
J. Software Engineering & Applications, 2008, 1: 13-19
Published Online December 2008 in SciRes (www.SciRP.org/journal/jsea)

Copyright © 2008 SciRes JSEA

1

Designing and Verifying Communication Protocols Using
Model Driven Architecture and Spin Model Checker

Prabhu Shankar Kaliappan, Hartmut Koenig
Chair Computer Networks and Communication Systems, Brandenburg Technical University, Cottbus, Germany
Email: {psk, koenig}@informatik.tu-cottbus.de

Received November 21st, 2008; revised November 26th, 2008; accepted November 29th, 2008.

ABSTRACT

The need of communication protocols in today’s environment increases as much as the network explores. Many new
kinds of protocols, e.g. for information sharing, security, etc., are being developed day-to-day which often leads to
rapid, premature developments. Many protocols have not scaled to satisfy important properties like deadlock and
livelock freedom, since MDA focuses on the rapid development rather than on the quality of the developed models. In
order to fix the above, we introduce a 2-Phase strategy based on the UML state machine and sequence diagram. The
state machine is converted into PROMELA code as a protocol model and its properties are derived from the sequence
diagram as Linear Temporal Logic (LTL) through automation. The PROMELA code is interpreted through the SPIN
model checker, which helps to simulate the behavior of protocol. Later the automated LTL properties are supplemented
to the SPIN for the verification of protocol properties. The results are compared with the developed UML model and
SPIN simulated model. Our test results impress the designer to verify the expected results with the system design and to
identify the errors which are unnoticed during the design phase.

Keywords: UML Modeling, Communication Protocols, Protocol Verification, SPIN Tool

1. Introduction

Due to the huge complexity of modern software systems,
it is required to specify precisely what a software
component should do and how it should behave [1]. If the
final implementation deviates from the expected behavior,
then the use of the developed component may fail. This
also applies for the development of communicating
protocols as they are merely implemented in the software.
Currently, most of the protocols are developed through
the natural, informal language because it is easy to
understand. Special languages known as formal
description Techniques (FDTs) have been developed for
an unambiguous specification of the software. FDTs
distinguish from programming languages by having a
formal semantics. Programming languages, such as Java
or C++, have only a formally defined syntax. In order to
back-up such languages, the Unified Modeling Language
2 (UML 2) [2] is a collection of semi-formal standard
notations and concepts for modeling the software systems
at different stages and views during their development.

The development process is supported by the Model
Driven Architecture (MDA) concept [3], which is
initiated from the Object Management Group (OMG).
The UML semantics is described in natural English
language which includes semantic variation points that
leave some semantics issues deliberately open. This
desirable property represents a drawback from the
verification point of view. To cope with the above
problem we propose a 2-phase strategy (see Figure 1). In
the first phase, we model the behavior view by UML

state charts and activity diagrams. Next they are
translated as a combination of state charts with the
semantics of activity diagrams into PROMELA
(PROcess MEta LAnguage) [4]. In the second phase, we
design the communication view using UML sequence
and timing diagrams. The model properties are translated
into a temporal logic and imported together with the
PROMELA code into the model checker SPIN (Simple
Promela INterpreter) [5] for verification. Furthermore,
we illustrate the importance of UML in developing and
SPIN in verifying the communication protocols through
our approach.

The paper is organized as follows. In section 2 we give
a short overview of related work. Section 3 illustrates the
MDA approach applied to the development of
communication protocols. Section 4 presents our 2-phase
design and verification strategy using a case study as
example. Some final remarks and an outlook on future
work which concludes the paper.

