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Abstract 
 
Mutual synchronization is a ubiquitous phenomenon that exists in various natural systems. The individual 
participants in this process can be modeled as oscillators, which interact by discrete pulses. In this paper, we 
analyze the synchronization condition of two- and multi-oscillators system, and propose a linear pulse-cou-
pled oscillators model. We prove that the proposed model can achieve synchronization for almost all condi-
tions. Numerical simulations are also included to investigate how different model parameters affect the syn-
chronization. We also discuss the implementation of the model as a new approach for time synchronization 
in wireless sensor networks. 
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1. Introduction 

Synchronous flashing of fireflies is a fascinating phe-
nomenon that a large number of scientists have been 
drawn to research on. The mechanism behind this phe-
nomenon has been investigated for nearly a century. In 
1915, Blair observed and tried to examine the scientific 
reason behind it [1]. He analogize firefly to electric bat-
tery—each flash temporarily exhausts the battery, and a 
period of recuperation is required before the next flash 
can be emitted. The flash of a leader stimulates the dis-
charge of others, and in the end this makes all the fireflies 
flash in concert. Richmond presented a similar postula-
tion that if one firefly is ready to flash and sees flashes of 
others, it starts sooner than otherwise [2]. In 1988, Buck 
summarized these two battery-analogy mechanisms, and 
proposed the phase-advanced model. He defined “late 
sensitivity window” which is a time interval during the 
period between a firefly’s flashings, and concluded that 
when a photic stimulus (flashing) occurs during the late 
sensitivity window, it initiates an immediate flash and 
resets the status of the firefly. 

Although the phase-advanced model gives a fine ex-
planation to certain varieties of fireflies’ synchronization 

behavior, the interaction, which is usually called cou-
pling, between fireflies is narrowly limited to late sensi-
tivity window. Peskin extended coupling to any time of 
the cycle. In his book published in 1975 [3], Peskin pro-
posed a more detailed pulse-coupled oscillators model 
for the natural pacemaker of a human heart. He modeled 
a pacemaker as a system consisting of mutual coupled 
“integrate-and-fire” oscillators. Each oscillator is char-
acterized by state x , which satisfies 

0

dx
x S

dt
      0 1x             (1) 

where   and 0S  are intrinsic properties of the oscil-

lators. When 1x   an oscillator fires then jumps back 
to 0x  , and the states of the other oscillators will be 
kicked up by coupling strength  . Through his research, 
Peskin found that due to coupling, the states of the oscil-
lators tend to come to the same. And as the system 
evolves, all oscillators would eventually achieve the state 
of discharging in steps. Peskin proved that for a two os-
cillators system with small   and  , the system ap-

proaches a state in which the oscillators are firing syn-
chronously. Mirollo and Strogatz extended Peskin’s 
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work, and proved that an N-oscillators system with  
non-linear dynamics will achieve synchronization for 
almost all conditions [4]. 

The models discussed above were all based on pulse- 
coupling. That is, the oscillators interacted with each other 
only when one of them fires. In 1975, Kuramoto presented 
a phase-coupling model [5]. In Kuramoto model, the dy-
namic of oscillator i  in an N-oscillators system can be 
described as 

1

(sin sin )
N

i
i j i

j

d K

dt N


  



           (2) 

where i  is the natural frequency of oscillator i , K  

is the coupling strength. Kuramoto proved numerically 
that as the coupling strength is increased above a critical 
value, the system exhibits a spontaneous transition from 
incoherence to collective synchronization despite the 
difference in the natural frequencies of the oscillators [6]. 
The analytical results of Kuramoto model were obtained 
by Crawford ten years later. Using center manifold the-
ory, Crawford calculated the weakly nonlinear behavior 
of the infinite-dimensional system in the neighborhood 
of the incoherent state. A comprehensive review can be 
found in [7].  

