7/
_ . @ERN) | Scientific
J. Software Engineering & Applications, 2008, 1: 20-25 \\!'l,’f) Research
Published Online December 2008 in SciRes (www.S@Rfjournal/jsea) i Publishing

A New Communication Framework for Networked
M obile Games

Chong-wei Xu

Computer Science and Information Systems, Kennesais Bniversity, USA
Email: cxu@kennesaw.edu

Received November 872008; revised November 802008; accepted Decembéf,2008.

ABSTRACT

This paper introduces a two-layer UDP datagram-based communication framework for developing networked maobile
games. The framework consists of a physical layer and a data-link layer with a unified interface as a network
communication mechanism. A standalone two-player mobile game, such as a chess game and the like, can be easily
plugged on to the communication framework to become a corresponding networked mobile game.

Keywords. Software Framework, Games, Networked Mobile Games, Network Programming, Games in Education

1. Introduction

The game industry is growing very rapidly with seegd Since a networked game consists of the clientasite

of “a near doubling in size in a two-year period].[The the server site, which are connected by a commitioica
mobile devices, especially cell phones, are gettingnechanism, usually the development of a networked
popular and have been a solid part of our daily. lIlh ~ game starts the discussion of network programmindy a
turn, mobile games are growing even faster thaktdps applies the client-server model to divide the neked
games. According to Informa Telecoms and Media, th&ame into two parts. Consequently, the traditiomay
worldwide market for mobile games will grow from for developing a networked mobile game is emphagizi
$2.41 billion in 2006 to $7.22 billion by 2011. juer N the separation of client and server at the eaage as
Research projects that global revenues of mobiteega shown in Figure 1 (a). It is the result that bdik tlient

will grow from $3 billion in 2006 to $17.5 billopy ~ and the server usually are a mixture of the garsige
with the communication code [10-14].

2010 [2].

In addition to the growing and the demand of indust
market, technically games including mobile games ar | MiDlet |
the integration of Humanities, Mathematics, Physics -
Graphics, Multimedia (images and audios) technelsgi Server Client

Artificial Intelligence, Visualization and Animatig
Network Structures and Distributed Computing,
programming knowledge and skills, and so on. They communication communication
provide rich teaching materials and engage studints
learning. The demands of the game job market aad th ()
special features of gaming itself promote a new
pedagogical method by using games for educationg|[3 | MiDlet |
We have studied the approach for teaching Object- server client
Oriented Programming (OOP) and Component-Oriented | Game server | | Game client |
Programming (COP) via gaming [8,9]. Furthermore hage
extended the teaching contents to the field of adted ‘ [[‘
aming. From the technical point of view, the major | .
giffere?lce between the standarl)one games and nemz!/(irk | Comm server Comm client |
games is the network communication. Considering the
special environment of the networked mobile gartiesy (®)
usually are preferred to be based on the peerdo-peFigure 1. (a) A traditional strategy; (b) A new strategy
communication. Thus, the UDP protocol is widelydise for developing a networ ked mobile game

A game user interface || A game user interface

Copyright © 2008 SciRes JSEA

A New Communication Frame for Network for Network&tbbile Games 21

2. A New Problem Solving Strategy

In fact, usually we have had a standalone gamedyre [[[|

and then we WOU|d |I|(e to develop the standalormega |StreamConnectionNotifiHrDatagramConnectiﬂwlnputConnectiod‘ OutputConnectior||
to be a networked game. That is, the gaming codelan
Communlcatlon Code are the results Of two Stages oﬂ ServerSocketConnectiqn‘ UDPDatagramConnectibnl StreamConnectior||
development. Furthermore, if the communication rasism ‘ T

can be modulated as an independent attachabldhanit | SocketConnectiod‘ Comentl(:onnectioH Comm(ltonnectiod
performs the functionality of passing messages éetw

the client and the server, then it not only incesathe

reusability and maintainability of the communioat

code but also makes the transition from the stamdal
game to the networked game easier.

