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ABSTRACT 
Edit distance measures the similarity between two strings (as the minimum number of change, insert or delete 
operations that transform one string to the other). An edit sequence s is a sequence of such operations and can be used 
to represent the string resulting from applying s to a reference string. We present a modification to Ukkonen’s edit 
distance calculating algorithm based upon representing strings by edit sequences. We conclude with a demonstration of 
how using this representation can improve mitochondrial DNA query throughput performance in a distributed 
computing environment. 
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1. Introduction 
Let ∑ be a finite alphabet and let ∑* denote the collection 
of finite strings over ∑. Edit distance is a means of 
measuring similarity between a target and reference string 
in ∑* by computing the minimum number of change, insert, 
or delete edit operations that transform one string into 
another. The edit distance is a metric [1] and is a means of 
measuring the similarity between two strings [2]. 

Wagner and Fischer presented one of the first 
algorithms for calculating edit distance [3]. Ukkonen 
improved upon Wagner and Fischer’s algorithm (using 
potentially less time and space) [4,5]. However, a 
significant performance bottleneck in Ukkonen’s 
algorithm is calculating the length of a longest common 
prefix (which we refer to as the degree of agreement) 
between two strings. 

Let alphabet ∑d= {a, c, g, t}. ∑d can be regarded as 
representing the molecules adenine, cytosine, guanine 
and thymine respectively. These molecules are 
collectively known as nucleotides. When covalently 
bonded together, these molecules become a polymer 
called a polynucleotide. Two polynucleotides can 
produce the well-known double helix shape of DNA. The 
determination of the order in which the nucleotides are 
covalently bonded together in a polynucleotide is called 
sequencing. The act of sequencing yields a string since 
each nucleotide in the given polynucleotide maps to one 
of the members of ∑d. 

The mitochondria are organelles found throughout 
eukaryotic cells. They are responsible for the production 
of adenosine triphosphate (ATP), the primary currency 
by which a cell’s energy needs are trafficked [6]. 
Mitochondria possess DNA (mtDNA). This mtDNA is 
ultimately responsible for the production of the proteins 
which regulate the mitochondrion and produce ATP. 

We define an mtDNA string to be the string that results 
from sequencing one of the polynucleotides that comprise 
mtDNA. Anderson et al. [7] were the first scientists 
responsible for sequencing a human’s mtDNA. The mtDNA 
string they produced is a standard reference and is now 
known as the Cambridge Reference Sequence (CRS). 

Mitochondrial DNA is the subject of much research by 
forensic scientists because it has features that aid them in 
their identification of an individual [8]. 

1) It is widely distributed throughout a given cell 
2) It is always inherited from a child’s mother 
3) It is conservative, i.e., the edit distance between the 

CRS and a target mtDNA string is very small in 
comparison to their lengths. 

The first feature means that intact mtDNA can likely 
be extracted from some piece of human detritus such as 
hair or fingernails. 

The second feature means that it is likely that the 
mtDNA possessed by maternally related individuals is 
the same. This feature is particularly advantageous for 
individuals who seek to determine whether the remains of 
a body belong to their sibling. 

With regard to the third feature, we will show that 
since mtDNA is conservative, the performance of the 
longest common prefix calculation for Ukkonen’s edit 
distance calculating algorithm can be improved by 
representing strings as edit sequences. We will show how 
this feature can improve mtDNA query throughput 
performance in a distributed computing environment. 

2. Preliminaries 
2.1 Definitions 

We begin by defining edit operations (to streamline 
exposition, they may be referred to simply as operations).  
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A nontrivial change operation has the form of acσ and 
acts on string α =α0 … αl (provided 0≤a≤l ) to produce 
β =β0 … βl where 
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In other words, symbol αa at (address) a is changed to 
symbol σ. 

An insert operation has the form of aiσ and acts on string α 
= α0 … αl (provided 0≤a≤l ) to produce β =β0 … βl+1 where 
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In other words, symbol σ has been inserted into string 
α at address a. 

A delete operation has the form of ad and acts on string α 
= α0 … αl (provided 0≤a≤l) to produce β = β0 … βl-1 where 
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In other words, symbol αa has been deleted from string α. 
A sequence of edit operations is referred to as an edit 

sequence. The concatenation of edit sequence s with t is 
denoted s|t. 

