

Synthesis and Photoluminescence of $(La_{1-x}, Tb_x)_2O_2S$ Nano-Phosphors by Co-Precipitation Method

Jing-bao Lian¹, Bing-xin Wang¹, Xu-dong Sun^{2*}, Xiao-dong Li²

¹School of Mechanical Engineering, Liaoning Shihua University, Fushun, 113001, China ²Key Lab for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110004, China Email: lianjingbao@yahoo.com.cn

Abstract: $(La_{1-x}, Tb_x)_2O_2S$ nano-phosphors were synthesized by calcined the $(La_{1-x}Tb_x)_2(OH)_4SO_4 \cdot nH_2O$ precursors in hydrogen atmosphere using commercially available La_2O_3 , Tb_4O_7 , H_2SO_4 and NaOH as the starting materials. The formation and characterization of $(La_{1-x}, Tb_x)_2O_2S$ nano-phosphors were investigated by means of FT-IR, XRD, FE-SEM and PL spectra. The results confirmed that the as synthesized precursor was composed of $(La_{1-x}, Tb_x)_2(OH)_4SO_4 \cdot nH_2O$ crystalline state and could be transformed into single phase $(La_{1-x}, Tb_x)_2O_2S$ by calcined at 800 °C for 1 h in hydrogen atmosphere. The synthesized $(La_{1-x}, Tb_x)_2O_2S$ phosphor particles are quasi-spherical and well dispersed, with a mean particle size of about 50-70 nm. Under 260 nm UV light excitation, the emission spectrum of $(La_{0.98}, Tb_{0.02})_2O_2S$ nano-phosphor is composed of a series of peaks centered at 491 nm, 545 nm, 588 nm and 621 nm, corresponding to the ${}^5D_4 \rightarrow {}^7F_j$ (J = 6 \sim 3) transitions of Tb³⁺ ions, respectively. The predominant green emission peak located at 545 nm is attributed to the ${}^5D_4 \rightarrow {}^7F_5$ transition of Tb³⁺ ions. The decay processes of $(La_{0.98}, Tb_{0.02})_2O_2S$ nano-phosphor include a fast and a slow process and have a double exponential decay behavior. With increasing calcination temperature, the life-time of $(La_{0.98}, Tb_{0.02})_2O_2S$ nano-phosphor is composed of a series in hydrogen atmosphere.

Keywords: La₂O₂S; nano-phosphor; co-precipitation; reduction; photoluminescence

(La_{1-x}, Tb_x)₂O₂S 纳米粉体的共沉淀法合成及光致发光研究

连景宝¹, 王秉新¹, 孙旭东^{2*}, 李晓东²

¹辽宁石油化工大学机械工程学院,抚顺,中国,113001 ²东北大学材料各向异性与织构教育部重点实验室,沈阳,中国,110004 Email: lianjingbao@yahoo.com.cn

摘 要: 采用 La₂O₃、 Tb₄O₇、 H₂SO₄ 和 NaOH 为实验原料,通过在氢气气氛下煅烧 (La_{1-x},Tb_x)₂(OH)₄SO₄•nH₂O 前驱体合成了(La1-x,Tbx)₂O₂S 纳米粉体。利用红外光谱(FT-IR)、X 射线衍 射(XRD)、场发射扫描电子显微镜(FESEM)和光致发光(PL)光谱等手段对合成的粉体进行了表征。研究 表明前驱体为晶态,在氢气气氛下 800 ℃煅烧 1 小时可以转化为单相的(La_{1-x},Tb_x)₂O₂S。所合成的 (La_{1-x},Tb_x)₂O₂S 粉体具有近球形,分散性好,平均颗粒尺寸大约 50-70 nm 左右。在 260 nm 的紫外光激 发下,(La_{0.98},Tb_{0.02})₂O₂S 纳米粉体的发射光谱由 491 nm、545 nm、588 nm 和 621 nm 等一系列发射峰组 成,分别归属于 Tb³⁺从 ⁵D₄到 ⁷F₁(J=6~3)的跃迁,主发射峰位于 545 nm,呈现绿光发射,归属于 Tb³⁺ 的 ⁵D₄→⁷F₅跃迁。(La_{0.98},Tb_{0.02})₂O₂S 纳米粉体的余辉衰减过程由一快过程和一慢过程组成,且具有 e 的 双指数衰减行为。随着煅烧温度的增加,(La_{0.98},Tb_{0.02})₂O₂S 中氧和硫空位增加,荧光寿命变短。