When reviewing the development of studies in syn-
chronous flashing of firefly, it can be observed that the 
main researchers ranged from biologists to mathemati-
cians and physicians, then to computer scientists and 
engineers. Recently, the application of the mechanism in 
synchronization of computer network and neural network 
makes the research of pulse-coupled oscillators again a 
popular topic. When applying oscillator based methods 
to network synchronization, phase-coupling is not ideal, 
because the coupling during all oscillating cycle is diffi-
cult to be implemented. However, the pulse-coupling 
models proposed by Peskin and Mirollo & Strogatz are 
not suitable for direct application either, because there 
are certain assumptions in the model that are difficult to 
be guaranteed in practical applications. Firstly, those 
models are all based on instant coupling, implying the 
pulse is received without any delay, while the propaga-
tion delay in wireless communication cannot be ne-
glected. Ernst, Pawelzik, et al. [8,9] presented a complete 
mathematical analysis of two oscillator system with de-
lay, and numerical simulation of multi-oscillators. They 
came to the conclusion that the synchronization can still 
be achieved if inhibitory couplings ( 0  ) are adopted. 
Secondly, all-to-all coupling limits the application in 
computer networks which are by nature distributed sys-
tems. A comprehensive summary of works on Mirollo 
and Strogatz’s model (M&S model) with neighbor 
communication can be found in [10]. There is also work 
reported for the application of the pulse-coupled model. 
Hong and Scaglione firstly implemented the M&S model 
on a Ultra Wideband network [11], and in [12] they 

comprehensively investigated how the parameters in 
pulse-coupled model affected the synchronization preci-
sion. Werner-Allen, Tewari, et al. [13] discussed their 
encounter problems when implementing the model on a 
wireless sensor network (WSN) testbed, and proposed 
some programming technologies to overcome them. 

From the above discussion, we know that the applica-
tion of pulse-coupled model to the synchronization of 
wireless network is no easy work. Moreover, when this 
model is applied to WSN, which usually adopts a micro- 
controller as its processor, the limitation of computa-
tional ability must also be considered. The non-linear 
dynamic makes it difficult for a micro-controller to work 
efficiently. (e.g. Ref. [13] used first order Taylor expan-
sion for approximation.) In this paper, we propose a 
pulse-coupled oscillators model with linear dynamic. The 
synchronization issue is discussed, and we prove that the 
presented model can achieve synchronization for almost 
all conditions. We also include numerical simulations to 
validate the effectiveness of the model and investigate 
how model parameters affect the synchronization. 

The rest of the paper is organized as follows. Section 2 
describes the model and coupling among oscillators. In 
Section 3 and 4 respectively, we prove two- and multi- 
coupled oscillators can achieve synchronization for the 
presented model. Section 5 presents numerical simula-
tion and analysis of the results. In Section 6, we summa-
rize our major work, and discuss the implementation of 
the model as a new approach for time synchronization in 
wireless sensor networks. 

 
2. Model Descriptions 
 

For the Peskin model 0

dx
x S

dt
   , let 0  , 

0

1
S

T
  and [0, ]t T , we have 

1dx

dt T
 . Integrating 

the differential equation above yields 
t

x
T

 . We define 

T as the cycle period and 
t

T
   as the phase variable. 

Then we obtain our linear model 

( )x f        [0,1]         (3) 

Due to the fact that the state variable always equals to 
the phase variable, we use   to represent both the state 

variable and the phase variable. 
Coupling is an important mechanism. It is the only 

communication method among oscillators. Therefore, a 
multi-oscillator system can be modeled as an “inte-
grate-and-fire” oscillator network. Each oscillator in the 
system evolves following linear relationship mentioned 
in (3). When 1i  , the i th oscillator “fires”, and re-

turns to the state 0i  . At the same time, it pulls all the 
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other oscillators up by its coupling strength, or pulls 
them up to firing, whichever is less. That is,  

1 min(1, )i j j i       , j i       (4) 

where i  is the coupling strength of i . We assume that 

all the oscillators’ coupling strength stay constant and are 
distributed in a close interval [ , ]a b . 