Given edit operation e, the function &() returns e’s 
address, (i.e. &(ad ) = a), the function τ() returns e’s type 
(i.e. τ (aiσ ) =i) and the function δ() returns the symbol to 
be inserted or changed, i.e. δ(acσ ) =σ. 

A change operation e is called trivial (with respect to α) 
if it acts as the identity function on α (i.e. e (α ) = α ). To 
indicate that is trivial (when is understood) it may be 
written as atσ. 

The notation [expression] is defined as 
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Given strings α, β ∈ ∑*, an edit sequence s taking α to 
β (i.e. s(α ) = β ) is produced by Wagner and Fischer’s 
algorithm [1]. Their algorithm-which we refer to as WF - 
first proceeds by calculating a (n+1) × (m+1) distance 
matrix D as follows (where |α| = n and |β| = m). 
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Next, an edit sequence s (transforming α into β ) is 
obtained by the recursive function S 

S(∅) = ε 
S(D) = e | S(D′) 
where ∅ denotes the empty matrix (0 rows, 0 columns), 

ε denotes the empty edit sequence, and D′ is either the 
result of removing the last D (if case 1 applied), 
removing the last column from D if case 2 applied or 
removing both the last row and last column from D (if 
case 3 or 4 is applied). 
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Given edit sequence s = S transforming α into β, the 
function r (s, α, β ) returns the reduced edit sequence sr 
(with respect to α ). Example: let s = e0e1e2e3e4e5 = 0tg 
1tt 2d 2ig 3tt 4ct. Then, sr = r (s, α, β ) = e0′e1′e2′ = 2d 2ig 
4ct. Note that 

1) 0′=2, 1′=3 and 2′=5 
2) both s and sr map α to β 
3) sr uses the minimum number of edit operations to 

transform α to β 
Edit sequence s = S(D) has the following properties. 
1) No edit sequence mapping α to β is shorter than r(s, 

α, β ). 
2) Addresses of edit operations found in s are nondec- 

reasing. 
3) If ej is a delete edit operation in s, then &(ej)= 

&(ej+1). 
4) If ej is an insert or change edit operation in s, then  

ej + 1 has an address that differs from ej by one. 

2.2 Characteristics of Reduced and Non-reduced 
Edit Sequences 

Given edit sequence s, define 〈s〉 by 

 
Given sr(α ) = β the length of β can be recovered by 

|β| = α + 〈s〉 
Let ρt be a subsequence of s consisting of trivial 

change operations, maximal with respect to containment, 
such that the addresses of successive members differ by 
one. Such a subsequence ρt is called a trivial change 
queue. Example: s =0ta 1tc 2ia 3ct 4tt; ρt = 0ta 1tc. 

Let ρc be a subsequence of s consisting of nontrivial 
change operations, maximal with respect to containment, 
such that the addresses of successive members differ by 
one. Such a subsequence ρc is called a nontrivial change 
queue. Example: s = 0ca 1cc 2ia 3ct 4tt; ρc = 0ca 1cc. 

Let ρi be a subsequence of s consisting of insert 
operations, maximal with respect to containment, such 
that the addresses of successive members differ by one. 
Such a subsequence ρi is called an insert queue. Example: 
s = 0ia 1ic 2ca 3ct 4tt; ρi = 0ia 1ic. 

Let ρd be a subsequence of s consisting of delete 
operations, maximal with respect to containment, such 
that the addresses of successive members do not differ. 
Such a subsequence ρd is called a delete queue. Example: 
s = 0d 0d 0t t 1ca; ρd = 0d 0d. 

The length of a change or insert queue ρ = ey … ez is 
given by |ρ| = &(ez)-&(ey) + 1. 

2.3 Recovering Elements of s Using sr = r(s, αααα, ββββ ) 

Given sr = r(s, α, β ), we can recover the trivial change 
queues removed from s while producing sr. We will first 
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consider how to find the locations and then the symbols 
associated with trivial change queues. 

A trivial change queue ρt may be a prefix, a suffix or 
neither a prefix nor a suffix of sr. In order to find the 
addresses of members of ρt, there are three cases to 
consider. 

