, and so on. They
provide rich teaching materials and engage students for
learning. The demands of the game job market and the
special features of gaming itself promote a new
pedagogical method by using games for educations [3–7].

We have studied the approach for teaching Object-
Oriented Programming (OOP) and Component-Oriented
Programming (COP) via gaming [8,9]. Furthermore, we have
extended the teaching contents to the field of networked
gaming. From the technical point of view, the major
difference between the standalone games and networked
games is the network communication. Considering the
special environment of the networked mobile games, they
usually are preferred to be based on the peer-to-peer
communication. Thus, the UDP protocol is widely used.

Since a networked game consists of the client site and
the server site, which are connected by a communication
mechanism, usually the development of a networked
game starts the discussion of network programming and
applies the client-server model to divide the networked
game into two parts. Consequently, the traditional way
for developing a networked mobile game is emphasizing
on the separation of client and server at the early stage as
shown in Figure 1 (a). It is the result that both the client
and the server usually are a mixture of the gaming code
with the communication code [10–14].

Server

MIDlet

A game user interface

communication

Client

A game user interface

communication

(a)

MIDlet

Game server Game client

Comm server Comm client

server client

(b)

Figure 1. (a) A traditional strategy; (b) A new strategy
for developing a networked mobile game

A New Communication Frame for Network for Networked Mobile Games 21

Copyright © 2008 SciRes JSEA

2. A New Problem Solving Strategy
In fact, usually we have had a standalone game already,
and then we would like to develop the standalone game
to be a networked game. That is, the gaming code and the
communication code are the results of two stages of
development. Furthermore, if the communication mechanism
can be modulated as an independent attachable unit that
performs the functionality of passing messages between
the client and the server, then it not only increases the
reusability and maintainability of the communication
code but also makes the transition from the standalone
game to the networked game easier.

Following this strategy, we have modulated the
communication mechanism as an independent attachable
unit with a simple unified interface. Then, two game
graphical user interfaces of a standalone game, which
represent the client and the server, can be plugged on to
the independent communication mechanism through the
unified interface for structuring a networked mobile game
as depicted in Figure 1 (b). It clearly separates the
gaming code from the communication code and allows
the communication mechanism can be completely reused
for any networked mobile game.

3. Manipulating the UDP Programming Template
For implementing the new strategy, we apply the UDP
datagram protocol for making a peer-to-peer environment.
By manipulating the UDP datagram communication
mechanism in the following steps, the independent
attachable communication mechanism has been
structured.

First of all, a UDP programming template is derived
for depicting its communication mechanism. As we know
that J2ME network programming is based on the Generic
Communication Framework (GCF) that is illustrated as
the connection hierarchy shown in Figure 2. The
connection hierarchy has three major interfaces: Content
Connection for accessing web data; Datagram Connection for
packet-oriented communication; and Stream Connection
for stream-based communication. No matter which
interface, a foundation class named Connector is used to
establish a MIDlet network connection. For mobile
games, the more realistic network option is the UDP
protocol based on the Datagram Connection because of
the limited bandwidth of the mobile phone networks. The
programming template of the UDP protocol can be
depicted as in Figure 3.

Where, sdc stands for server datagramConnection; cdc
stands for client datagramConnection. The server builds
up a sdc and prepares an empty datagram packet dg for
receiving an input message. And then calls
sdc.receive(dg). Whenever the receive() method is
invoked, the server process is blocked waiting for the
incoming message from the client site. When the client
builds up its cdc, it creates a datagram to contain its
out-message and issues send() call to send the message
out. The server, then, gets the in-message and stores it in
the empty datagram packet. This programming template
establishes the connection from the client to the server.

Connection

StreamConnectionNotifierDatagramConnectionInputConnection OutputConnection

StreamConnectionServerSocketConnection UDPDatagramConnection

SocketConnection ContentConnection CommConnection

HttpConnection

HttpsConnection

Figure 2. The connection hierarchy of MIDP

Figure 3. The programming template of UDP protocol

After the server receives the message sent by the client,
the server should be able to echo the message back to the
client. That is, the client needs to prepare for receiving a
message and the server needs to send the message that it
just received to the client. The complete programming
template is shown as Figure 4. This bi-directional
communication mechanism establishes the communication
channel and reveals a very symmetric communication
system. The only asymmetric codes are referring to the
addresses passing, which are marked with the bold face
in the figure.