Following this strategy, we have modulated the
communication mechanism as an independent attazhak
unit with a simple unified interface. Then, two gam

Figure 2. The connection hierarchy of MIDP

Server Client

sdc=(DatagramConnection)Connector.
open(“datagram://:1234™)

cde=(DatagramConnection)Connector. open(
“datagram://server:1234”)

graphical user interfaces of a standalone gamechwhi — Dfr o I
i = dc.newbDalagram(len) i = CH
represent the client and the server, can be plugget | S | = i el S
the independent communication mechanism through th | Ty R I
unified interface for structuring a networked mehigame blocked uatiLa clien send <~ 1= e

|

get the message

as depicted in Figure 1 (b). It clearly separates t
gaming code from the communication code and allow:
the communication mechanism can be completely 0eUSE[¢ g setrenghn > 0)

for any networked mobile game. String data = new Siring

. . . dg.getDatal), 0, dg.getLength())
3. Manipulating the UDP Programming Template
Figure 3. The programming template of UDP protocol

For implementing the new strategy, we apply the UDP
datagram protocol for making a peer-to-peer enviremnt. After the server receives the message sent bylidme,c
By manipulating the UDP datagram communicationthe server should be able to echo the messagetaick
mechanism in the following steps, the independentlient. That is, the client needs to prepare feeieng a
attachable communication mechanism has beemessage and the server needs to send the mesaage th
structured. just received to the client. The complete prograngmi
First of all, a UDP programming template is derivedtemplate is shown as Figure 4. This bi-directional
for depicting its communication mechanism. As wewn communication mechanism establishes the commuicati
that J2ME network programming is based on the Gener channel and reveals a very symmetric communication
Communication Framework (GCF) that is illustrated a system. The only asymmetric codes are referrinthéo
the connection hierarchy shown in Figure 2. Theaddresses passing, which are marked with the taold f
connection hierarchy has three major interfacesit€@u jn the figure.

Connection for accessing web data; Datagram Cdondor Considering the symmetric scenario, the receiving a
packet-oriented communication; and Stream Connectiogending functions can be moved to a physical layer
for stream-based communication. No matter whichnat the details of the receiving and sending djeTa

interface, a foundation class named Connectorésl 8 31 pe hidden. The added physical layer changesé#y
establish a MiDlet network connection. For mobilet0 Figure 5.

games, the more realistic network option is the UDP
protocol based on the Datagram Connection becaluse o
the limited bandwidth of the mobile phone networkise
programming template of the UDP protocol can be
depicted as in Figure 3.

Where, sdc stands for server datagramConnectian; cd
stands for client datagramConnection. The servéd$u _Podeduniacientsend . et oytes ength]
up a sdc and prepares an empty datagram packeirdg fis e ' —
receiving an input message. And then calls| stringdata=newstring(dg.getDatal), 0,
sdc.receive(dg). Whenever the receive() method ig—2etersi)
invoked, the server process is blocked waiting tfoe Suing msg ~ Thankyou” s iockeduntla sorvereond
incoming message from the client site. When thentli || ewvatsgram(bytes, bytes ength, e
builds up its cdc, it creates a datagram to conitsin |address) e strngld.getdata), 0
out-message and issues send() call to send theageess | | sdcsendde) de getLength() B
out. The server, then, gets the in-message anéssitoin
the empty datagram packet. This programming templatFigure 4. A programming template of the bi-directional
establishes the connection from the client to drees. communication

Server Client

sdc= (DatagramConnection) cdc = (DatagramConnection)
Connector.open(“datagram://:1234”) Connector.open(‘datagranse/ver
11234)

dg = sdc.newDatagram(len)
sdc.receive(dg)

String msg = “Hello”

cdc.send(dg) ‘

dg = cdc.newDatagram(len)
cdc.receive(dg)

Copyright © 2008 SciRes JSEA

22 A New Communication FrameNmtwork for Networked Mobile Games

Server Client

cdc = (DatagramConnection)
Connector.open(“datagram://ser

sdc= (DatagramConnection) ‘
ver:1234”)

Connector.open(“datagram://:1234”)

‘ dg = phy.receive() |
msg = new String(dg.getData(), 0,
dg.getLength())

Figure 5. A physical layer for sending and receiving
(phy.send() and phy.receive())

‘ dg = phy.receive()

phy.send(“Hello”, null) |

msg = new String(dg.getData(), 0,
dg.getLength())
address = dg.getAddress()

‘ phy.send(“Thank you”, address)

}
} catch (IOException ex) {
ex.printStackTrace();

}

return dg;

}

Due to the fact that two methods are shared by thath
client and the server, they form critical sectiomsorder
to protect these two critical sections, both meshsitbuld
be a synchronized method. That is, only one procass
enter the methods at a time. Unfortunately, botthous