Case 1: Queue ρt = ek … el is a prefix of sr: 
Queue ρt is a prefix of sr if &( e0′) > 0. Furthermore, k = 

&(ek) = 0 and l = &(el) = &(e0′) - 1. 
Case 2: Queue ρt = ek … el is a suffix of sr: 
Queue ρt is a suffix of sr if the last edit operation, em′, 

in sr has address &(em′) < n = |β| - 1. Furthermore, k = m′ 
+ 1, &(ek) = &(em′) + [τ (em′) ≠ d ], &(el) = n and l = m′ + 
(&(el) – &(em′ + 1) + 1). 

Case 3: Queue ρt = ek … el is neither a prefix nor a 
suffix of sr: 

Queue ρt is neither a prefix nor a suffix of sr if the 
consecutive edit operations ej′ and e(j+1)′ in sr have 
addresses &(ej′) < &(e(j+1)′) – [τ(ej′) = d ]. Furthermore, k 
= j′ + 1 and l = ( j+1)′ – 1 where &(ek) = &(ej′) + [τ(ej′) = 
d]  and &(el) = &(e(j+1)′) – 1. 

Now that we know how to find the addresses of 
members of trivial change queues, we need to find their 
symbols. Given sr = r(s, α, β ). Let cell Di,j have a 
column whose address is that of a trivial change 
operation. Let function ni( j) return the number of insert 
edit operations in sr whose addresses are less than j. Let 
function nd( j) return the number of delete edit operations 
in sr whose addresses are less than or equal to j. In order 
to find the symbols in trivial change queues, we 
discovered that nd( j) – ni( j) = i – j. 

Since nd( j) – ni( j) = i – j it follows that αi = αj + nd(j) – 

ni(j). If e = at αi then we can say that e = atαj + nd(j) – ni(j). 
Since the address of e is equal to the column j labeled by 
Di,j, we can say that e = jtαj + nd(j) – ni(j). Hence, given α and 
sr, we can acquire the address and symbol associated with 
each trivial change operation in s. 

Given element βx, let tr = Partition (sr, x) return edit 
sequence tr whose elements are comprised of those 
elements of sr whose addresses are greater than or equal 
to x. Let e = GetOp(sr, y) return the first edit operation 
found in sr whose address is greater than or equal to y. 
Let ρt be a trivial change queue, the following 
pseudocode ρt = Recover(sr, x) shows the procedure for 
finding trivial change queues in sr. The code is initialized 
by a call to Partition (sr, x). 

ρt = Recover (tr, x) 
1. e = GetOp(tr, x) 
2. if (e == e0′  &&  &( e0′) > 0)        //Case 1 

2.1. k = 0 
2.2. l = &(el) 
2.3. return (ρt = ek … el) 

3. if (e == em′  && &( em′) < n = |β| - 1)  //Case 2 
3.1. k = m′ + 1 
3.2. l = m′ + (&(el) – &(em′ + 1) + 1) 
3.3. return (ρt = ek … el) 

4. if (e==ej ′ && &( e j ′)<&(e(j+1)′)–[τ(e j ′) == d ])  //Case 3 
4.1. k = j′ + 1 
4.2. l = ( j+1)′ – 1 

4.3. return (ρt = ek … el) 
5. return ∅ 

3. Calculating the Degree of Agreement 
Using Edit Sequences 

3.1 Motivation for Using Reduced Edit Sequences 

At this point, it is productive to ask why we care about 
reduced edit sequences. Let reference string α be the 
CRS, target strings β and γ be mtDNA strings and let sr1 
=r (s1, α, β ) and sr2 = s (s2, α, γ ). Edit sequences sr1 and 
sr2 (and reference string α) can be used as a means of 
representing β and γ, respectively. This is significant 
because large, conservative target strings are represented 
by edit sequences that are substantially smaller. Hence, 
calculating the edit distance between β and γ by using α, 
sr1 and sr2, may lead to a more efficient utilization of 
distributed computing resources for calculating edit 
distance by increasing network throughput. Furthermore, 
using α, sr1 and sr2 can afford forensic experts seeking to 
find a match for an mtDNA string the ability to store and 
carry large numbers of mtDNA sequences. 

3.2 Our Algorithm 

Let β and γ be target strings of lengths m and n, 
respectively. Let sr1 = r (s1, α, β ) and sr2 = s (s2, α, γ ) 
and let (0≤x1≤m-1) and (0≤x2≤n-1). We want to know the 
length of the longest common prefix of the substrings βx1 
… βm - 1 and γx2 … γn-1 (i.e. the degree of agreement 
between β and γ ). We will now consider how the degree 
of agreement between β and γ can be calculated using 
reduced edit sequences that represent β and γ by 
examining how our algorithm deals with the different 
types of edit operations that comprise our edit sequences 
used to represent our strings. 