 

3. Proof of Synchronization of Two Coupled 
Oscillators  

An oscillators system consisting of two coupled oscilla-
tors is the simplest, and hence can be studied thoroughly. 
Therefore, we first discuss the synchronization of two 
coupled oscillators. We define and compute the firing 
map and return map, based on which we present the 
synchronization condition of two oscillators. Then we 
prove that, if the condition is satisfied, the two oscillators 
will always achieve synchronization. 

3.1. Firing Map and Return Map of Two    
Coupled Oscillators 

Firing map and return map are effective tools for study 
of the evolution process of oscillators system. Snapshots 
are taken when an oscillator fires, and by studying these 
snapshots we can explore the relationship of oscillators 
phases.  

Definition 1 [return map of B about A]: Given two os-
cillators A and B, assuming that at the instant after one 
firing of A the phase of B is  , the return map of B 

about A | ( )B AR   is defined as the phase of B after the 

next firing of A.  
Definition 2 [firing map of A about B]: Given two os-

cillators A and B, assumes that at the instant after one 
firing of A the phase of B is  , the firing map of A 

about B | ( )A Bh   is defined as the phase of A after the 

next firing of B. 
For oscillators A and B, assume at the instant after A 

fires, the phase of B is  . After a time period of 1  , 
B reaches its firing threshold. At the same time the phase 
of A changes from zero to 1  . B fires after an instant, 

and A jumps to 1A B      or 1, whichever is less. 

If 1A  , the two oscillators achieve synchronization; 

therefore we assume that 1 1A B      , we have 
the firing map of A about B 

| ( ) 1A B Bh                  (5) 

From the analysis above, after one firing, the system 
has evolved from the initial state ( , ) (0, )A B    to the 

current state |( , ) ( ( ),0)A B A Bh   . This implies the 

system is similar as what it was at the beginning, with   

being replaced by | ( )A Bh   and two oscillators being 

interchanged. Therefore, the return map of B about A can 
be calculated as 

| | |( ) ( ( )) ( )B A B A A B A BR h h              (6) 

 
3.2. Synchronization Condition of Two Coupled 

Oscillators 
 
From (6), it can be established that each time when A 
fires, the phase of B increases by A B   from the 

last firing of A. With this fact, we can infer the fol-
lowing synchronization condition for two coupled os-
cillators. 

Theorem 1 [synchronization condition of two coupled 
oscillators]: Given two oscillators A and B with their 
coupling strengths satisfying  

A B                     (7) 

they will achieve synchronization. 
Proof: From our assumption, we know that A  and 

B  maintain constant during the evolution. Hence, since 

0A B A B       , we obtain 

| ( )B A B BR    if 0A B    

| ( )B A B BR    if 0A B    

Therefore, from any initial state of A and B, the 
phases of the two oscillators move monotonically toward 
0 or 1. In other words, the two coupled oscillators will 
always reach synchronization. 

4. Proof of Synchronization of 
Multi-Oscillators System 

The evolution of a multi-oscillators system is much more 
complicated than that of two coupled oscillators. When 
two oscillators fires synchronously, they will clump to-
gether, and absorb to a group that acts as one single os-
cillator with a bigger coupling strength. This makes it 
easier for other oscillators to join their group, and leads 
to a positive feedback process. There may exist several 
groups during the evolution, but as this process goes on, 
the number of groups decreases, and eventually, all 
groups will clump to one big group, when the whole 
system achieves synchronization.  

As with the discussion of two coupled oscillators, we 
first define firing map and return map of multi-oscillators 
system, and then discuss the absorption, through which 
the oscillators clump together into groups. Base on these 
definitions, we present the synchronization condition for 
a multi-oscillators system. Finally, we prove that the 
synchronization condition can be satisfied, except for a 
set of coupling strengths with zero Lebesgue measure. 
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4.1. Firing Map, Return Map and Absorption in 
Multi-Oscillators System 

Firing map and return map are also essential in discuss-
ing synchronization in multi-oscillators system. Consider 
two oscillators i and j in an N oscillators system that 
never synchronize with other oscillators in the system 
during their evolution. Assume the phase of j is  , at the 

instant that i has just fired. Without considering the fir-
ings of other oscillators, after 1  , j will fire. However, 

the firings of other oscillators decrease this period to 
1 k

k

 


   (  is the set of subscripts of oscillators 

which will fire before j fires). Similarly, the firings of 
oscillators in   also increase the phase of j by k

k



 . 