关键词: La₂O₂S; 纳米粉体; 共沉淀法; 还原; 光致发光

1 引言

稀土硫氧化物 Ln₂O₂S(Ln=Y, La, Gd, Lu)具 有较宽的禁带宽度(4.6-4.8 eV),掺杂激活离子后具有

*基金项目:国家自然科学基金(50672014) 国家杰出青年科学基金(50425413) 非常高的发光效率,是一类高性能发光基质材料,已 广泛应用于彩色电视显像管、X 射线增强屏、平板显 像和其它显示设备等方面^[1-3]。近年来,Yu.V.Orlovskii 等^[4]报道Nd³⁺离子掺杂的La₂O₂S半透明陶瓷具有高量 子效率,有望作为新型激光器材料而获得应用。另外, 当La₂O₂S:Re³⁺粉体纳米化后,具有发光强度大、单色 性好、发光稳定性好、荧光寿命长和上转换发光等光 学性能以及化学稳定性好,生物毒性低等优点,使其 在生物医学领域的发光标记探针方面有广泛的应用前 景^[5]。

目前合成 Ln₂O₂S(Ln=Y, La, Gd, Lu)粉体的 方法有固相法^[6]、还原法^[7]、燃烧法^[8]、溶剂热合成法 ^[9]、乳状液膜法^[10]、热分解法^[11]和明胶网格模板法^[5] 等。其中,固相法和还原法合成的粉体比较粗,很难 满足显示设备对高分辨率的要求。燃烧法使用的原料 相对昂贵,成本较高,并且很难获得纯相。溶剂热合 成法需使用高压釜且产率低。乳状液膜法和分解法合 成过程中要使用有毒气体(H₂S、CS₂等);明胶网格法 合成工艺比较复杂。本文采用 La₂O₃、Tb₄O₇、H₂SO₄ 和 NaOH 为实验原料,通过在氢气气氛下煅烧 (La_{1-x},Tb_x)₂(SO₄)₃和 NaOH 共沉淀所获得的前驱体 (La_{1-x},Tb_x)₂O₂S 纳米粉体,克服了上述方法的缺点,并 研究了(La_{1-x}Tb_x)₂O₂S 纳米粉体的光致发光特性。

2 实验过程

2.1 样品制备

实验原料为 La₂O₃(99.9%,上海跃龙新材料有限公司)、Tb₄O₇(99.9%,南方稀土高科技股份公司)、H₂SO₄(GR,沈阳新化试剂厂)、NaOH(AR,国药化学试剂有限公司)和乙醇(99%,沈阳力诚试剂厂)。首先,将 La₂O₃和 Tb₄O₇按化学计量比溶于稀硫酸溶液中配成 0.01 M 的(La_{1-x},Tb_x)₂(SO₄)₃溶液(x=0,0.02),另将 NaOH 溶于去离子水中配成 0.2 M 的 NaOH 溶液。然后,按照(La_{1-x},Tb_x)₂(SO₄)₃和 NaOH 的摩尔比(1:4),以 2 mL/min 的滴定速度将 200 mL NaOH 溶液滴加到 1000 mL(La_{1-x},Tb_x)₂(SO₄)₃母液中,并不断搅拌。随后将所获得的前驱体沉淀用去离子水和乙醇离心清洗,80 ℃干燥 12 小时后研磨。最后,在氢气气氛下将所获得的前驱体分别在 600 ℃、800 ℃和 900 ℃煅烧1 小时以获得所需样品。为了防止样品被氧化,停止加 热后通入氮气保护样品至 300 ℃出炉。

2.2 样品表征

采用 PerkinElmer FT-IR Spectrum RXI 型红外光 谱仪测量样品的红外光谱。采用 X pert Pro X 射线衍 射仪测定样品的物相结构,工作电压为 40 kV,工作 电流为 40 mA,扫描速度为 12 °(20)/min。采用 JEOL JSM-7001F 场发射扫描电子显微镜观察样品的形貌。 采用 PerkinElmer LS55 荧光分光光度计测量样品的激 发光谱、发射光谱和余辉衰减,以氙灯作为激发光源, 所有测试均在室温下进行。