Case 1: x1 or x2 is the address of a member of a delete 
queue. 

In this case, we do not have any symbols to compare; 
hence, we will simply traverse to the end of the 
respective queues. 

Case 2: x1 and x2 are the addresses of members of 
trivial change queues ρ1 and ρ2, respectively. 

Let l1 be the last member of ρ1 and let l2 be the last 
member of ρ2. Let e1 be a member of ρ1 and let e2 be a 
member of ρ2 where e1=x1cαw, e2=x2cαy, w=x1+nd1 (x1) 
–ni1(x1) and y=x2+nd2(x2) – ni2(x2). If w = y, then δ((x1+ n) 
tαw + n) = δ((x2+ n)tαy + n) for 0 ≤ n ≤ min(g, h), where g = 
|{e1 … l1}| and h = |{e2 … l2}|. Hence, the degree of 
agreement will be min(g, h). 

Case 3: x1 and x2 are the addresses of members of ρ1 
and ρ2, respectively and neither ρ1 nor ρ2 are trivial 
change queues nor delete queues. 

Let ej and ek be members of ρ1 and ρ2 respectively, and 
let &(ej) = x1 and &(ek) = x2. Let ey and ez be the last 
members of queues ρ1 and ρ2, respectively. Let r be the 
degree of agreement between β and γ. We compare the 
symbols associated with these queues sequentially using 
the following loop. 

1. r = 0 
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2. c = 0 
3. g = &(ey) – x1 
4. h = &(ez) – x2  
5. while(c < min(g, h) && δ(ej + c) == δ(ek + c)) 

5.1. c = c + 1 
5.2. r = r + 1 

We now present the pseudocode for the algorithm 
responsible for calculating the degree of agreement 
between β and γ  using edit sequences. 
int GetAgreement(sr1, sr2, x1, x2) 

1. tr1 = Partition(sr1, x1) 
2. tr2 = Partition(sr2, x2) 
3. r = 0 
4. for(i = j = 0; x1 <|β| && x2 < |γ|) 
4.1. i = i + [τ(tr1[i]) == d]  //Case 1 
4.2. j = j + [τ(tr2[ j]) == d]  //Case 1 
4.3. u = x1 + nd(x1) – ni(x1) 
4.4. w = x2 + nd(x2) – ni(x2) 
4.5. c = 0 
4.6. ρ1 = Recover(tr1, x1) 
4.7. ρ2 = Recover(tr2, x2) 
4.8. if((ρ1 ≠ ∅ && ρ2  ≠ ∅) && u == w) //Case 2 
4.8.1. g = |{e1  … l1}| 
4.8.2. h = |{e2  … l2}| 
4.8.3. b = min(g, h) 
4.8.4. x1 = x1 + b 
4.8.5. x2 = x2 + b 
4.8.6. r = r + b 
4.9. else    //Case 3 
4.9.1. g = &(ey) – x1 
4.9.2. h = &(ez) – x2 
4.9.3. while(c < min(g, h)&& δ(ej + c)==δ(ek + c)) 

4.9.3.1. c = c + 1 
4.9.3.2. r = r + 1 
4.9.3.3. x1 = x1 + 1 
4.9.3.4. x2 = x2 + 1 
4.9.3.5. if (δ(ej + c) ≠ δ(ek + c)) 

4.9.3.5.1. return r 
4.10. i = i + c 
4.11. j = j + c 
5. return r 

4. Performance Measurements 

In this section, we use a lazy implementation of Ukkonen’s 
edit distance calculating algorithm that has as input: 

1) Ordinary, uncompressed strings  
2) Strings whose elements are represented as bits  
3) Strings whose elements are represented using reduced 

edit sequences 
The algorithms responsible for calculating degree of 

agreement using these strings as input are designated lo, 
lbp and les, respectively. Note that les incorporates the 
GetAgreement algorithm mentioned above. Furthermore, 
note that when we speak of performance of the lo, lbp or 
les algorithms in our measurements, we are in fact 
referring to either the performance of the lo, lbp or les- 
invoking version of Ukkonen’s edit distance calculating 
algorithm mentioned above. 