Figure 1. 2-phase strategy

14 Designing and Verifying Communication Protocols Using Model Driven Architecture and Spin Model Checker

Copyright © 2008 SciRes JSEA

2. Related Works

An approach for the formal verification of UML
diagrams, such as class, state and communication
diagrams, is presented in [6]. The approach applies an
object oriented language, called the Maude, for verifying
the static and dynamic features of object oriented
specifications. Maude is based on rewrite logic.
According to [7], there is no proof of correctness (due to
the missing UML semantics), when a UML model is
translated into PROMELA. To overcome this drawback
the static and dynamic verification is carried out
individually and integrated into the final validation stage.
The verification of the UML class and activity diagrams
is illustrated for a simple protocol in [8,9]. The activity
diagrams are converted into an FSM (based on behaviors).
Thereafter the FSM is converted into PROMELA through
an intermediate language. Most of the above specified
approaches illustrate how to verify the UML state
diagrams. The open issue is how to specify and verify
communication protocol properties in detail. According
to our concern, the protocols can be efficiently developed
if they are verified simultaneously while modeling. In
order to fulfill the concern, we specify and verify the
protocol properties in the Platform Independent Model
(PIM) and the Platform Specific Model (PSM)
independently.

3. Architecture Template for Communication
Protocols

3.1 Model Driven Architecture

Model driven architecture is an approach to software
development based on the modeling and automated
mapping of models. MDA has divided its components
into two important parts, namely PIM and PSM, which
are discussed in detail further as basis.

The Platform Independent Model is a model with a
high level of abstraction that is independent of any
implementation technology [10]. A modeling language
capable of generating all the required artifacts such as the
Unified Modeling Language is required at this level.
According to [3], the PIM provides two basic advantages.
First, the person responsible for defining the functionality
do not have to take any platform details into the
consideration while modeling, which gives the designer a
freedom to concentrate and focus only on the logical rule.
Second, since the functionality is pure from any
implementation details, it is easier to produce
implementations on different platforms. The PIM is
stored in the Meta Object Facility (MOF) and serves as
the input to the mapping step which will produce a
Platform Specific Model. The PSM’s can be described in
one of two ways: 1) using UML diagrams (class,
sequence, activity etc.) or 2) using interface definitions in
a concrete implementation technology (IDL, XML, Java
etc), but in both cases the behavior and constraints are

specified using a formal notation (UML diagrams) or an
informal notation (natural language). Automated tools
will be used to map the platform independent models
onto the specific platforms. The final step takes PSM as
an input to produce the implementation for a particular
platform using a transformation tool.

3.2 Communication Protocols

A communication is carried out between a sender and a
receiver over a physical medium using an authorized
service provider. The service is provided by means of
communicating entities. These entities are active objects
exchanging messages with their environment. The service
users interact with the entities by exchanging service
primitives through service access points (SAPs). Each
SAP is uniquely mapped to an entity which handles the
primitives and maps them on protocol primitives or
protocol data units (PDUs), respectively, that are send to
the peer entity. The exchange of the protocol primitives is
based on rules which are specified by means of a
communication protocol. A communication protocol
describes the interacting behavior of the entities by
specifying the timely sequence of the protocol primitives
exchanged. Furthermore, the format (syntax) and the
meaning (semantics) of the messages are defined.

3.3 MDA and Communication Protocols

The following template for the design of communication
protocols consists of three components, namely: the
model designer, the model mapper, and the system
generator (see Figure 2). These are illustrated with
respect to PIM, PSM, and the code generator in the
following.

1) Model Designer
The model designer has the task to model the proposed

system based on the requirement specification. The
modeling is carried out by means of the UML, the Meta
Object Facility (MOF) for the data repository, and the
Object Constraint Language (OCL) for the external
semantics. The hardware and software may be modeled
together or separately. Further on these models are
combined by the model integrator (integrated model)
with the help of external semantics (supplied through
OCL), which can be introduced automatically or
manually. The advantage of designing hardware and
software models independently is that both of them are
not considered about the dependency. This gives the
developer the freedom to focus on system design rather
than on programming details. When considered to the
protocol development, the service layer and protocol
layer are independently developed in this phase.

