7/
_ . @ERN) | Scientific
J. Software Engineering & Applications, 2008, 1: 13-19 \\!'l,’f) Research
Published Online December 2008 in SciRes (www.S@Rfjournal/jsea) i Publishing

Designing and Verifying Communication Protocols Using
Model Driven Architectureand Spin Model Checker

Prabhu Shankar Kaliappan, Hartmut K oenig

Chair Computer Networks and Communication Systems,d®@mpurg Technical University, Cottbus, Germany
Email: {psk, koenig}@informatik.tu-cottbus.de

Received November #12008; revised November 962008; accepted November22008.

ABSTRACT

The need of communication protocols in today’s remvihent increases as much as the network expldtasy new
kinds of protocols, e.g. for information sharingcarity, etc., are being developed day-to-day wthaften leads to
rapid, premature developments. Many protocols hawe scaled to satisfy important properties like dleak and
livelock freedom, since MDA focuses on the rapicetigpment rather than on the quality of the devetbmodels. In
order to fix the above, we introduce a 2-Phasetstgg based on the UML state machine and sequenageatin. The
state machine is converted into PROMELA code aotbgol model and its properties are derived frdme sequence
diagram as Linear Temporal Log{€.TL) through automation. The PROMELA code is intergteataough the SPIN
model checker, which helps to simulate the behadfiprotocol. Later the automated LTL properties aupplemented
to the SPIN for the verification of protocol profies. The results are compared with the developbtl. thodel and
SPIN simulated model. Our test results impressitggner to verify the expected results with trstesy design and to
identify the errors which are unnoticed during thesign phase.

Keywords. UML Modeling Communication Protocal$®rotocol Verification SPIN Tool

1. Introduction

Due to the huge complexity of modern software syste state charts and activity diagrams. Next they are
it is required to specify precisely what a softwaretranslated as a combination of state charts with th
component should do and how it should behave {thel semantics of activity diagrams into PROMELA
final implementation deviates from the expectedavasy, (PROcess MEta LAnguap#l]. In the second phase, we
then the use of the developed component may fhis T design the communication view using UML sequence
also applies for the development of communicatingand timing diagrams. The model properties are Inde
protocols as they are merely implemented in theass€. into a temporal logic and imported together witke th
Currently, most of the protocols are developedublo PROMELA code into the model checker SPISlinfple
the natural, informal language because it is easy tPromela INterpreter [5] for verification. Furthermore,
understand. Special languages known as formalve illustrate the importance of UML in developingda
description Techniques (FDTs) have been developed f SPIN in verifying the communication protocols thgbu
an unambiguous specification of the software. FDTsur approach.
distinguish from programming languages by having a The paper is organized as follows. In section Zjive
formal semantics. Programming languages, suchas Jaa short overview of related work. Section 3 illasés the
or C++, have only a formally defined syntax. Inerdo = MDA approach applied to the development of
back-up such languages, tbeified Modeling Language communication protocols. Section 4 presents ouh@sp
2 (UML 2) [2] is a collection of semi-formal standa design and verification strategy using a case stasly
notations and concepts for modeling the softwastesys example_. Some final remarks and an outlook on éutur
at different stages and views during their develepm work which concludes the paper.

The development process is supported by Niuslel

Driven Architecture(MDA) concept [3], which is UML State Diagram UML Sequence Diagram
initiated from the Object Management Group (OMG). l l

The UML semantics is described in natural English promELA Temporal
language which includes semantic variation poihist t Property
leave some semantics issues deliberately open. This \ /

