

The Selection of New Energy Plant *Miscanthus*Preliminary Discussions

Andi Wu, Xiaolong Huang, Rei Wu, Zuxun Huang, Dongyi Huang

Agricaltural College of Hainan University, Dan Zhou, China, 571737 E-mail: jacob99@163.com

Abstract: *Miscanthus* was recognized as one of the best energy plant because of its strong adaptability, high yield and good fiber, This paper attempts to compare some agronomic traits of the preliminary selection of *Miscanthus* breeding, for further selection education lay the foundation for good *Miscanthus sinensis* varieties.

Keywords: Miscanthus; energy plant; crop height; seed selection

新型能源植物芒草的选种初探

吴安迪,黄小龙,吴 睿,黄祖旬,黄东益

海南大学农学院,儋州,中国,571737 E-mail: jacob99@163.com

摘 要:芒草具有产量高、适应力强、纤维品质优良等优点,被公认为最具潜力的能源植物之一,本文试图通过对芒草的一些农艺性状的比较研究,初步探讨芒草的选育种,为进一步选育优良芒草品种打下基础。

关键词:芒草;能源植物;株高;选种

当前,以石化能源为主的传统能源随着资源的日益 枯竭而引发的能源危机已越来越严重。并且传统能源燃 烧后产生的二氧化碳,硫化物等废气严重污染环境,是 温室效应、酸雨和光化学烟雾等的根本成因,极大地威 胁着人类的生命健康和发展^[1]。

生物质能源是一种新型的清洁能源。与传统石化能源相比,由于生物体用于生成能量的 CO₂ 与生物体燃烧释放的 CO₂ 是等量的,不会因燃烧而导致大气中 CO₂ 浓度的升高,被认为是最有前景的可再生能源。目前全球初级能源使用总量约 71.2 EJ/年,其中化石能源占到58.0 EJ/年,可再生能源为 4.2 EJ/年,仅占 5.9%^[2]。而全球绿色植物和海洋藻类通过光合作用每年合成的有机物(生物质)约 2200×10⁸t,相当于人类当前每年全部能耗的 10 倍,但目前作为能源的利用量还不到其总量的 1%^[3]。目前生物质能源的生产大多集中于利用高糖高淀粉作物如玉米、木薯等来生产生物乙醇,也有使用油脂生产生物柴油或者将高纤维含量的植物转化为热能、乙醇等。但广泛使用富含糖、淀粉的作物作为能源

基金项目: 芒草田间预备试验项目(0203003009) 本文受海南大学"211工程大学建设"专项资金资助。

会危害粮食安全,因此,全世界将目光集中在产量大、来源广的纤维质上^[4]。

芒草 (Miscanthus) 是一种禾本科芒属的多年生 C4 植物,植株可高达三至四米,广泛分布于我国各地,尤 以亚热带及热带地区分布最广,在国外如日本、朝鲜也 有分布。自然生长于山坡、沟渠边湿地以及森林边缘, 适应性强,繁殖力高,生物产量高,并具有保持水土的 作用[5-7]。芒草作为 C4 植物,具有燃烧灰分低,纤维品 质好,易加工的优点,因此芒草被国内外认为是最具潜 力的能源作物之一[8-9]。在欧洲,芒草被广泛地应用于 燃烧发电。2000年其产生的电能占欧盟 15 国发电量的 9%, 其中爱尔兰更是占到了全国发电量的 37%。 Lewandowski 等[10]人认为, 芒草不仅具有很高的生物质 产量,而且其收获时水分含量仅有 20%~30%,低水分 含量有利于燃烧。此外,它的挥发性物质是煤炭的3倍, 这说明它具有比煤炭更好的点火稳定性[11]。2006 年 Salvatore Collura 等人的研究则表明, 芒草的热值为 17 MJ/kg, 按产量 30 t/hm² 计算,每 1 hm² 芒草热值可高达 510 000 MJ^[12]