Obviously, in order to test the communication cqniain sdc (server's datagram connection objent a

mechanism shown in Figure 5, an application shdeld
developed. The simple chat application is seleeedn

example. Its user interface only needs a TextFiel
component for the user to type in out-messagesaand
Stringltem component for displaying the in-message

Definitely, the chat communication should be
continuous process until

chatting. For that purpose, a loop is added to kbep

S)

cdc (client's datagram connection object). As w®wn
hat when one process, say the server proceskeasathe
eceive() call, it should be blocked until the atheocess,
the client process, issues a send() call. Therefehen
the server invokes the method phy.receive(), nbt the

one of partners stops th8€rver process itself will be blocked but also ttker

process, the client process, will be blocked toe tiuthe

chatting process continuous and a sending command $Ynchronized protection blocks both resources sut a

used by the users whenever they make their messag%‘%

available for sending.

c inside the phy.receive(). That makes the client
process unable to invoke the send() method forisgral

Unfortunately, this version of the chat applicationMessage to release the server process since.this cdc
experienced both deadlock and duplicate messagalocked. All these together cause a deadlock atéep

sending problems. The problems are caused by th& Figure 6. _ _ _
structure of the communication mechanism, whichsuse For overcoming this problem, the synchronized

the physical layer to contain both the phy.recgiaa(d
the phy.send() calls. The codes of the phy.receiarad
the phy.send() are as follows.

public synchronized void send(String msg, Stadgress) {
byte [] bytes = msg.getBytes();
try {
if (address == null) {
dg = cdc.newDatagram(bytes, bytes.length);
cdc.send(dg);
}else {
dg = sdc.newDatagram(bytes, bytes.leragttress);
sdc.send(dg);
}
} catch (IOException ex) {
ex.printStackTrace();
}
}

public synchronized Datagram receive(String name

{
try {

if (name.equals(“Client”)) {
dg = cdc.newDatagram(100);
cdc.receive(dg);

} else if (name.equals(“Server”)) {
dg = sdc.newDatagram(100);
sdc.receive(dg);

Copyright © 2008 SciRes

requirement for the phy.receive() has to be rekkaBat,
this allows both processes to enter the phy.refeie
the same time and it causes a duplicate messadmgen

These two phenomena forced us to move the receive()
method out of the physical layer and place it bickhe
original position and only keep the send() methodhie
physical layer as Figure 7 shows. This continuous
communication mechanism keeps the chat application
working. Clearly, it makes both the client and geever
consists of three layers: the user interface layethe top,
the physical layer on the bottom, and a layer ia th
middle, which we gave a name to it as “data linjeta.

Based on this layered structure, the user interfager
could be replaced by any game graphical user aterf
However, the send Command designed for the chat
application cannot be used for games since theepdagf
a game should be able to use key presses for glalym
game. Thus, between the user interface layer anddta
link layer, a unified interface that consists ofotw
methods: userinterface.receiveMessage(String inMsg)

clientSend()

Figure 6. The deadlock scenario

wait for

serverReceive
entRecei
clientReceive()

wait for

JSEA

A New Communication Frame for Network for Network&tbbile Games 23

Server Client [ConnectamiDlet | MiDlet |
| User interface | | User interface l L CommandListener
sdc= (DatagramConnection) cdc = (DatagramConnection) | CCanvas H # AbsGameCanvas H >| GameCanvas |
Connector.open(“datagram://:1234") Connector.open(“datagram://server: /
dg = sdc.newDatagramilen) .‘..
siorecielde S D{commandListener |
CdcrssahRldn *| CommandListener
msg = new String{dg.getData(), 0, : - -
dg.getlength(}) msg = new String(dg.getData(), 0, AbsSprite }—{j Sprite l
dg.getLength()}
userinterface setMsg{msg)
userinterface setMsg(msg)
address = dg.getAddress() !
— BIuePieceSprite
sendCommand endtommand
PlayerBoardSprite
‘ phy send(tf.getString(), address) \ phy.send(tf.getString(), null} ‘

Figure 9. The simplified UML diagram of the standalone
Figure 7. A continuous communication mechanism game Connect 4

and datalink.sendMessage (String outMsg) is inderte By plugging two game user interfaces with the
This unified interface plays a role of bridge betweghe communication mechanism, the networked mobile game
user interface layer and the data link layer. Wagtayer — Connect4 is built up as shown in Figure 10 (a).

of a game triggers an action that causes the chainte

states of the game at one site, the new statedbevitient . Py ©

to the other site. The new states carried by thesgwill T

be further interpreted by an overloaded method creireer @ i
setParameters(inMsg) in the game user interface for

controlling the scene of the game. Through thidieshi
interface, the graphical user interface of any daddone
game can be easily plugged onto the communication
framework as summarized in Figure 8.