Considering the symmetric scenario, the receiving and
sending functions can be moved to a physical layer so
that the details of the receiving and sending operations
can be hidden. The added physical layer changes Figure 4
to Figure 5.

sdc= (DatagramConnection)

Connector.open(“datagram://:1234”)

blocked until a client send

Server

cdc = (DatagramConnection)
Connector.open(“datagram://server
:1234”)

Client

dg = sdc.newDatagram(len)

if (dg.getLength() > 0)

String msg = “Hello”

cdc.send(dg)

sdc.receive(dg)

String data = new String(dg.getData(), 0,

dg.getLength())

byte[] bytes = msg.getBytes()

dg = cdc.newDatagram(bytes, bytes.length)

blocked until a server send

dg = cdc.newDatagram(len)

if (dg.getLength() > 0)

cdc.receive(dg)

String data = new String(dg.getData(), 0,

dg.getLength())

String msg = “Thank you”

sdc.send(dg)

byte[] bytes = msg.getBytes()

dg = sdc.newDatagram(bytes, bytes.length,

address)

address = dg.getAddress()

Figure 4. A programming template of the bi-directional
communication

22 A New Communication Frame for Network for Networked Mobile Games

Copyright © 2008 SciRes JSEA

sdc= (DatagramConnection)

Connector.open(“datagram://:1234”)

Server

cdc = (DatagramConnection)
Connector.open(“datagram://ser
ver:1234”)

Client

dg = phy.receive()
phy.send(“Hello”, null)

dg = phy.receive()

phy.send(“Thank you”, address)

address = dg.getAddress()

msg = new String(dg.getData(), 0,

dg.getLength())

msg = new String(dg.getData(), 0,

dg.getLength())

Figure 5. A physical layer for sending and receiving
(phy.send() and phy.receive())

Obviously, in order to test the communication
mechanism shown in Figure 5, an application should be
developed. The simple chat application is selected as an
example. Its user interface only needs a TextField
component for the user to type in out-messages and a
StringItem component for displaying the in-messages.
Definitely, the chat communication should be a
continuous process until one of partners stops the
chatting. For that purpose, a loop is added to keep the
chatting process continuous and a sending command is
used by the users whenever they make their messages
available for sending.

Unfortunately, this version of the chat application
experienced both deadlock and duplicate message
sending problems. The problems are caused by the
structure of the communication mechanism, which uses
the physical layer to contain both the phy.receive() and
the phy.send() calls. The codes of the phy.receive() and
the phy.send() are as follows.

 public synchronized void send(String msg, String address) {
 byte [] bytes = msg.getBytes();
 try {
 if (address == null) {
 dg = cdc.newDatagram(bytes, bytes.length);
 cdc.send(dg);
 } else {
 dg = sdc.newDatagram(bytes, bytes.length, address);
 sdc.send(dg);
 }
 } catch (IOException ex) {
 ex.printStackTrace();
 }
 }

 public synchronized Datagram receive(String name)
 {
 try {
 if (name.equals(“Client”)) {
 dg = cdc.newDatagram(100);
 cdc.receive(dg);
 } else if (name.equals(“Server”)) {
 dg = sdc.newDatagram(100);
 sdc.receive(dg);

 }
 } catch (IOException ex) {
 ex.printStackTrace();
 }
 return dg;
 }

Due to the fact that two methods are shared by both the
client and the server, they form critical sections. In order
to protect these two critical sections, both methods should
be a synchronized method. That is, only one process can
enter the methods at a time. Unfortunately, both methods
contain sdc (server’s datagram connection object) and
cdc (client’s datagram connection object). As we know
that when one process, say the server process, invokes the
receive() call, it should be blocked until the other process,
the client process, issues a send() call. Therefore, when
the server invokes the method phy.receive(), not only the
server process itself will be blocked but also the other
process, the client process, will be blocked too due to the
synchronized protection blocks both resources sdc and
cdc inside the phy.receive(). That makes the client
process unable to invoke the send() method for sending a
message to release the server process since the cdc is
blocked. All these together cause a deadlock as depicted
in Figure 6.

For overcoming this problem, the synchronized
requirement for the phy.receive() has to be released. But,
this allows both processes to enter the phy.receive() at
the same time and it causes a duplicate message sending.