desirable property represents a drawback from the

verification point of view. To cope with the above ‘ SPIN Tool ‘

problem we propose a 2-phase strategy (see Figuita 1

the first phase, we model the behavior view by UML Figure 1. 2-phase strategy

Copyright © 2008 SciRes JSEA

14 Designing and Verifying Communication PratisdJsing Model Driven Architecture and Spin Mo@&lecker

2. Related Works specified using a formal notation (UML diagrams)aor
o informal notation (natural language). Automated Igo0
An approach for the formal verification of UML || be used to map the platform independent models
diagrams, such as class, state and communicatiofhto the specific platforms. The final step tak&VPas
diagrams, is presented in [6]. The approach apg@ies an input to produce the implementation for a pakic
object oriented language, called tMaudg for verifying platform using a transformation tool.
the static and dynamic features of object oriented .
specifications. Maude is based on rewrite Iogic.3'2 Communication Protocols
According to [7], there is no proof of correctn¢dse to A communication is carried out between a senderaand
the missing UML semantics), when a UML model isreceiver over a physical medium using an authorized
translated into PROMELA. To overcome this drawbackservice provider. The service is provided by meahs
the static and dynamic verification is carried outcommunicating entities. These entities are acthpeals
individually and integrated into the final validati stage. exchanging messages with their environment. Thécger
The verification of the UML class and activity diagns ~ users interact with the entities by exchanging iserv
is illustrated for a simple protocol in [8,9]. Thetivity Primitives throughservice access point§SAPs). Each
diagrams are converted into an FSM (based on betgvi SAP is uniquely mapped to an entity which handkes t
Thereafter the FSM is converted into PROMELA thiioug Primitives and maps them oprotocol primitives or
an intermediate language. Most of the above specifi Protocol data units (PDUs), respectively, that seed to
approaches illustrate how to verify the UML state(N€ Peer entity. The exchange of the protocol pives is
diagrams. The open issue is how to specify andfyveri based on r_ules which are specme_d by means of a
communication protocol properties in detail. Acdogd communication protocol.A communication protocol

to our concern, the protocols can be efficientlyaleped gezgirf'biis ttr?ee timgelraggnger?fgi\;l?hre Ofrozr(;iolenﬂi?:
if they are verified simultaneously while modelinig pecttying y s€q P m

order to fulfill the concern, we specify and verifiye exchanged. Furthermore, the format (syntax) and the

protocol properties in the Platform Independent Klod meaning (semantics) of the messages are defined.
(PIM) and the Platform Specific Model (PSM) 3.3 MDA and Communication Protocols

independently. The following template for the design of communicat

protocols consists of three components, namely: the

3. Architecture Template for Communication model designer, the model mapper, and the system

Protocols generator (see Figure 2). These are illustratech wit
3.1 Modd Driven Architecture respect to PIM, PSM, and the code generator in the
' following.

Model driven architecture is an approach to softwar 1) Model Designer
development based on the modeling and automated The model designer has the task to model the peapos
mapping of models. MDA has divided its componentssystem based on the requirement specification. The
into two important parts, namely PIM and PSM, whichmodeling is carried out by means of the UML, teta
are discussed in detail further as basis. Object Facility (MOF) for the data repository, and the
The Platform Independent Modé$ a model with a Object Constraint LanguagéOCL) for the external
high level of abstraction that is independent ofy an semantics. The hardware and software may be modeled
implementation technology [10]. A modeling languagetogether or separately. Further on these models are
capable of generating all the required artifactshsas the combined by the model integratomtggrated modgl
Unified Modeling Language is required at this level with the help of external semantics (supplied tgiou
According to [3], the PIM provides two basic adwges. OCL), which can be introduced automatically or
First, the person responsible for defining the fiomality =~ manually. The advantage of designing hardware and
do not have to take any platform details into thesoftware models independently is that both of trem
consideration while modeling, which gives the desiga not considered about the dependency. This gives the
freedom to concentrate and focus only on the Idgida. ~ developer the freedom to focus on system desigrerat
Second, since the functionality is pure from anythan on programming details. When considered to the
implementation details, it is easier to produceprotocol development, the service layer and prdtoco
implementations on different platforms. The PIM islayer are independently developed in this phase.
stored in the Meta Object Facility (MOF) and seress 2) Model Mapper
the input to the mapping step which will produce a Themodel mappemaps the PIM to PSM by means of
Platform Specific ModelThe PSM’s can be described in an appropriate domain specifier. It consists ofe¢hr
one of two ways: 1) using UML diagrams (class,different components: theDomain Specifier for
sequence, activity etc.) or 2) using interfacendifins in specifying the target domaifiyansformation Rules.e. a
a concrete implementation technology (IDL, XML, dav modified Query View Transformation (QVT) [11] is a
etc), but in both cases the behavior and consgraire standard set of rules to map the UML profile to the

Copyright © 2008 SciRes JSEA

Designing and Verifying Communication Protocols dgsidodel Driven Architecture and Spin Model Checker 15

particular domain, and (preferabl@ML profilesfor the Top down

specification of appropriate models (say protocol$)e « Development is from the scratch and to the target
possible input of the model mapper is UML and the code.

output will be of XML Metadata Interchange (XMI)h& « Step by step process, which can be easily debugged
transformation process is carried out by an apmugr or traced.