4.1 Performance Comparisons between the lo, 
lbp and les Algorithms  

What follows are measurements of the time and memory 
usage performance of the lo, lbp and les algorithms. The 
algorithms use as input 500 randomly selected members 
from a sample of 200,000 randomly generated mtDNA 
strings. The algorithms were executed on a 700-Mhz Intel 
Pentium 3 computer using the Redhat 7.0 operating system. 

The figures below compare lo with les, and lbp with 
les, respectively. They indicate that, as expected, when 
the edit distance is small (meaning that the edit sequence 
used to represent a string is small), the les algorithm will 
finish execution more quickly. 

The following tables indicate the time and memory 
consumed in the execution of our lo, lbp and les 
algorithms. While the execution time for les is beaten by 
lbp, les asserts its usefulness by requiring far less 
memory than lbp. 

 

Figure 1. Time used to calculate edit distance using les (○) 

and lo (×) 

 

Figure 2. Time used to calculate edit distance using les (○) 
and lbp (×) 
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4.2 Query throughput Performance Comparisons 
in a Distributed Computing Environment 
Using the lo, lbp and les Algorithms 

A query is defined as an mtDNA string submitted by a 
client to a server. Query satisfaction is defined as the 
determination of which mtDNA strings residing on a 
server fall within an edit distance threshold of the query. 
Query throughput is defined as the number of edit 
distance calculations performed in a second while 
satisfying a query. The following tables provide 
performance measurements in terms of query strings 
submitted per second and queries satisfied per second for 
the lo, lbp and les algorithms in a LAN and WAN 
distributed computing environment. The algorithms used 
as input 200,000 randomly generated mtDNA strings. 
The queries were transmitted on a 1GB LAN where each 
network node was a 3.2-Ghz Intel Pentium 4 computer 
using the Debian GNU/Linux 3.1 operating system. The 
queries were also transmitted on a 54MB wireless WAN 
where the client and server were 2.2-Ghz and 2.4-Ghz 

Table 1. Time consumption (microseconds) 

 les lbp lo 
Average 79 43 172 

Minimum 12 13 145 
Maximum 185 83 234 

Table 2. Memory consumption (bytes) 

 les lbp lo 
Average 337.6 8494 33777 

Minimum 300 8494 33777 
Maximum 372 8494 33777 

Table 3. LAN throughput performance (strings 
submitted/second) 

 les lbp lo 
Average 3.3e4 1.2e3 310 

Minimum 2.9e4 1.1e3 295 
Maximum 3.5e4 1.3e3 326 

Table 4. LAN query throughput performance 

 les lbp lo 
Average 1.7e4 1.2e3 310 

Minimum 5.8e3 1.1e3 295 
Maximum 3.4e4 1.3e3 326 

Table 5. WAN throughput performance (strings 
submitted/second) 

 les lbp lo 
Average 9.1e3 353 88 

Minimum 7.8e3 340 84 
Maximum 9.6e3 362 92 

Table 6. WAN query throughput performance 

 les lbp lo 
Average 9.1e3 353 88 

Minimum 7.8e3 340 84 
Maximum 9.6e3 362 92 

Intel Pentium 4 computers, respectively, and were each 
using the Windows XP operating system. Network 
performance was measured using Jperf 2.0 [9]. 

We see that when queries are submitted in a distributed 
computing environment, the les algorithm can accept 
more query strings transmitted and therefore allows our 
les algorithm to achieve greater query throughput than 
either the lbp or les algorithms. 

5. Conclusions 
This decade has witnessed three major disasters-the 9/11 
attacks, the Indian Tsunami and hurricane Katrina. In the 
wake of such disasters, identifying people who have 
perished is of paramount importance. 

The usefulness of the les algorithm is asserted by the 
fact that it consumes far less memory than competing 
algorithms lo and lbp. This means that greater information 
throughput may be achieved on a network and thus 
greater use of distributed computational resources is 
facilitated. 

Moreover, this means that forensic experts can store 
far more mtDNA sequences using the les algorithm than 
they could if they were using the mtDNA strings required 
by lo or lbp algorithms. Having the ability to store a huge 
number of mtDNA sequences by forensic experts could 
prove to be a boon by those forensic experts charged with 
the duty of identifying the remains of people after a 
major disaster. Having the ability to draw from a vast 
database of mtDNA strings increases the likelihood that a 
match can be made between the mtDNA collected and 
the mtDNA stored in a database. 
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