2) Model Mapper
The model mapper maps the PIM to PSM by means of

an appropriate domain specifier. It consists of three
different components: the Domain Specifier for
specifying the target domain, Transformation Rules, i.e. a
modified Query View Transformation (QVT) [11] is a
standard set of rules to map the UML profile to the

Designing and Verifying Communication Protocols Using Model Driven Architecture and Spin Model Checker 15

Copyright © 2008 SciRes JSEA

particular domain, and (preferably) UML profiles for the
specification of appropriate models (say protocols). The
possible input of the model mapper is UML and the
output will be of XML Metadata Interchange (XMI). The
transformation process is carried out by an appropriate
transformative algorithm which reads the required model
(UML profile for communication systems) and applies
the QVT rules. The possible outcome of the model
mapper is the UML profile based specification models.
The transformation method is not strict with the
communication system profiles, based on the requirement
the profile can be chosen from the repository.

3) Model Checker and Model Verifier
The model checker is used to validate the structural

behaviors of the developed models. The semantics of
PIM are not much validated in this phase because the
PIM illustrates only the logical solution to the particular
problem. Hence, the structural behaviors are
independently verified and combined by the integrated
model. The model verifier checks the logic after model
mapping. In completion of the model mapper phase, the
model verifier is introduced to check the static and
dynamic behaviors of the mapped model. The
verification results from the PIM and PSM are matched
by comparing both of the results. Here, the SPIN tool is
used along with formal verification techniques to check
the behavior of PIM and PSM.

4) System Generator
Finally the code generation is carried after a successful

mapping of the model to a particular platform. The target
code, such as C++, Java, .Net or SystemC, can be
generated by the development tool including the
appropriate library files and plug-ins. With help of XMI,
which is the (preferable) output code from the previous
phase, the code is generated automatically. The generated
code is validated thereafter by testing.

By addressing the advantages in the above template,
we can consider the top down and bottom up development as

Figure 2. Template for protocol development

Top down
� Development is from the scratch and to the target

code.
� Step by step process, which can be easily debugged

or traced.
� Deviation / Refinement are possible at any cost of

time.

Bottom up

� Development is from the code and to the
specification model.

� Due to the generalized conversion of the XMI, any
tool is capable for the conversion of platform independent
models.

By the above, the complexity and the development
code is systematically reduced with the proposed
template.

4. Design and Verification of Communication
Protocols

Communication protocols can be distinguished in two
different viewpoints: the behavior and the
communication oriented one. They can be matched with
the UML models as illustrated in the Table 1. The further
discussion is based on the above template for protocol
development, i.e. we illustrate how the protocol is
designed and verified through this template.

4.1 Model Designer

To illustrate the work flow of our method, we use an
example case study of the eXample Data Transfer (XDT)
protocol [12] which is being used as teaching protocol.
XDT works on a distributed environment to transfer large
files over an unreliable media using the go back N
principle. The XDT protocol description consists of a
service specification and a protocol specification which
both include a data format specification. The connection
establishment uses a two-way handshake and assumes
that the XDT receiver always accepts new connections.
The sender makes an initiative for transmission to the
receiver by means of an XDATrequ service primitive.
The new connection is indicated by an XDATind
primitive. The protocol indicates the successful
connection set up to the sender by XDATconf.

After this, the data are transferred by means of a DT
message. However in certain cases, the service provider
may not preserve the order of the data units. In this case,
the ABO data unit is initialized to abort the connection.

Table 1. Comparison of protocol and UML viewpoints

Protocol Viewpoints UML Design Viewpoints
Behavior oriented Behavior design
What are the behaviors of each
communicating entity?

What should happen in
the system?

Communication oriented Interaction design
What is the concrete commu-
nication exchange between the
entities?

What is the control flow
of the data?