3 结果与讨论

图 1 为前驱体的红外吸收光谱图。从图中可以看 出,前驱体在 3000-3700 cm⁻¹(峰位: 3604 cm⁻¹, 3580 cm⁻¹, 3534 cm⁻¹, 3480 cm⁻¹)范围内存在宽的吸收带和 1630 cm⁻¹ 附近的弱吸收峰, 归属为水分子中 O-H 的伸 缩振动峰和弯曲振动峰,这说明前驱体中存在羟基水、 结晶水和表面吸附水。前驱体在1125 cm⁻¹附近的强吸 收峰和 993 cm⁻¹ 附近的弱吸收峰,分别归属于 SO4²⁻ 的不对称伸缩振动和对称伸缩振动,在约 600 cm⁻¹ 附 近的一系列吸收峰和 430 cm⁻¹ 弱吸收峰分别归属于 SO4²⁻的不对称弯曲振动和对称弯曲振动,说明前驱体 中含有 SO42-。位于 1507 cm-1 和 1396 cm-1 附近的吸收 峰是 CO3²的不对称劈裂伸缩振动吸收峰,这是因为前 驱体极易吸附空气中的 H₂O 和 CO₂ 而生成了 CO₃²所 致: 位于 2930 cm⁻¹和 2850 cm⁻¹附近的弱吸收峰对应 于--CH2-和--CH3的振动^[12],说明前驱体中存在--OC2H5 基团,来源于前驱体干燥过程中残留的乙醇所致。

图2是前驱体及其在氢气气氛下不同温度煅烧产物的X射线衍射图谱。从图2a可以看出,前驱体为晶态,但在X射线衍射图谱库中未检索到与其相对应的物质,根据合成过程中La₂(SO₄)₃和NaOH的摩尔比(1:4),在此认为其组成应近似为La₂(OH)₄SO₄•nH₂O。当前驱体600 ℃煅烧后(图2b),尽管其衍射峰明显宽化,但其衍射峰的位置与标准卡片(JCPD01-085-1534)

对照,证实产物为单斜晶系的La₂O₂SO₄。当前驱体800 ℃煅烧后,从图2c可以看出,其衍射峰与六方晶系的 La₂O₂S(JCPD00-027-0263)吻合得很好,说明前驱体已 经转化为单相的La₂O₂S。图2d是Tb³⁺掺杂的 (La_{0.98},Tb_{0.02})₂O₂S粉体800 ℃煅烧产物的X射线衍射图 谱。从图中可以看出,其衍射峰的位置与图2c几乎没 有差别,这是因为La³⁺和Tb³⁺的半径分别为0.1061 nm 和0.0923 nm,相差很小且掺杂量相对较少,Tb³⁺取代 La₂O₂S中La³⁺位置,对晶体结构未产生明显影响。前 驱体在煅烧过程中的反应如下:

 $La_{2}(OH)_{4}SO_{4} \bullet nH_{2}O = La_{2}O_{2}SO_{4} + (n+2)H_{2}O\uparrow$ (1)

(2)

$$La_2O_2SO_4+4H_2=La_2O_2S+4H_2O\uparrow$$

Figure 2. XRD patterns of the precursor and the calcination products at different temperature in hydrogen atmosphere
图 2. 前驱体及其氢气气氛下不同温度煅烧产物的 X 射线衍射图谱

图 3 是前躯体及其在氢气气氛下 800 ℃和 900 ℃ 煅烧产物的 FESEM 照片。从图 3a-3c 可以看出,前躯 体团聚较重,尺寸约 20-30 nm。当其 800 ℃煅烧后, 所合成的粉体呈近球形,尺寸约 50-70 nm,由于合成 过程中生成的水蒸气有利于阻止颗粒之间的团聚,粉 体分散性良好,适合用作高分辨率显示设备的荧光粉。 随着煅烧温度的提高(900 ℃),许多近球形颗粒之 间形成烧结颈,粉体呈纺锤形。