Hence, we have the firing map of i about j: 

| ( ) 1 1i j k j k j
k k

h       
 

            (8) 

Similar to the case of two coupled oscillators, the re-
turn map of i about j can be written as 

| ( ) ( )i j j iR                  (9) 

When two oscillators synchronized, they will clump 
together and form a synchronous firing group which acts 
as a single oscillator with larger coupling strength. If that 
happens we call an absorption occurred, and the coupling 
strength of a group formed by A and B can be computed 
as 

AB A B                   (10) 

4.2. Synchronization Condition of 
Multi-Oscillators System 

 
Similar to the discussion of two coupled oscillators, our 
analysis of multi-oscillators system is also based on the 
return map. The difference is when discussing two oscil-
lators in a multi-oscillator, the firing of other oscillators 
must also be considered. 

Theorem 2 [synchronization condition of multi-oscil-
lators system]: Given an N oscillators system, let 

1 2{ , , , }NS      be the set of the coupling strengths of 

all oscillators in the system. The system will achieve 
synchronization, if the following conditions are satisfied. 

1 2m n

m n
S S 

 
 

   1 2 1 2, ,S S S S S       (11) 

Proof: First, we are to prove by contradiction that if 
the condition is satisfied, absorption is sure to occur. 
Assume absorption never occurs during the evolution of 
an N oscillators system. For two individual oscillators or 
oscillator groups i, j in the system, let 

1m

i m
S

 


  , 
2n

j n
S

 


   

Since i  and j  are the sums of several  s and 

none of the oscillators in i and j are identical, we have 

1 2 1 2, ,S S S S S    

From (11), we know that  

i j   

Furthermore, for a multi-oscillator in which absorption 
never occurs, i  and j  stay constant. Therefore, 

similar to the discussion in the case of two coupled os-
cillators, from the return map (9) we know the phases of 
i, j are driven monotonically toward 0   or 1  . 

That is to say, absorption must occur, which contradicts 
with our assumption. Therefore, absorption in an N os-
cillators system always occurs.  

From the analysis above, we know that absorption al-
ways occurs in a multi-oscillators system satisfying con-
dition (11). And after the absorption, an N oscillators 
system evolves to an N-1 oscillators system with a 
slightly different set of parameters. As this process con-
tinues, all N oscillators will eventually evolve into one 
single group, and the synchronization of the whole sys-
tem is achieved. 

We now prove the synchronization condition (11) can 
be satisfied except for a set of coupling strengths with 
zero measure. 

Theorem 3: For an N oscillators system, each oscilla-
tor in the system has a coupling strength within [ , ]a b . 

The system will achieve synchronization, except for a set 
of coupling strengths in [ , ]Na b  with zero Lebesgue 

measure.  
Proof: Let 1 2( , , , )n     , which is an element in 

an N-dimensions subset [ , ]Na b of nR , and 

1 2{ , , , }NS      be a set consisting of all the compo-

nents of  . We are now going to prove the set of   in 
[ , ]Na b

 
which satisfies 

1 2m n

m n
S S 

 
 

  1 2 1 2, ,S S S S S       (12) 

has a Lebesgue measure of zero. 
Let 

1 2

( )
m n

m n
S S

f
 

 
 

    , then ( )f E  can be rep-

resented as  

1 1 2 2( ) N Nf a a a        

where 
1

1 2

2

1

0

1

k

k k

k

S

a S S S

S






   
 

,which indicates 

( )f   is a hyperplane in [ , ]Na b . Furthermore, the 

amount of such hyperplanes is less than 3
2

N
, not 
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unlimited. Therefore, the set of   satisfying condition 
(12) has the a Lebesgue measure of zero. 