4. A Networked Mobile Game Connect 4

We take the Connect4 networked mobile game as an = =
example to demonstrate the application of the fraonte.
This networked game has been described in [10] and

||
)
T=T
Ll
.[ﬂ.
1)

implemented according to the traditional method. We Lob 2 fl L J| 2= | 3w

; ; : : 4o || 5 o i 4o || 5m Guno
have re-designed and re-implemented it by usingiéve e admente Tl L
framework. The same game implemented in different e can o ey
strategies enables us to compare the two different e me N\ e
strategies for designing and implementing networked -
mobile games. (a)

For using the framework, a standalone Connect4 game = Ssun = s
should be developed first, and then add its game 7 — == 7 || | mmm—— ;
graphical user interface on the top of the dataltyer in o = -
the framework through the unified interface. Beeaus - m " " .
both the client and the server will display the sagame “;' e g
user interface, we only need one game user ineffiac R m .
both the client and the server with their own difet . 8 . =
names, respectively. The standalone game Connleat4 t] =
we have developed is described by the simplifiedLUM :EH _— = -
diagram shown in Figure 9. SR el B

I MiDlet I : ‘g, .: : <D> .:
server client) > Jot] b A > Jood
g(])anytcrglslcr ”| GUlllayer | | GUl layer |“ L’Liﬁi;’.icr 1 2uc || 3w 1 2uc || 3w
eceiveMessage|) Jons 5m 6 mno Qo 5m (0
sendMessage() sendMessage() 7 ocis Sy Q. | 7 vazs Sruy Qw2
| Datalink layer | | Datalinklayer |
! !
| Physical layer | | Physical layer | (b)

Figure 10. (@) The turn-based networked mobile game

Figure 8. The framework for developing UDP datagram Connect4; (b) The event-based networked mobile game
based networ ked mobile games Worm. (Theleft isthe server; theright isthe client)

Copyright © 2008 SciRes JSEA

24 A New Communication FrameNmtwork for Networked Mobile Games

The players can control the networked mobile gameyame reusable up to 90% when it will be developeblet
Connect4 by using the right and the left keys toventhe a networked game. The game logic wouldn’t be
arrow for indicating the target column, and them th touched for both the standalone and the networked
players can press the fire key to drop the piecéodhe versions and all required parameters will be passely
target column. They will take a turn to drop theiwn the channel for communication.
pieces with different colors (red and blue). Whdl tink Besides supporting networked mobile game
the four pieces with the same color together eitieng development, this framework is also a practical foo
the horizontal, vertical, or diagonals, who will iee teaching network programming since the developing
winner of the game. process of the framework is a manipulation of tzP

One of the important design considerations of gprotocol. From the manipulation process, studemts c
networked game is what information should be passebetter understand the functionality of the prototialso
between the client and the server. For the netwbrkepromotes a sequence of analysis and synthesisgsexe
mobile game Connect4, there are two kinds of messagand enhances students’ problem solving ability. nGoi
should be sent. One kind of message only contains through the process for developing the framework, w
column value, which corresponds to the right orléfe guide students to explore the essential principés
key pressing, for synchronizing the arrows’ movetaen network communication and enrich their foundation o
in two sites. The second kind of message contailms t object, module, and component oriented philosophy.
values: the column number and the current colouesal The networked mobile game Connect4 is a turn-based
which corresponds to the fire key pressing, forgame. Many standalone mobile games played by two
synchronizing the piece dropping. No matter whighdk competitors, such as a tic-tac-toe, a chess game, a
of messages, the user interface layer of the sesitdecan Othello game, and the like belong to this categdhese
call the unified interface method datalink.sendMes$) games send and receive messages in a sequental ord
to send out a string to the other site. When tloeiver The other category of networked games are evemtehas
site receives the message, its data link layerusenthe where input events made by the players can occanyt
unified interface method userinterface.receiveMgasfa time and any player can interact with the gamerst a
to move the received message up to the user ingerfatime in any order. That is, the messages senteceived
layer. The user interface layer calls the overldadeare in a concurrent matter. We have developed a
method setParameters() to interpret the receivesbage networked version of the classic Worm game usirgg th
for controlling the actions on the receiver siteilelio the framework, which has two Worms. One player controls
fact that both sites have the exact same game fgic one worm for competing to eat the treats as shawn i
under the control of the same parameters, the ge®e Figure 10 (b). Its functional behaviors need moeeply
interface layer will display everything the samebioth observations.
sites, which is the same as the standalone garpéigsd This framework is based on the UDP datagram
user interface. protocol since it supports peer-to-peer model of