16 Designing and Verifying Communication Protocols Using Model Driven Architecture and Spin Model Checker

Copyright © 2008 SciRes JSEA

This is indicated to the users by a XABORTind service
primitive. XBREAKind is initialized to stop the
transmission for a certain period, if the go back N data
buffer is full. The end of transmission is indicated by
setting the parameter eom in the final data unit of
XDATrequ and XDATind primitives. The connection is
released implicitly, indicated by an XDISind primitive at
the sender and the receiver side, after successfully
transmitting the last data unit. The further explanation of
the XDT protocol can be found in [12].

Figure 3. Use case diagram for XDT protocol

(a)

(b)

Figure 4. (a) State machine for XDT protocol-sender;
(b)State machine for XDT protocol-receiver

Figure 5. Sequence diagram for XDT data transfer

As a first phase we design the behavior view point by
UML use case diagram (see Figure 3) to identify the
entities, activity diagrams for the static behaviors, and
state machine diagrams (see Figure 4(a), 4(b)) for the
dynamic behaviors. Figure 3 i.e. the use case diagram
visualize the developer to identify the possible service
(XDATrequ, XDATind, XDATConf, XABORTind,
XBREAKind, XDISind) and protocol (DT, ACK, ABO)
primitives of the protocol. The activity diagrams are used
to determine the internal behaviors of the protocol (in
which only the semantics are specified). The state
machines in Figure 4(a) and 4(b) are the core part for the
development. They determine the external behaviors of
the protocol by combining the service and protocol
primitives. Figure 4(a) and 4(b) represent the sender and
receiver part respectively.

As a second phase, we further use the behavior
viewpoint as a base and design the communication
viewpoint through the sequence (see Figure 5) and
timeline diagram to identify the control flow. Figure 5
represents the dynamic behavior of the data transfer state
(i.e. connected state in the Figure 4(a) and 4(b)) of the
protocol. The same kind of sequence diagram is modeled
for all states of the XDT protocol. These sequence
diagrams are used further for verifying the protocols.

4.2 Model Checker

To ensure the quality of the developed protocol through
the template, the protocol properties (see Table 2) like
deadlock, livelock freedom are considered for evaluation.
In further we consider our two phase mechanism for
verifying these protocol properties.

Phase 1: We retrieve the behavioral viewpoints
through the UML use case and activity diagrams from the
earlier stage. Later these models are translated into the
PROMELA via the UML state machine, where the SPIN
tool interprets the code. The difference between our
approach and others is the following. We use the state
machine diagram as a base for the PROMELA translation,

Designing and Verifying Communication Protocols Using Model Driven Architecture and Spin Model Checker 17

Copyright © 2008 SciRes JSEA

and the semantics from the activity diagrams are added to
specify the protocol properties. Since the UML is a
semantic-less language, we use the activity diagram as a
semantic for the UML state machine model, which is a
major advantage. Instead of using external semantics in
PIM, the internal semantics makes less complexity and
easy usage. The translated PROMELA code is shown in
the Figure 6. The protocol entities are described through
the keyword proctype and the states with progress. The
code resembles like a C code which is easy to interpret
the model. Reference [4] for complete syntax of the
PROMELA.

The SPIN model checker executes the PROMELA
code and the verification result is produced. The result
ensures the quality of the protocol properties like
deadlock, livelock, code coverage through its behavior.

Phase 2: To confirm the data flow properties like
liveness, the UML sequence diagram is retrieved from
the earlier stage and it is converted into a Linear
Temporal Logic (LTL) [13]. The LTLs are mathematical
annotated formulae to make statements on a linearly
progressing time. Since, it is difficult to convert all the
UML sequence properties into an LTL; we use another
technique known as Protocol Predictor (PP). It identifies
the best case criteria in the sequence diagram and marks
the event through a unique identifier, e.g. PP:1. The
Protocol Predictor is an automated algorithm for UML
sequence diagram. It reads the sequence diagram and
maintains a periodic log for all service and protocol
primitives. The Protocol Predictor has a pre-defined
common rules like, the data should be transferred only
after a proper acknowledgment; the sequence number
should be verified periodically etc. Based on these rules,
the algorithm generates the LTL property for the required
protocol. In our case, consider that the protocol is
working efficiently by transferring the data with sequence
number to the receiver. Here we can predict that the
sequence number from the sender and receiver should be
equal at any time. To do so, we consider the existing LTL
property from SPIN as □ ((p) ⇒ (◊q)) with PP:1 and
shown in the following code.