With Theorem 2, we found the synchronization condi-
tion for a multi-oscillators system, and proved if the con-
dition is satisfied the system will achieve synchroniza-
tion. Then in Theorem 3, we proved the condition will be 
satisfied except for a set of coupling strengths with zero 
measure. Combining the two theorems, we proved the 
presented multi-oscillators system will achieve synchro-
nization except for a set of coupling strengths with zero 
measures. 

5. Numerical Simulation and Analysis 

To validate that the synchronization can be established 
for the presented model and investigate how model pa-
rameters affect the synchronization process, we perform 
a numerical simulation of the model in a Java environ-
ment. Every simulation consists of an initialization stage 
and a simulation stage. In the former, the parameters of 
the model are initialized, which includes the number of 
oscillators ( n ), the period (T ), oscillator phase ( ) and 

coupling strength ( ). Due to the limitation of computer  

 
(a) 

 
(b) 

Figure 1. Phase and standard deviation of phase during the 
synchronization process with n = 100, _base = 0.005, 
_ratio = 0.1. 
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Figure 2. Cycle numbers to achieve synchronization versus 
_ratio with _base = 0.01 for n = 10, 100 and 1000. 
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Figure 3. Cycle numbers to achieve synchronization versus 
n with _ratio = 0.1 for various _base. Because when n and 
_base are both very small, the cycle numbers until syn-
chronization is going to be very large. To show the detail of 
all the plots, the figure is ploted from n = 50. 
 
simulation, T ,   and   are all discretized to inte-

gers. Specifically, T  is set to a large number 
(10000000), and   is generated randomly between [0, 

T ].   is generated randomly between [ _ base  

1
_ * _ ,

2
base ratio 

1
_ _

2
base  *base  _ ratio ], 

where _ base  , _ ratio  are “coupling strength base 

value” and “coupling strength interval ratio” respectively. 
The simulation stage consists of many cycles. During 
each cycle, the oscillator with the maximum phase is 
found first, and the system is forwarded to the firing in-
stant of the oscillator. Then all the oscillators’ phases are 
adjusted according to the coupling strength of the fired 
oscillator. Finally, all the fired oscillators are combined 
into a group with new coupling strength computed by 
(10). This cycle repeats until there is only one group left. 
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Additionally, to avoid the effect of arbitrary randomness 
of   and  , every simulation related to cycles to syn-

chronization is done 1000 times, and the average of 800 
values in the center range (eliminate the maximum 100 
results and the minimum 100 results) is adopted as the 
final result. 

We first simulate the synchronization process. The re-
sults are shown in Figure 1. Figure 1(a) shows the phases 
of oscillators at different cycles. Each dash in the figure 
represents the phase of a particular oscillator or oscillator 
group, and the phases are plotted every time when the 
phase of oscillator No.0 returns to 0. (As a result, there is 
always a dash at 0  ) We can see from the plot that as 

cycles continue, the number of dashes decrease, indicat-
ing that the oscillators gradually clump into groups. In 
the end, when there is only one group left, the oscillators 
achieve synchronization. Figure 1(b) shows the standard 
deviation of the oscillators’ phases during the same 
process. From the figure, we can find that at the begin-
ning the standard deviation generally increases as the 
evolution progresses, but each time when absorption 
happens the standard deviation decreases. Near the end, 
when there are only two groups, the standard deviation 
decreases dramatically, and finally reaches zero. 

