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Abstract: Filtration combustion is characterized by the extensive heat exchange between the gas and porous 
media. Based on a two-temperature model, temperature distribution in both gas and solid phases are presented 
by a piecewise linear function. Results show that intense heat transfer leads to a low degree of thermal 
non-equilibrium between the two phases. 
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摘  要: 过滤燃烧的显著特点是气固两相之间存在着强烈的热量交换。基于双温模型，分析得出了分

段的气体和固体温度函数。结果显示气固之间强烈的对流换热导致两相间很小的热的平衡度。 
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1 引言 

预混气体多孔介质中燃烧具有燃烧效率高、污染

物排放低和燃料适应性好等优点，对于节能减排具有

十分重要的意义。但目前该方面的基础研究还不多。

预混气体在多孔介质中燃烧，气固之间存在着强烈的

相互作用，多孔介质固体骨架与混合气体之间的换热

面积很大，两相间存在热的非平衡。当燃烧波与热波

叠加且沿着气流方向传播时，由于多孔介质具有很好

的蓄热和辐射性能，燃烧释放的部分热量，还可以被

反馈到上游预混气体，这样就有可能产生比绝热燃烧

还要高的温度，形成超绝热燃烧。 

超绝热燃烧的概念最早由 Weinberg 提出[1]。随

后，研究者在这方面开展了大量的研究工作 [2－6]。

Babkin 等[2]对非驻定过滤燃烧的研究表明，火焰传播

的临界贝克列数要小于 65。Zhdanok 等[3]以热波与燃

烧波叠加的思想实验研究了多孔介质中的超绝热燃

烧，并通过理论分析得出了无热损过程的最高温度。

Foutko[4] 以 Zhandok 等的实验为原型，并分别以单温

和双温模型，侧重研究和给出了实验条件下的点火温

度和热损失系数。最近，Bubnovich 等[5]设定特征温度

在对应的的区域内为常数，通过理论分析给出了填充

床内的温度和组分分布、燃烧波传播速度、点火温度

和反应区域的宽度。 

国内的史俊瑞[6]和张根烜[7]分别基于单温和修正

的单温模型，对低速过滤燃烧的燃烧波传播特性进行

了研究。以上用于分析 LVR 特性的单温模型本身的局

限性，在于无法体现气固相之间的对流换热。为了从

理论上进一步分析燃烧器中气体和固体温度分布的特

征，考虑气固相之间的对流换热，在一定的假设下，

尝试推导气体和固体各自的温度场函数。 

2 理论分析 

2.1 控制方程 

基于实验中燃烧器良好的绝热，引入热损失系数

β考虑通过燃烧器壁面的热损失，采用一维模型进行

理论分析。为了便于后文理论分析，研究中做如下假

设：不考虑扩散效应引起的组分和能量扩散；多孔介

质为各向同性的、惰性的光学厚介质；燃烧过程等压。 

基于上述假设，则控制方程为：  
气体组分守恒方程：  国家自然科学基金资助项目（51076109）  
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多孔介质能量守恒方程： 
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eff s rad    ， s 为多孔介质导热系数， rad
是氧化铝小球的辐射折合导热系数[8]， 

  332 / 9(1 )rad sd T                 (4)

本文以甲烷为例，给出具体的形式，甲烷化学反应简

化 为 单 步 总 包 反 应 [4] ， 甲 烷 消 耗 率 为 ：

4g CH gAexp( / )Y E RT                    (5) 

2.2 理论分析的假设 
同样的,为了研究方便,引入如下假设: 

(1)质量分数为
0
fuelY 的燃料/空气以速度 ug 进入

填充床中，考虑充分发展后稳定传播的燃烧波。 

(2)燃烧波以恒定的速度 ( )w g wu u u 传播。 

(3)不考虑气体导热，即忽略方程(2)中的二阶项 

(4)当气体温度达到点火温度后，化学反应在一个

无限薄的平面内瞬间完成，并以此为界，整个填充床

分为反应前和反应后两个区域。 
 

2.3 基于双温模型的理论分析 
将坐标系建立在燃烧波上，引入新的变量

wx u t   ，考虑系统的热损失。假定燃料的化学反

应速率与温度有强烈的依赖关系，因此化学反应速率

可用 delta 函数来描述，引入如下无量纲数[3]， 

0 0

, 0 , 0

, , ,g s v

s i s i g g g

T T T T h

T T T T c u

  