In detail, the networked version needs additiomad t communications. That limits the number of playews t
pieces of code in comparison with the standalomsio®. two. What if more players would like to join?
One is that the user interface layer needs tontiate an Furthermore, the clients of networked mobile games
object of data link layer for sending and receivingbetter to be a thin client since mobile devices ehav
messages. The other piece is that when the usefaoé [imited supports on their resources. For realizntpin
layer receives messages from the data link layeeéds client, we'd better to move more codes, especitily
to interpret the receiving messages for controlitagpwn game logic that is shared by both sites, to belegsbn
game user interface. In the networked mobile gamehe server site so that two clients don't needatmycthem.
Connect4, there are two kinds of message are passed How to satisfy these requirements? These are thiesto
that the user interface layer needs two overloadinghat we need to further explore.

methods setParameters() to interpret the different
messages. 6. Acknowledgement

5. Conclusions and Future Work This project was partially supported by the Scheklgr of
Teaching and Learninfjeam (STLT) fund, The Center

This framework releases the burden for consideAng for Excellence in Teaching & Learning (CETL),
totally different design and implementation betwen Kennesaw State University, 20008.

standalone game with its corresponding networked

version. Any take-turn based game can be easilygeld REFERENCES

on to the network communication mechanism sinds it

designed and implemented by following the component[] M. zyda, “Educating the next generation of gameettmers,”

oriented programming philosophy. This structuretha Computer, IEEE, June 2006.
framework allows the data link layer and the phgkic [2] F. Chau, “Mobile gaming aims for mass market,” 2006.
layer completely reusable. It also makes the standa http://www.smackall.com/viewresource.php?resour@e=1

Copyright © 2008 SciRes JSEA

(3]
[4]
5]

(6]

[7]

(8]

A New Communication Frame for Network for Network&tbbile Games 25

M. Mayo, “Games for science and engineering edaodti applications,” The International Technology, Edimat
CACM, Vol. 50, No. 7, July 2007. and Development Conference 2007 (INTED2007),
M. Zyda, “Creating a science of games,” CACM, Vol. 50, Valencia, Spain, pp. 30000_0001.pdf, March 7-9,7200
No. 7, July 2007. [9] C.W. Xu (2008), “Teaching OOP and COP technologias

J. Schollmeyer, “Games get serious,” Bulletin oé th gaming,” in book “Handbook of research on effective
Atomic Scientists, 2007. electronic gaming in education,” Edited by RichBrd-erdig,
http://www.thebulletin.org/article.php?art_ofn=ja@éoll University of Florida, pp. 508-524, I1GI Global, 300
meyer_100. [10] M. Morrison, “Beginning mobile phone game programgyii

A. Phelps, K. Bierre, and D. Parks, “MUPPETS: Mukier Sams, 2005.

programming pedagogy for enhancing traditional wtud [11] C. Hamer, “J2ME games with MIDP2,” Apress, 2004.
CITC4'03, Lafayette, Indiana, USA, October 16-18,[12] J. Fan, E. Ries and C. Tenitchi, “Black art of jaang

2003. programming,” Waite Group Press, 1996.

K. Bierre and A. Phelps, “The use of MUPPETS in an[13] A. Davison, “Killer game programming in java,” O'Rlgi
introductory java programming course,” SIGITE'04ItS 2005.

Lake City, Utah, USA, October 28—-30, 2004. [14] D. Brackeen, B. Barker, and L. Vanhelsuwe, “Deveigpi
C. W. Xu (2007), “A hybrid gaming framework and its games in Java,” New Riders, 2004.

Copyright © 2008 SciRes JSEA