我国对芒草的研究起步较晚,但随着芒草作为能源

植物其潜力越来越为国际社会认可,我国对芒草的关注 也越来越高。目前我国对芒草的研究多集中于芒草的成 分、开发加工等方面,对芒草资源的选育种研究较少。

1 材料和方法

1.1 实验材料

试验基地位于海南大学农学院试验基地,所用材料为 104 份收集自我国不同来源地的芒草材料的种子及地下茎段。于 2009 年 3 月中旬育苗,同年 6 月下旬移植于基地大田。

1.2 实验方法

每份材料种植一列,每列 10 株,每株间距和每列间 距 均 为 1 米,对 照 组 为 三 倍 体 芒 草 奇 岗 (Miscanthus×giganteus)。种后一个月内每天分早晚喷灌浇水保持土壤及空气湿度,一个月以后改为隔天傍晚浇水。10 月对每个单株施复合肥一次,次年 3 月施农家肥一次。2010 年 6 月下旬对株高和分蘖进行测量,对每份材料所得数据取平均值,统计不同层次材料的数量(表 1)。

Table 1. Materials of different heights and tillers Miscanthus shares

表 1 不同高度及分蘖数的芒草的材料份数

株高	材料数量	分蘖数量	材料数量
100cm 及以下	14	30 个及以下	28
$100\text{cm}{\sim}200\text{cm}$	87	30~50 个	61
200cm 及以上	4	50 个及以上	16

2 结果与讨论

在适宜的生长环境下一年之内芒草便能够迅速生长。对照的植株高度平均为 2.26 米,平均分蘖为 82 个。由表 1 可以看出实验组在 1 米以下的材料有 14 份,2 米以上的有 4 份,大部分为 1 米至 2 米之间的高度,其中个别材料甚至可以超过 3 米;分蘖旺盛,种植一年左右的植株的分蘖数即可超过 50,30 个分蘖以下的有 28 份材料,50 个分蘖以上的有 16 份,30 个分蘖到 50 个分蘖之间的有 61 份,个别材料分蘖可达 100 个以上且与株高超过 3 米的材料系同一份材料。由此可见大部分芒草在经过第一年的生长之后,其株高可达 1-2 米,分蘖在 30-50 个之间,个别材料株高可达 3 米,分蘖超过 100 个。可以初步推断,芒草的株高和分蘖具有相当程度的相关性,大部分材料均表

现出高株高、高分蘖的性状,也即可高效地进行生物量的积累,进一步证明了芒草作为能源植物的一大优越性。同对照相比,株高超过对照的有 3 份材料,分蘖超过对照的有 4 份材料。多数材料在这两项指标上虽然没超过对照,但数据也较为接近对照。由这些数据可以初步判断不同芒草材料之间的干物质产量高低及其遗产上的相关性,为进一步选择优良芒草品种打下基础。而芒草的干物质重量与株高、分蘖、施肥及一些农艺指标的相关性还有待进一步研究。同时由于芒草存在广泛的天然杂交,还有必要利用分子标记技术(如 AFLP、RAPD 等)对高生物量的芒草材料进行分子水平的鉴定。

1935 年 Aksel Olsen 将芒草由日本引入丹麦[13], 从 此欧洲国家开展了对芒草的研究工作。20世纪60年代, 丹麦率先将芒草作为能源植物进行研究,并于 1983 年 建立了全球首个芒草试验基地[14]。1989年,欧洲 JOULF 计划项目启动, 先后在丹麦、德国、爱尔兰和英国建立 试验基地,研究三倍体芒草——奇岗(Miscanthus× giganteus) 在北欧地区的生物量潜力。1993 年欧洲进 一步扩大了试验区域,将田间试验延伸到南欧的希腊、 意大利和西班牙。1997年启动了一项旨在培育新的芒 草杂交种、研究育种技术和在全欧洲寻找不同基因型芒 草的项目[15]。近年来,欧洲各国重视芒属植物的基因型 选择和栽培技术改进, 在耕地准备、越冬、施肥和植保 等方面作了大量研究[10]。我国幅员辽阔,使芒草的原产 地之一,拥有比欧洲更为丰富的芒草资源。虽然我国对 芒草的研究起步较晚, 但近年来已有越来越多的专家学 者深入到芒草这一新型能源植物的研究中来,相信我国 的能源植物产业将会取得更大进展。