transformative algorithm which reads the requiremtied « Deviation / Refinement are possible at any cost of

(UML profile for communication systems) and applies time.

the QVT rules. The possible outcome of the model

mapper is the UML profile based specification medel Bottom up

The transformation method is not strict with the « Development is from the code and to the

communication system profiles, based on the remgre specification model.

the profile can be chosen from the repository. « Due to the generalized conversion of the XMI, any
3) Model Checker and Model Verifier tool is capable for the conversion of platform peledent
The model checkes used to validate the structural models.

behaviors of the developed models. The semantics of By the above, the complexity and the development
PIM are not much validated in this phase because thcode is systematically reduced with the proposed
PIM illustrates only the logical solution to therpieular ~ template.

problem. Hence, the structural behaviors are . e L
independently verified and combined by the intezpat 4. Design and Verification of Communication

model. The model verifiechecks the logic after model ~ Protocols

mapping. In completion of the model mapper phase, t communication protocols can be distinguished in two
model verifier is introduced to check the staticdan different viewpoints: the behavior and the
dynamic behaviors of the mapped model. Thecommunication oriented one. They can be matcheld wit
verification results from the PIM and PSM are matth the UML models as illustrated in the Table 1. ThstHer
by comparing both of the results. Here, the SPIN i® discussion is based on the above template for gobto
used along with formal verification techniques teeck development, i.e. we illustrate how the protocol is
the behavior of PIM and PSM. designed and verified through this template.

4) System Generator .

Finally the code generation is carried after a essful 4.1 Model Designer

mapping of the model to a particular platform. Tagyet To illustrate the work flow of our method, we use a
code, such as C++, Java, .Net or SystemC, can hgxample case study of te&Xample Data TransfegiXDT)
generated by the development tool including theprotocol [12] which is being used as teaching proto
appropriate library files and plug-ins. With help>avl, XDT works on a distributed environment to transéege
which is the (preferable) output code from the pes files over an unreliable media using tlge back N
phase, the code is generated automatically. Thergtsd principle. The XDT protocol description consists @f
code is validated thereafter by testing. service specification and a protocol specificatigimich
By addressing the advantages in the above templatoth include a data format specification. The catine

we can consider the top down and bottom up developas ~ €stablishment uses a two-way handshake and assumes
that the XDT receiver always accepts new connestion
The sender makes an initiative for transmissiorthi
Specification Model ~ M<F | receiver by means of an XDATrequ service primitive.

: & —I ' The new connection is indicated by an XDATind
K> Model Designer L L
primitive. The protocol indicates the successful

SIW H/W .
é Model ’ Model Model connection set up to the sender by XDATconf.
2 Checker :
Z2 |z ~ After this, the data are transferred by means BiTa
gz 4 message. However in certain cases, the servicadarov
g2 UML Models _®_ may not preserve the order of the data units. isidase,
=g . the ABO data unit is initialized to abort the cootien.
~ | 2 3’ Model Mapper [~ Domain
; Specifier
oo Target || Domain | | Model i ; :
byl }_ Spocifier o= Table 1. Comparison of protocol and UML viewpoints
- L] UML Profiles Protocol Viewpoints UML Design Viewpoints
[o [xmi Behavior oriented Behavior design
System Generator —] Libraries What are the behaviors of eachVhat should happen in
@ L{ Plugins communicating entity? the system?
I Communication oriented Interaction design
| Ct+, Java, . Net, SystemC | What is the concrete commu- .
o What is the control flow
nication exchange between the 5
) tities? of the data~
Figure 2. Template for protocol development en :

Copyright © 2008 SciRes JSEA

16 Designing and Verifying Communication PratisdJsing

This is indicated to the users by a XABORTind sesvi
primitive. XBREAKind is initialized to stop the
transmission for a certain period, if tge back Ndata
buffer is full. The end of transmission is indichtby
setting the parameteeom in the final data unit of
XDATrequ and XDATind primitives. The connection is
released implicitly, indicated by an XDISind primé at
the sender and the receiver side, after succegsfull
transmitting the last data unit. The further expléon of
the XDT protocol can be found in [12].