图 4 是前驱体及其在不同温度煅烧的 (La_{0.98},Tb_{0.02})₂O₂S 纳米粉体的激发和发射光谱。从图中 可以看出,前驱体的激发和发射光谱几乎均呈直线,说 明前驱体是不发光的,这可能与其晶体结构和结晶性 很差有关。前驱体在 800 ℃和 900 ℃煅烧后的粉体激 发和发射光谱具有类似的形状,但 900℃煅烧后的粉 体光谱强度较大,这是由于煅烧温度的提高,晶体发 育完善、结晶良好有关。由图 4a 所示,800℃煅烧的

(La_{0.98},Tb_{0.02})₂O₂S纳米粉体的激发光谱在200-350 nm 范围内存在宽带吸收,主要由两部分组成,一部分位 于260 nm附近的吸收带是来源于基质晶格的吸收。另

一部分属于Tb³⁺的4f⁸-4f⁷5d的跃迁吸收,大约位于290 nm。当煅烧温度为900 ℃时,Tb³⁺相对于基质晶格吸 收的吸收强度过弱而被掩盖,能量传输过程主要是基 质晶格通过自由电子和空穴的扩散把能量传输给Tb³⁺ 位置而被Tb³⁺俘获^[13]。在260 nm的紫外光激发下,发 射光谱由491 nm、545 nm、588 nm和621 nm等一系列 宽发射峰组成,分别归属于Tb³⁺从⁵D₄到⁷F_J(J=6-3)的跃 迁,主发射峰位于545 nm,呈现绿光发射,归属于Tb³⁺ 的⁵D₄→⁷F₅跃迁。

 $\label{eq:Figure 4. Excitation (a) and emission spectra (b) of the precursor and (La_{0.98}, Tb_{0.02})_2O_2S nano-phosphors calcined at different tem-$

perature 图 4. 前驱体和不同温度煅烧的(La_{0.98},Tb_{0.02})₂O₂S 纳米粉体的 激发光谱(a)和发射光谱(b)

图 5 是不同温度煅烧的(La_{0.98},Tb_{0.02})₂O₂S 纳米粉 体在 260 nm 紫外光激发下的余辉衰减曲线。我们先用 简单的一级 e 指数衰减函数对曲线 a 和 b 进行拟合, 发现拟合效果不好, 而用二级 e 指数衰减函数

I=I₀+A₁exp(-t/τ₁)+ A₂exp(-t/τ₂) (3) 对衰减曲线 a 和 b 进行拟合,拟合曲线与实验数据吻 合得很好,其中拟合精度 R²分别为为 0.99993 和 0.99994,表明不同温度煅烧的(La_{0.98},Tb_{0.02})₂O₂S 纳米 粉体均按 e 双指数形式衰减,它的余辉衰减过程由一 快过程和一慢过程组成,可以认为快过程和慢过程分 别与(La_{0.98},Tb_{0.02})₂O₂S 纳米粉体颗粒表面附近的低结 晶度环境中和颗粒内部的高结晶度环境中 Tb³⁺衰减有 关,且曲线 a 和 b 分别满足指数衰减方程:

I=41.69+85.44exp(-t/
$$\tau_1$$
)+159.18exp(-t/ τ_2) (4)
(τ_1 =0.73ms, τ_2 =1.59ms)

$$I=41.89+126.72\exp(-t/\tau_1)+192.86\exp(-t/\tau_2)$$
(5)

$$(\tau_1=0.65 \text{ms}, \tau_2=1.47 \text{ms})$$

从拟合结果来看,相对于800℃煅烧的粉体而言,900 ℃煅烧粉体的快过程和慢过程的衰减时间均较短。这 是因为尽管后者的结晶性相对较好,然而在氢气气氛 下其氧空位和硫空位数量也较多,这些空位缺陷充当 了发光过程中的猝灭中心,使荧光寿命变短。

Figure 5. Decay curves of (La_{0.98},Tb_{0.02})₂O₂S nano-phosphors calcined at different temperature under under 260 nm UV excitation 图 5. 不同温度煅烧的 (La_{0.98},Tb_{0.02})₂O₂S 纳米粉体在 260 nm 紫外 光激发下的余辉衰减曲线

4 结论

(1) 采用La₂O₃、Tb₄O₇、H₂SO₄和NaOH为实验原料,通过控制(La_{1-x},Tb_x)₂(SO₄)₃和NaOH的摩尔比合成了(La_{1-x}Tb_x)₂(OH)₄SO₄•nH₂O前驱体。该前驱体在氢气气氛下800℃煅烧1小时可转化为近球形、尺寸约50-70nm的(La_{1-x},Tb_x)₂O₂S纳米粉体。