References (参考文献)

- [1] Chen Yinming, Xiao Bo, Chang Jie. Development and Application on Resources of Energy Plant [J].Amino Acids & Biotic Resources,2005,27(4): 1-5. 陈英明,肖波,常杰.能源植物的资源开发与应用[J].氨基酸和生物资源,2005,27(4): 1-5.
- [2] Xu Ying, Liu Hongyan. Development and Expectation of the Energy Plant[J].Chinese Agricultural Science Bulletin, 2009, 25(3):297-300. 徐颖, 刘鸿雁.能源植物的开发利用与展望[J].中国农学通报,
 - 2009, 25 (3): 297-300. Kuang Tingyun, Ma Keping, Bai Kezhi. Prospects of Bioenergy Exploitation [J]. Bulletin of National Natural Science
 - Foundation of China, 2005(6): 326-330. 匡延云, 马克平, 白克智.生物质能研发展望[J].中国科学基金, 2005(6): 326-330.
- [4] Yuande Peng. Development and Prospect of Cellulosic Ethanol by Biodegradation [J]. Plant Fiber Sciences in China, 2009(31):101-106.

- 彭源德.纤维质生物降解制备燃料乙醇研究现状[J].中国麻业科学,2009(31):101-106.
- [5] Zhao Nanxian, Xiao Yunfeng. Plant Resources and Its Exploitation, Utilization of tthe Genus Miscanthus in An Hui Province [J]. Journal of Wuhan Botanical Research, 1990, 8(4):374-382.
 - 赵南先, 萧运峰, 安徽省的芒属植物资源及其开发利用[J].武汉植物研究, 1990, 8(4): 374-382.
- [6] Lewandowski I, Scurlockb J M O, Lindvall E, et al. The development and current status of perennial rhizomatous grasses as energy crop s in the US and Europe[J]. Biomass and Bioenergy, 2003, 25: 335-361.
- [7] Wu Fucheng, Ding Jixiang. The Ecological and Economic Research of *Miscanthus* Community [J], Research of Agricultural Modernization, 1992,13(1) 吴甫成,丁纪祥.芒草群丛的生态经济研究[J],农业现代化研究,1992,13(1).
- [8] Lewandowski I, Clifton-Brown JC, Scurlock JMO, et al. Miscanthus: European experience with a novel energy crop [J].Biomass and Bioenergy, 2000, 19 (4): 209-227.
- [9] Fei Shimin, Zhang Xudong, Yang Guanyin, et al. On Domestic and International Situation of Energy Plant Resources and their Exploitation [J]. Journal of Sichuan Forestry Science and

- Technology, 2005, 26(3):20-26. 费世民, 张旭东, 杨灌英, 等.国内外能源植物资源及其开发利用现状[J].四川林业科技, 2005, 26(3): 20-26.
- [10] Beale C V, Long S P.Can perennial C₄ grasses attain high efficciencies of radiant energy conversion in cool climate[J].Plant Cell and Environment, 1995, 18: 641-650.
- [11] Lewandowski I, KichererA, Vonier P.CO₂-balance for the cultivation and combustion of *Miscanthus* [J].Biomass and Bioenergy, 1995, 8 (2): 81-90.
- [12] Salvatore Collura, Bruno Azambre, Gisèle Finqueneisel, *et al..Miscanthus Giganteus* straw and pellets as sustainable fuels-Combustion and emission tests[J].Environmental Chemistry Letters, 2006, 4 (2): 75-78.
- [13] Kim S, Dake B E.Global potential bioethanol production from wasted crop residues[J].Biomass and Bioenergy, 2004, 26: 361-375.
- [14] Venendaal R, Jrgensen U, Foster C A.European energy crops: Asynthesis[J].Biomass and Bioenergy, 1997, 13 (3): 147-185.
- [15] Hoogwijk M, Faaija A, Vanden Broek R, et al. Exploration of the ranges of the global potential of biomass for energy[J].Biomass and Bionergy, 2003, 25 (2): 119-133.