These two phenomena forced us to move the receive()
method out of the physical layer and place it back to the
original position and only keep the send() method in the
physical layer as Figure 7 shows. This continuous
communication mechanism keeps the chat application
working. Clearly, it makes both the client and the server
consists of three layers: the user interface layer on the top,
the physical layer on the bottom, and a layer in the
middle, which we gave a name to it as “data link layer”.

Based on this layered structure, the user interface layer
could be replaced by any game graphical user interface.
However, the send Command designed for the chat
application cannot be used for games since the players of
a game should be able to use key presses for playing the
game. Thus, between the user interface layer and the data
link layer, a unified interface that consists of two
methods: userinterface.receiveMessage(String inMsg)

clientSend()

serverSend()

serverReceive()

clientReceive()

wait for

wait for

Figure 6. The deadlock scenario

A New Communication Frame for Network for Networked Mobile Games 23

Copyright © 2008 SciRes JSEA

Figure 7. A continuous communication mechanism

and datalink.sendMessage (String outMsg) is inserted.
This unified interface plays a role of bridge between the
user interface layer and the data link layer. When a player
of a game triggers an action that causes the change of the
states of the game at one site, the new states will be sent
to the other site. The new states carried by the inMsg will
be further interpreted by an overloaded method
setParameters(inMsg) in the game user interface for
controlling the scene of the game. Through this unified
interface, the graphical user interface of any standalone
game can be easily plugged onto the communication
framework as summarized in Figure 8.

4. A Networked Mobile Game Connect 4
We take the Connect4 networked mobile game as an
example to demonstrate the application of the framework.
This networked game has been described in [10] and
implemented according to the traditional method. We
have re-designed and re-implemented it by using the new
framework. The same game implemented in different
strategies enables us to compare the two different
strategies for designing and implementing networked
mobile games.

For using the framework, a standalone Connect4 game
should be developed first, and then add its game
graphical user interface on the top of the data link layer in
the framework through the unified interface. Because
both the client and the server will display the same game
user interface, we only need one game user interface for
both the client and the server with their own different
names, respectively. The standalone game Connect4 that
we have developed is described by the simplified UML
diagram shown in Figure 9.

Figure 8. The framework for developing UDP datagram
based networked mobile games

Figure 9. The simplified UML diagram of the standalone
game Connect 4

By plugging two game user interfaces with the
communication mechanism, the networked mobile game
Connect4 is built up as shown in Figure 10 (a).

(a)

(b)

Figure 10. (a) The turn-based networked mobile game
Connect4; (b) The event-based networked mobile game
Worm. (The left is the server; the right is the client)

24 A New Communication Frame for Network for Networked Mobile Games

Copyright © 2008 SciRes JSEA

The players can control the networked mobile game
Connect4 by using the right and the left keys to move the
arrow for indicating the target column, and then the
players can press the fire key to drop the piece on to the
target column. They will take a turn to drop their own
pieces with different colors (red and blue). Who will link
the four pieces with the same color together either along
the horizontal, vertical, or diagonals, who will be the
winner of the game.

One of the important design considerations of a
networked game is what information should be passed
between the client and the server. For the networked
mobile game Connect4, there are two kinds of message
should be sent. One kind of message only contains a
column value, which corresponds to the right or the left
key pressing, for synchronizing the arrows’ movements
in two sites. The second kind of message contains two
values: the column number and the current color value,
which corresponds to the fire key pressing, for
synchronizing the piece dropping. No matter which kind
of messages, the user interface layer of the sender site can
call the unified interface method datalink.sendMessage()
to send out a string to the other site. When the receiver
site receives the message, its data link layer can use the
unified interface method userinterface.receiveMessage()
to move the received message up to the user interface
layer. The user interface layer calls the overloaded
method setParameters() to interpret the received message
for controlling the actions on the receiver site. Due to the
fact that both sites have the exact same game logic and
under the control of the same parameters, the game user
interface layer will display everything the same in both
sites, which is the same as the standalone game graphical
user interface.

In detail, the networked version needs additional two
pieces of code in comparison with the standalone version.
One is that the user interface layer needs to instantiate an
object of data link layer for sending and receiving
messages. The other piece is that when the user interface
layer receives messages from the data link layer, it needs
to interpret the receiving messages for controlling its own
game user interface. In the networked mobile game
Connect4, there are two kinds of message are passed so
that the user interface layer needs two overloading
methods setParameters() to interpret the different
messages.