(2) $(La_{0-98}, Tb_{0-02})_2O_2S$ 纳米粉体在260 nm的紫外光 激发下呈现绿光发射,主发射峰位于545 nm,归属于 Tb³⁺离子的⁵D₄→⁷F₅跃迁,其余辉衰减过程由一快过程 和一慢过程组成,具有e双指数衰减行为,与不同结晶 环境中的Tb³⁺衰减有关。

References (参考文献)

- R.Vali. Electronic, dynamical, and dielectric properties of lanthanum oxysulfide[J]. Computational Materials Science, 2006, 37(3): 300-305.
- [2] Kang C C, Liu R S. The Effect of Terbium Concentration on the Luminescent Properties of Yttrium Oxysulfide Phosphor for FED Application [J]. Journal of Luminescence, 2007, 122-123: 574-576.
- [3] Pires Ana Maria, Serra Osvaldo Antonio, Davolos Marian Rosaly. Yttrium oxysulfide nanosized spherical particles doped with Yb and Er or Yb and Tm: efficient materials for up-converting phosphor technology field [J]. J Alloys Compounds, 2004, 374(1-2): 181-184.
- [4] Orlovskii Yu.V., Basiev T.T., Pukhov K. K.. Oxysulfide optical ceramics doped by Nd³⁺ for one micron lasing [J]. Journal of Luminescence, 2007, 125(1-2): 201-215.

- [5] Zhigang Liu, Xudong Sun, Jingbao Lian, et al. Gelatin Template Synthesis of La₂O₂S Nano-particles [J]. Journal of Wuhan University of Technology, 2007, 29(10): 105-108. 刘志刚,孙旭东,连景宝,等.明胶网络模板法合成La₂O₂S纳米颗 粒)[J]. 武汉理工大学学报, 2007, 29(10): 105-108.
- [6] Popovici Elisabeth-Jeanne, Muresan Laura, Hristea-Simoc Amalia et al. Synthesis and characterisation of rare earth oxysulphide phosphors. I. Studies on the preparation of Gd₂O₂S:Tb phosphor by the flux method [J]. Optical Materials, 2004, 27(3): 559-565.
- [7] Leppert. Method for producing rare earth oxysulfide powder [P]. US:6296824 B1, 2001
- [8] Bang Jungsik, Abboudi Mostafa, Abrams Billie et al. Combustion synthesis of Eu-, Tb-and Tm-doped Ln₂O₂S(Ln=Y,La,Gd) phosphors[J]. Journal of Luminescence, 2004, 106(3-4): 177-185.
- [9] Jinyong Kuang, Yingl iang Liu, Jingxian Zhang, et al. Solvothermal Synthes is of Nano- sphere- like La₂O₂S:Eu³⁺ Phosphor [J]. Chemical Journal of Chinese Universities 2005, 26(5): 822-824 邝金勇,刘应亮,张静娴,等. 溶剂热合成纳米球状La₂O₂S:Eu³⁺ 荧光粉[J]. 高等学校化学学报, 2006, 26 (5): 822-824.
- [10] Takayuki Hirai, Takashi Hirano, Isao Komasawa. Preparation of Gd₂O₃:Eu³⁺and Gd₂O₂S:Eu³⁺Phosphor Fine Particles Using an Emulsion Liquid Membrane System [J]. Journal of Colloid and Interface Science, 2002, 253(1): 62-69.
- [11] Chongfeng Guo, Lin Luan, Changhong Chen, Dexiu Huang, Qiang Su. Preparation of Y₂O₂S:Eu³⁺ phosphors by a novel decomposition method [J]. Materials Letters, 2008, 62(4-5): 600-602.
- [12] Guogang Xu, Xudong Zhang, Wen He, et al. The study of surfactant application on synthesis of YAG nano-sized powders [J]. Powder Technol., 2006, 163(3): 202-205.
- [13] Alison Abreu da Silva, Marco Aure'lio Cebim, Marian Rosaly Davolos. Excitation mechanisms and effects of dopant concentration inGd₂O₂S:Tb³⁺ phosphor [J]. Journal of Luminescence, 2008, 128 (7): 1165-1168.