Model Driven Architecture and Spin Mo@#lecker

sd XDTProtocol- Data-Transfer]

% | Sender Entity I | Receiver Entity |

Sender Receiver

\\Lﬁzﬁﬁiﬁ

22T 3. XDATind 1
5 XDATconf 1 & ———————
4/ ISk

Sender XDT Service
XDATrequ
XBREAKind

> Receiver

XDAT
L XDATind

XDISind
XABORTind

(_Receiver Entity

Figure 3. Use case diagram for XDT protocol

*—
[IdleJ

XDISind/ABORTind
timeout t1/X ABORTind

XDISind
| XABORTind

XDT Service Access Point

e

i I
I . DT
Sender Entity)
ACK, ABO

XDT Service Provider

ABO/XABORT

Timer t1

XDATrequ_1/DT_1 Accept

Retransmits DT

neout 2/go_back_N=true

ERLmE I go_back_N=false

ACK/XDATconf
Timgout t2/go_back_N=true
Timer t2/ACK XTrequ/DT/XD ATconf
Connected
XBREAKind=false
XBREAKind
Timer-pause
(Break ';’E
go_back_N=false -
(@)
DT/XDATind
Idle = | Accept
j—~ ABO SR

XDATind_I/ACK_1/DT

XDISind/Timeout t1/ABO

DT_F/ACK/XDATind

DT/ACK/XDATind Timer t1

Connected

(b)
Figure 4. (a) State machine for XDT protocol-sender;
(b)State machinefor XDT protocol-receiver

Copyright © 2008 SciRes

6 : XDATrequ_ N
9 : XDATind N

Figure 5. Sequence diagram for XDT data transfer

As a first phase we design the behavior view pbint
UML use case diagram (see Figure 3) to identify the
entities, activity diagrams for the static behasjoand
state machine diagrams (see Figure 4(a), 4(b))tHer
dynamic behaviors. Figure 3 i.e. the use case aagr
visualize the developer to identify the possibleviee
(XDATrequ, XDATind, XDATConf, XABORTiInd,
XBREAKInd, XDISind) and protocol (DT, ACK, ABO)
primitives of the protocol. The activity diagrame aised
to determine the internal behaviors of the protogol
which only the semantics are specified). The state
machines in Figure 4(a) and 4(b) are the corefpathe
development. They determine the external behawbrs
the protocol by combining the service and protocol
primitives. Figure 4(a) and 4(b) represent the serahd
receiver part respectively.

As a second phase, we further use the behavior
viewpoint as a base and design the communication
viewpoint through the sequence (see Figure 5) and
timeline diagram to identify the control flow. Figu5
represents the dynamic behavior of the data trastite
(i.e. connected state in the Figure 4(a) and 4¢b)the
protocol. The same kind of sequence diagram is fedde
for all states of the XDT protocol. These sequence
diagrams are used further for verifying the protsco

4.2 Mode Checker

To ensure the quality of the developed protocabubh

the template, the protocol properties (see Tabldk)
deadlock, livelock freedom are considered for eatidun.

In further we consider our two phase mechanism for
verifying these protocol properties.

Phase 1: We retrieve the behavioral viewpoints
through the UML use case and activity diagrams fthen
earlier stage. Later these models are translatiedtie
PROMELA via the UML state machine, where the SPIN
tool interprets the code. The difference betweem ou
approach and others is the following. We use tla¢gest
machine diagram as a base for the PROMELA transiati

JSEA

Designing and Verifying Communication Protocols siodel Driven Architecture and Spin Model Checker

and the semantics from the activity diagrams ackeddo

specify the protocol properties. Since the UML is a

semantic-less language, we use the activity diagrara

semantic for the UML state machine model, whicla is
major advantage. Instead of using external senwmintic
PIM, the internal semantics makes less complexity a

easy usage. The translated PROMELA code is shown i

the Figure 6. The protocol entities are descrithgdugh
the keywordproctypeand the states withrogress The
code resembles like a C code which is easy togreer

the model. Reference [4] for complete syntax of the

PROMELA.