We then investigate how the parameters ( n , _ base  

and _ ratio ) affect the number of cycles needed to 

achieve synchronization. Figure 2 shows required cycle 
number to achieve synchronization as a function of 

_ ratio  with _ base  = 0.01 for n = 10, 100 and 

1000. From Figure 2, we can see that when n  is big 
enough the cycle number to synchronize does not change 
with _ ratio . We now discuss the reason behind this 

phenomenon. Suppose i is an oscillator in a 
multi-oscillators system, then every time when i fires, its 

phase increases by 
1,

n

kk k i


  . In this simulation, al-

though _ ratio  varies, the sum of all   lies on 

_ base . Furthermore when n  is big enough, the sum 

1,

n

kk k i


   will approximate the sum of all  . There-

fore, the cycles needed stay the same. We also notice that 
when n  and _ ratio  are both small, more cycles are 

needed to synchronize. This is because, if _ ratio  is 

small the   of all oscillators will be almost the same. 
Due to the linear dynamic, the deviation of all the oscil-
lators’ phases increases slowly, so more cycles are 
needed. 

Following above analysis, we know that the _ ratio  

will not affect the result if n  is not a very small number. 
So we fix the value of _ ratio  to 0.1 and discuss how 

number of cycles needed to synchronize varies with dif-
ferent values of n  and _ base . 

Figure 3 shows number of cycles required to achieve  
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Figure 4. Cycle numbers to achieve synchronization versus 
_base with _ratio = 0.1 for various n. Because when n and 
_base are both too small, the cycle number to synchro-
nized is too large. To show the detail of all the plots, the 
figure is plotted from_base = 0.015. 
 
synchronization versus n  for various _ base . For a 

fixed _ base , cycle numbers decrease with the in-

crease of n . The reason is that the more oscillators there 
are in the system, the easier it is for the oscillators to 
absorb to synchronous firing groups. And the   of a 
group is the sum of   of all oscillators in that group, so 
it is equivalent to increase the   of the oscillator. 
Therefore, system tends to synchronize earlier. 

Figure 4 shows cycle numbers to achieve synchroniza-
tion versus _ base  with _ 0.1ratio   for various 

values of n . In the figure, we can find that for a certain 
number of oscillators, the larger   is, the less cycles 
are needed to achieve synchronization. This is because 
the return map increases with the increase of  , and the 
system tends to synchronize faster. 

From the simulation result presented in this section, 
we can draw the following conclusion. First, as we dis-
cussed in Subsection 4.1, with the evolution of a 
muti-oscillator system, the oscillators in the system tend 
to clump together into synchronous firing groups. When 
there is only one group left, the system achieves syn-
chronization. Second, the number of cycles to achieve 
synchronization depends on n  and _ base ; a larger 

n  or _ base  may lead to faster synchronization, and  

_ ratio  will have no effect on the number of cycles to 

synchronize, unless n  is very small. To summarize, the 
simulations match well with our theoretical analysis. 

 
6. Conclusions and Future Work 

 
In this paper, we proposed a model for linear pulse-cou-
pled oscillators system with different coupling strengths. 
We discussed the synchronization condition for both 
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two- and multi-oscillators system, and proved that the 
proposed system can achieve synchronization for almost 
all conditions. Simulations of the model in a Java envi-
ronment are also included, which validated the model 
and investigated how different parameters affect the 
synchronization. 

As a swarm of fireflies, a WSN consists of a number 
of wireless sensor nodes that interact with each other via 
radio communications. Therefore, if the model presented 
in this paper is applied as a new approach for time syn-
chronization in WSNs, the algorithm would be more 
scalable and robust. In the implement, the phase de-
scribed in the model is represented by a counter, which 
moves monotonically towards a threshold T , corre-
sponding to the period of the oscillator. When the 
counter reaches T , it jump back to zero and triggers an 
interrupt follow with a new cycle. In the interrupt han-
dler, a packet containing the node’s coupling strength   
is sent out, which will be used by other nodes to add to 
their own counter. In this manner, all the counters will be 
synchronized after a few cycles as what has been dis-
cussed in the simulation. However, there is also factors 
must be considered before this model can be adopted 
practically, including the message delay, the message 
collision, the network topology and so on. The imple-
ment of the model on a WSN testbed will be included in 
our future work. 
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