 
  

 
  

 , , 0 2, s v
s i s i

g g g

h
T T T b

c u




                 (6)

将上式带入到方程(2)，(3)中，分别整理为无量纲气体

温度 和多孔介质固体温度 的方程： 
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方程(7)，(8)的边界条件分别为： 
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方程(7)，(8)连同边界条件(9)～(11)，构成了二元二阶

线性方程组(方程组中的系数全部取为常数)。方程(8)
变形为： 
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上式带入到方程(7)中，并整理为： 
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方程(13)的特征多项式为： 
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方程(14)为一元三次线性方程，系数均取为常数，求

解方程(13)，得到两个负根(k1,k2)和一个正根(k3)， 
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程组(12)，(13)具有如下形式的通解： 

1 2exp( ) exp( )A g B g        (17) 

3 4exp( ) exp( )C g D g                (18) 

方程(17) 和(18)中系数 A、B、C、D 为任意常数，

1 2 3 4, , ,g g g g 是方程(14)的特征值， 

当 0  ，注意到边界条件(9) 

, 0       
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不难看出，方程(17)，(18)中的特征值必须为大于零的

数， 故(17)，(18)可以简化为： 

3exp( )A k                       (19)                                   

3exp( )C k                            (20)

注意到边界条件(11) 

( 0) ( 0) 1     , 因此， 

3exp( )k                          (21)                                    

方 程 (21) 带 入 到 方 程 (8) 中 ， 得 到 ，
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同样的，当 0  ，注意到边界条件(10)， 

方程(17)，(18)成为： 
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由边界条件(11)  
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分别得到， 
1C D                                 (25) 

1 2 1Ck Dk                              (26)                                     

上面两个方程联合求解，得到系数 C 和 D 的表达式，

带入方程到方程(24)中，得到， 
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方程(27)带入到方程(8)中，得到， 

22 3
1 1 1

2 1

1 exp( )
v

k k
bk uk k

k k h

 
 

        
  

23 1
2 2 2

2 1

1 exp( )
v

k k
bk uk k

k k h

 
 
      

     (28)  

3 结果与讨论 

    图 3.6 为双温模型预测的燃烧器中的混合气体

和固体的温度值。气体和多孔介质固体的物性值取

为常数，Ts，i 的算法见文献[4]。如前所述，整个燃

烧器以 0  为界，分为反应前和反应后两个区域。

图 1 中假设燃烧波中的最高温度移动到了 X =0.3m
处。当 0  时，为反应前区域，此时多孔介质固

体温度高于气体温度，与单温模型比较，气固两相

间的对流换热效应得到了体现。 0  为反应后区

域，此时气体温度又高于固体温度，反应热蓄积在

下游的多孔介质中。同时可以看出，除了在点火温

度附近，LVR 中的热的非平衡度很小。 

4 结论 

针对单温模型的缺陷，基于双温模型，在一定的

假设下，推导出了分段的气体和多孔介质固体的温度

场函数。结果表明，稀薄混合气体在多孔介质中的燃

烧，在整个燃烧器内，存在着气体和固体的热的非平

衡，但是除了反应区域外，这种热的非平衡度很小。 

Figure 1. The predicted gas and solid temperatures in 
the porous media burner (ug=0.41m/s, β
=600W/m3*K,  =0.153) 

图 1 理论解预测的多孔介质燃烧器中的气体和固体温

度 

(ug=0.41m/s,β=600W/m3*K,  =0.153) 
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符号表 
A    指数前因子，s -1 
c    比热容，J  Kg -1 K-1                               
d    小球直径，m 
E    活化能， J  mol -1                                   
hv     对流换热系数，W  m -3  K -1 
Q    燃料低热值，  J  Kg -1 
R    气体通用常数， J  mol -1 K-1 
t     时间，s                                            
T    温度，K 
Tad     绝热温度, K 
T0    环境温度, K 
ug    气体流速，m  s -1 
ut    热波波速，m  s -1  
uw    燃烧波波速, m  s -1 
x     轴向坐标, m 
YCH4  甲烷质量分数 
    无量纲气体温度 

     无量纲多孔介质固体温度 

     当量比                                     

ε    孔隙率               

     导热系数，W  m -1  K-1   

     反应速度, Kg  m -3  s-1                    

ρ    密度, Kg  m-3     
Ts，i   固体点火温度, K                             
角下标 
g   气体         
s   固体 
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