17

PP:1
define p (Data[sequ].sequ == S_N)
number */
define g (Data[sequ].sequ ==
number */
[*if p becomes true at one state
once;
Here by assigning if p (sequence number) is trugeinder,
then g (sequence number) should be true in Rec¥iver
never{ l[a((P)= (cq)) */
Start_S: if
= (1 (q) && (p)) — goto accept_S
(1) — goto Start_S ; fi;
accept_S:if :: (!(q))> goto accept_S; fi;

/* Sendeusege
R_N) /* Receivequ&nce

, g should becoueedt least

n

}

The SPIN model checker executes the PROMELA

code and the verification result is produced. Tésuit

The idea behind the conversion is that; instead of

ensures the quality of the protocol properties likeidentifying the worst cases in the communication

deadlock, livelock, code coverage through its batrav
Phase 2. To confirm the data flow properties like
liveness, the UML sequence diagram is retrievednfro
the earlier stage and it is converted into a Linea
Temporal Logic (LTL) [13]. The LTLs are mathematica

protocol, we look for the failure of best casesc¢assful
data transmission) which results in identifying thierst
cases. This is due to the probability of identifyithe
wvorst cases is very less than the probability et lbases.
By means of this LTL, it is easy to identify theldiae

annotated formulae to make statements on a linearlgases like the possibility that sender becomes anae

progressing time. Since, it is difficult to conveit the
UML sequence properties into an LTL; we use anothe
technique known aBrotocol Predictor(PP). It identifies
the best case criteria in the sequence diagrammemkis
the event through a unique identifier, e.g. PP:bhe T
Protocol Predictor is an automated algorithm for IUM

thereafter the receiver remains false forever (e
possibility that sender becomésse before the receiver
becomedrue. Further this code is imported as a supple
mentary data to the PROMELA code through the SPIN
tool for verification. The SPIN model checker valies
whether the property holds or not. By investigatthis

sequence diagram. It reads the sequence diagram atyppe of combination from the sequence diagramsit i

maintains a periodic log for all service and praofoc
primitives. The Protocol Predictor has a pre-deafine
common rules like, the data should be transfermalg o

determined that an error-free model is designed.firtal
result is obtained by transferring five sample pcot
primitives from the sender to receiver entity i tAPIN

after a proper acknowledgment; the sequence numbéwol. The tool simulates the PROMELA code as a

should be verified periodically etc. Based on thesdes,
the algorithm generates the LTL property for thguieed
protocol. In our case, consider that the protoc®l i
working efficiently by transferring the data witbcgience
number to the receiver. Here we can predict that th
sequence number from the sender and receiver sheuld
equal at any time. To do so, we consider the exgdtiTL
property from SPIN as ((p) = (¢q)) with PP:1 and
shown in the following code.

Table 2. Communication protocol properties

Condition Properties
Absence of The system never enters a state that cannot be

Deadlock left due to a missing or occupied resource
Absence of The system never enters cycles that cannot be
Livelock left due to a missing or occupied resource.
Code Each statement defined in the system can
Coverage potentially be executed.
Liveliness Each state of the system can be reached from
the initial state.
R The system can react to unexpected, unusual
obustness >
or missing events.
N The final state or an idle state for cyclic
Termination systems can always be reached.
Recovery The system can recover to a normal state
from within a limited time after an error has
Failures occurred.

Copyright © 2008 SciRes

graphical state chart (see Figure 7) to identifg th
dynamic behaviors and verifies the defined (PP:1)
protocol property simultaneously. The verificatiomtput
from the SPIN tool is shown in Figure 8 with themher

of depth reached, state and transition exploreglrei 8
illustrates that no deadlock, livelock is detectadthe
verification and the five protocol primitives are
transferred successfully. The designed model (spare-

5) is been compared with the SPIN simulated mosks (
Figure 7). The data transfer phase (second iteratidhe
Figure 7) is matched perfectly with the designedieho
This ensures that the design model is verified tfor
correctness properties. The advanced LTL property
verification represents the model is checked foe th
protocol properties.

5. Final Remarks

We have discussed about the need of model driven
architecture in designing a protocol for dependable
systems and the importance of verification. Froemahove
discussion, it is well understood that the combamabf
MDA technique and the SPIN tool is a reasonablecimat
for the communication protocol development. MDA has
the advantage of rapid system development and R S
provides a powerful verification mechanism. Sintési

an example consideration, the implementation aed th

JSEA

18 Designing and Verifying Communication PratisdJsing Model Driven Architecture and Spin Mo@&lecker

active proctype Sender_Entity()
/* Sender Protocol Specification */

active proctype Receiver_Entity() (Spin Version 5.1.4-27 January 2008)
/* Receiver Protocol Specification */) .
+Partial Order Reduction
progress_phase_connect_s:
XS_XR!Data[1]; i
accept_Sender: ::XS_XR?Data[1] -> goto
if progress_Data_Transfer_r
XR_XS?Ack[1] -> goto Transfer :else -> goto progress_connect_r
:else -> goto progress_phase_connect_s; fi;