Table 2. Communication protocol properties

Condition Properties

Absence of
Deadlock

The system never enters a state that cannot be
left due to a missing or occupied resource

Absence of
Livelock

The system never enters cycles that cannot be
left due to a missing or occupied resource.

Code
Coverage

Each statement defined in the system can
potentially be executed.

Liveliness
Each state of the system can be reached from
the initial state.

Robustness
The system can react to unexpected, unusual
or missing events.

Termination
The final state or an idle state for cyclic
systems can always be reached.

Recovery
from
Failures

The system can recover to a normal state
within a limited time after an error has
occurred.

PP:1
define p (Data[sequ].sequ == S_N) /* Sender Sequence
number */
define q (Data[sequ].sequ == R_N) /* Receiver Sequence
number */
/*if p becomes true at one state, q should become true at least
once;
Here by assigning if p (sequence number) is true in Sender,
then q (sequence number) should be true in Receiver */
never { /* !([□ ((p) ⇒ (◊q))) */
Start_S: if
 :: (! (q) && (p)) → goto accept_S
 :: (1) → goto Start_S ; fi;
accept_S: if :: (! (q)) → goto accept_S; fi; }

The idea behind the conversion is that; instead of
identifying the worst cases in the communication
protocol, we look for the failure of best cases (successful
data transmission) which results in identifying the worst
cases. This is due to the probability of identifying the
worst cases is very less than the probability of best cases.
By means of this LTL, it is easy to identify the failure
cases like the possibility that sender becomes true and
thereafter the receiver remains false forever (or) the
possibility that sender becomes false before the receiver
becomes true. Further this code is imported as a supple
mentary data to the PROMELA code through the SPIN
tool for verification. The SPIN model checker validates
whether the property holds or not. By investigating this
type of combination from the sequence diagram, it is
determined that an error-free model is designed. The final
result is obtained by transferring five sample protocol
primitives from the sender to receiver entity in the SPIN
tool. The tool simulates the PROMELA code as a
graphical state chart (see Figure 7) to identify the
dynamic behaviors and verifies the defined (PP:1)
protocol property simultaneously. The verification output
from the SPIN tool is shown in Figure 8 with the number
of depth reached, state and transition explored. Figure 8
illustrates that no deadlock, livelock is detected in the
verification and the five protocol primitives are
transferred successfully. The designed model (see Figure
5) is been compared with the SPIN simulated model (see
Figure 7). The data transfer phase (second iteration of the
Figure 7) is matched perfectly with the designed model.
This ensures that the design model is verified for the
correctness properties. The advanced LTL property
verification represents the model is checked for the
protocol properties.

5. Final Remarks
We have discussed about the need of model driven
architecture in designing a protocol for dependable
systems and the importance of verification. From the above
discussion, it is well understood that the combination of
MDA technique and the SPIN tool is a reasonable match
for the communication protocol development. MDA has
the advantage of rapid system development and the SPIN
provides a powerful verification mechanism. Since it is
an example consideration, the implementation and the

18 Designing and Verifying Communication Protocols Using Model Driven Architecture and Spin Model Checker

Copyright © 2008 SciRes JSEA

Figure 6. Promela code for XDT protocol

Figure 7. Message sequence chart from SPIN simulation

transformation is carried out manually to test the
efficiency of the template. The design and the simulation
phase are correlated among each other and the

Figure 8. Result obtained from the SPIN tool

effectiveness was measured with the UML sequence
diagram and the SPIN chart. As a shot term vision, the
architecture template and verification strategy has developed
on the basis of the MDA approach with the PIM as
example implementation.