5. Conclusions and Future Work

This framework releases the burden for considering a
totally different design and implementation between a
standalone game with its corresponding networked
version. Any take-turn based game can be easily plugged
on to the network communication mechanism since it is
designed and implemented by following the component-
oriented programming philosophy. This structure of the
framework allows the data link layer and the physical
layer completely reusable. It also makes the standalone

game reusable up to 90% when it will be developed to be
a networked game. The game logic wouldn’t be
touched for both the standalone and the networked
versions and all required parameters will be passed along
the channel for communication.

Besides supporting networked mobile game
development, this framework is also a practical tool for
teaching network programming since the developing
process of the framework is a manipulation of the UDP
protocol. From the manipulation process, students can
better understand the functionality of the protocol. It also
promotes a sequence of analysis and synthesis processes
and enhances students’ problem solving ability. Going
through the process for developing the framework, we
guide students to explore the essential principles of
network communication and enrich their foundation on
object, module, and component oriented philosophy.

The networked mobile game Connect4 is a turn-based
game. Many standalone mobile games played by two
competitors, such as a tic-tac-toe, a chess game, an
Othello game, and the like belong to this category. These
games send and receive messages in a sequential order.
The other category of networked games are event-based,
where input events made by the players can occur at any
time and any player can interact with the game at any
time in any order. That is, the messages sent and received
are in a concurrent matter. We have developed a
networked version of the classic Worm game using the
framework, which has two Worms. One player controls
one worm for competing to eat the treats as shown in
Figure 10 (b). Its functional behaviors need more deeply
observations.

This framework is based on the UDP datagram
protocol since it supports peer-to-peer model of
communications. That limits the number of players to
two. What if more players would like to join?
Furthermore, the clients of networked mobile games are
better to be a thin client since mobile devices have
limited supports on their resources. For realizing a thin
client, we’d better to move more codes, especially the
game logic that is shared by both sites, to be resided on
the server site so that two clients don’t need to carry them.
How to satisfy these requirements? These are the topics
that we need to further explore.

6. Acknowledgement

This project was partially supported by the Scholarship of
Teaching and Learning Team (STLT) fund, The Center
for Excellence in Teaching & Learning (CETL),
Kennesaw State University, 2007–2008.

REFERENCES

[1] M. Zyda, “Educating the next generation of game developers,”
Computer, IEEE, June 2006.

[2] F. Chau, “Mobile gaming aims for mass market,” 2006.
http://www.smackall.com/viewresource.php?resource=17.

A New Communication Frame for Network for Networked Mobile Games 25

Copyright © 2008 SciRes JSEA

[3] M. Mayo, “Games for science and engineering education,”
CACM, Vol. 50, No. 7, July 2007.

[4] M. Zyda, “Creating a science of games,” CACM, Vol. 50,
No. 7, July 2007.

[5] J. Schollmeyer, “Games get serious,” Bulletin of the
Atomic Scientists, 2007.
http://www.thebulletin.org/article.php?art_ofn=ja06scholl
meyer_100.

[6] A. Phelps, K. Bierre, and D. Parks, “MUPPETS: Multi-user
programming pedagogy for enhancing traditional study,”
CITC4’03, Lafayette, Indiana, USA, October 16–18,
2003.

[7] K. Bierre and A. Phelps, “The use of MUPPETS in an
introductory java programming course,” SIGITE’04, Salt
Lake City, Utah, USA, October 28–30, 2004.

[8] C. W. Xu (2007), “A hybrid gaming framework and its

applications,” The International Technology, Education
and Development Conference 2007 (INTED2007),
Valencia, Spain, pp. 30000_0001.pdf, March 7–9, 2007.

[9] C. W. Xu (2008), “Teaching OOP and COP technologies via
gaming,” in book “Handbook of research on effective
electronic gaming in education,” Edited by Richard E. Ferdig,
University of Florida, pp. 508–524, IGI Global, 2008.

[10] M. Morrison, “Beginning mobile phone game programming,”
Sams, 2005.

[11] C. Hamer, “J2ME games with MIDP2,” Apress, 2004.
[12] J. Fan, E. Ries and C. Tenitchi, “Black art of java game

programming,” Waite Group Press, 1996.
[13] A. Davison, “Killer game programming in java,” O’Reilly,

2005.
[14] D. Brackeen, B. Barker, and L. Vanhelsuwe, “Developing

games in Java,” New Riders, 2004.