progress_connect_r:
Full statespace search for:
never claim +
assertion violations + (if within scope of claim)

fi; progress_Data_Transfer_r: .
Transfer: it non-progress cycles+(fairness enabled)
atomic { ::XS_XR?Data[sequ] -> invalid end states-(disabled by never claim)

f'i.;
(! go_back_N) && (! B_break) -> end_Receiver_Entity:
sequ = sequ + 1; XS_XR!Data[sequl]; }

progress_phase_Data_Transfer_s:
If

state-vector 692 byte, depth reached 149, errors:0
3816 states, stored (8976 visited)

fi; }) 9673 states, matched

end_Sender_Ently: } 18649 transitions (=visited+matched)
6286 atomic steps

hash conflicts: 2(resolved)

Figure 6. Promela code for XDT protocol

Figure 8. Result obtained from the SPIN tool

effectiveness was measured with the UML sequence
diagram and the SPIN chart. As a shot term visiba,
architecture template and verification strategy deseloped

on the basis of the MDA approach with the PIM as
example implementation.

The further work of the proposed research is tddbui
an automated architecture template for communicatio
protocols. The pitfalls in the existing MDA apprbalike
explicit semantics with standard specifications| vaié
incorporated by proper solutions. It is also plahrie
develop UML components for the communication
protocols. The basic behavior of the protocols il
pre-defined as a component through sequence diagram
Later the sequence diagram will be used in thedrapi
development as drag-an-drop. Since, we focus teldpv
a common approach; the same can be used in any
protocol development. As a long term vision, the
implementation of the developed architecture wiél b
carried out with a real-time peer-to-peer intrusion
detection protocol from design to deployment stage.

S!XDAJconf,1.,2

Do

]

REFERENCES

=X

[1] C. Werner, “UML profile for communicating systems,”
Ph.D thesis, University of Gottingen, Department of
Computer Science, 2006.

[2] Unified Modeling Language, The official homepage of
UML, Object Management Group.
http.//www.uml.org.

[8] Model Driven Architecture: A Technical Perspective,
Architecture Board MDA Drafting Team, Document
Number ab/2001-02-04,
ftp://ftp.omg.org/ pub/docs/ab/
Management Group, February 2001.

[4] Process Meta Language.

i

01-02-04.pdf, Objec

Figure 7. M essage sequence chart from SPIN simulation
transformation is carried out manually to test thel5]

efficiency of the template. The design and the $tan
phase are correlated among each other and the

Copyright © 2008 SciRes

http://www.dai-arc.polito.it/dai-arc/manual/tools4t/
main/nodel68.html.

G. J. Holzmann, “The model checker SPIN,” IEEE
Transactions on Software Engineering, 23 (1997pfh:
279-295, 1997.

JSEA

6l

(7]

(8]

19

Designing and Verifying Communication Protocols siodel Driven Architecture and Spin Model Checker

M. Farid, G. Patrice, and B. Mourad, “Verifying UML
diagrams with model checking: A rewriting logic béds
approach,” Seventh International Conference on Quali
Software (QSIC 2007), pp. 356-362, 2007.

S. Wuwei, C. Kevinon, and H. James, “A toolset for
supporting UML static and dynamic model checking,”
26th Annual International Computer Software and
Applications Conference, 2002.

B. Prasanta, “Automated translation of UML models o
architectures for verification and simulation using

SPIN.,” 14th IEEE International Conference on
Automated Software Engineering (ASE'99), pp.
102-109, 1999.

S. W. Vitus and J. Padget, “Symbolic Model Checlafig

Copyright © 2008 SciRes

(10]

(11]

(12]

(13]

19

UML Statechart Diagrams with an Integrated ApprgQach
11th IEEE International Conference and Workshophen
Engineering of Computer-Based Systems (ECBS’04), pp.
337-346, 2004.

A. Kleppe, J. Warmer, and W. Bast, “MDA Explainedher
Model Driven Architecture: Practice and Promise,”
Addison-Wesley, 2003.

Query, Views, Transformations: A Specification doeunt.
http://www.omg.org/technology/documents/modeling@esp
catalog.htm.

eXample Data Transfer (XDT) Protocol.
http:/Mmww.protocol-engineering.tu-cottbus.de/indedt. htm

E. M. Clarke, O. Grumberg, and D. Peled, “Modelatirey,”
MIT Press, 1999.

JSEA