The further work of the proposed research is to build
an automated architecture template for communication
protocols. The pitfalls in the existing MDA approach like
explicit semantics with standard specifications will be
incorporated by proper solutions. It is also planned to
develop UML components for the communication
protocols. The basic behavior of the protocols will be
pre-defined as a component through sequence diagram.
Later the sequence diagram will be used in the rapid
development as drag-an-drop. Since, we focus to develop
a common approach; the same can be used in any
protocol development. As a long term vision, the
implementation of the developed architecture will be
carried out with a real-time peer-to-peer intrusion
detection protocol from design to deployment stage.

REFERENCES

[1] C. Werner, “UML profile for communicating systems,”
Ph.D thesis, University of Göttingen, Department of
Computer Science, 2006.

[2] Unified Modeling Language, The official homepage of
UML, Object Management Group.
http.//www.uml.org.

[3] Model Driven Architecture: A Technical Perspective,
Architecture Board MDA Drafting Team, Document
Number ab/2001-02-04,
ftp://ftp.omg.org/ pub/docs/ab/ 01-02-04.pdf, Object
Management Group, February 2001.

[4] Process Meta Language.
http://www.dai-arc.polito.it/dai-arc/manual/tools/jcat/
main/node168.html.

[5] G. J. Holzmann, “The model checker SPIN,” IEEE
Transactions on Software Engineering, 23 (1997) 5: pp.
279–295, 1997.

 active proctype Sender_Entity()
 /* Sender Protocol Specification */
{
progress_phase_connect_s:
 XS_XR!Data[1];
accept_Sender:
if
::XR_XS?Ack[1] -> goto Transfer
::else -> goto progress_phase_connect_s;
fi;
Transfer:
atomic {
 progress_phase_Data_Transfer_s:
If
::(! go_back_N) && (! B_break) ->
sequ = sequ + 1; XS_XR!Data[sequ];
.....................
fi; }
end_Sender_Entity: }

active proctype Receiver_Entity()
 /* Receiver Protocol Specification */
{
progress_connect_r:
if
::XS_XR?Data[1] -> goto
progress_Data_Transfer_r
::else -> goto progress_connect_r
fi;
progress_Data_Transfer_r:
if
::XS_XR?Data[sequ] ->
………………
fi;
end_Receiver_Entity:
}

Designing and Verifying Communication Protocols Using Model Driven Architecture and Spin Model Checker 19

Copyright © 2008 SciRes JSEA

[6] M. Farid, G. Patrice, and B. Mourad, “Verifying UML
diagrams with model checking: A rewriting logic based
approach,” Seventh International Conference on Quality
Software (QSIC 2007), pp. 356–362, 2007.

[7] S. Wuwei, C. Kevinon, and H. James, “A toolset for
supporting UML static and dynamic model checking,”
26th Annual International Computer Software and
Applications Conference, 2002.

[8] B. Prasanta, “Automated translation of UML models of
architectures for verification and simulation using
SPIN.,” 14th IEEE International Conference on
Automated Software Engineering (ASE’99), pp.
102–109, 1999.

[9] S. W. Vitus and J. Padget, “Symbolic Model Checking of

UML Statechart Diagrams with an Integrated Approach,”
11th IEEE International Conference and Workshop on the
Engineering of Computer-Based Systems (ECBS’04), pp.
337–346, 2004.

[10] A. Kleppe, J. Warmer, and W. Bast, “MDA Explained—The
Model Driven Architecture: Practice and Promise,”
Addison-Wesley, 2003.

[11] Query, Views, Transformations: A Specification document.
http://www.omg.org/technology/documents/modeling spec
catalog.htm.

[12] eXample Data Transfer (XDT) Protocol.
http://www.protocol-engineering.tu-cottbus.de/index_xdt.htm

[13] E. M. Clarke, O. Grumberg, and D. Peled, “Model checking,”
MIT Press, 1999.

