

The Development of Low NO_X Combustion in Our Country

Ming Qin

Institute of Combustion Engineering, Harbin Institute of Technology, Harbin Heilongjiang, China 150001, qinming 7632@163.com

Abstract: The paper recalls the development of low NOX combustion in our country and illustrates applied characteristics of the technology, and also gives some suggestions for its later research and development.

Keywords: Low NO_X, Grade combustion, Lin-rich Combustion, volatile

我国低 NO_X 燃烧技术的发展

秦 明[1]

哈尔滨工业大学燃烧工程研究所,黑龙江 哈尔滨,中国,150001,qinming7632@163.com

摘 要:本文简要回顾了我国低 NO_X 燃烧技术的发展历程,论述了低 NO_X 燃烧技术的应用特点,对今后的研究与开发提出了一些建议。

关键词: 低 NOx, 分级燃烧, 浓淡燃烧, 挥发份

1 前言

由于能源结构的因素, 我国长期以来一直以煤炭 作为主要动力能源。而我国动力用煤的另一大特点是 煤炭种类较多,根据其燃烧特性,一般将电站锅炉用 煤分为无烟煤、贫煤、烟煤和褐煤。由于长期以煤炭 燃烧作为电力用能源, 燃煤所造成的环境污染也是相 当严重的。其中氮氧化物的排放就是重要的污染成分 之一。近些年来,随着我国环保意识的提高,对污染 物排放的限制也越来越严格。在上世纪90年代,我国 的大气污染排放标准中, 对氮氧化物的排放限制为 650mg/m³(标态)^[1],而且当时并没有执行严格的罚 款规定,很多火电机组实际是超标准排放。随着环境 保护的日益严格,以及低 NOx 技术的发展,我国对氮 氧化物的排放限制提高为 450mg/m³ (标态), 并且部 分地区开始实施了超标处罚,从而极大地促进了低 NO_x 技术特别是低 NO_x 燃烧技术在我国的应用和发 展,取得了较好的经济效益和社会效果。实践证明,

在各类低 NO_x 技术中,与 SCR(选择性催化还原)和 SNCR(选择性非催化还原)相比,低 NO_x 燃烧技术 不仅具有初投资少、运行费用低的优点,而且不产生 二次污染物,因此得到了广泛的重视。目前,更加严格的低 NO_x 排放指标也正在酝酿中。我国在电站锅炉中,大部分采用的是直流燃烧器切园燃烧方式,因此本文主要论述直流燃烧器切园燃烧低 NO_x 燃烧技术。

2 我国低 NOX 燃烧技术发展

我国开始采用低 NO_x 燃烧技术主要起源于上世纪 80 年代。我国几个主要的锅炉制造厂从美国前 CE公司引进了 300MWe 和 600MWe 亚临界电站锅炉制造技术,从而在我国开始采用了为降低 NOX 生成的 CCOFA(见图 1)的空气分级燃烧和 WR 垂直浓淡燃烧。随后又有日本三菱的 PM 垂直浓淡燃烧技术(见图 2)进入我国,从而使我国的锅炉制造厂家开始关注低 NO_x 燃烧技术 [2][3][4]。

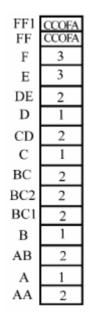


图 1 CCOFA 布置示意图

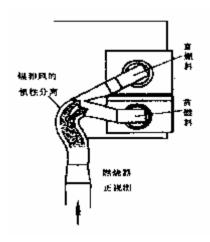


图 2 PM 燃烧器示意图

但是由于当时我国的环保对此还没有明确的要求,因此当时的工程设计大多数还没有真正考虑低 NO_X 的性能。随着我国环保意识的不断提高,国内的一些大学和科研院所开始了低 NO_X 燃烧技术的研究和开发,在我国产生了水平浓淡燃烧技术(见图 3)^[5]。

在实际应用中,水平浓淡燃烧对低负荷稳燃和缓解结焦等都产生了一定的效果,因而逐步受到了制造厂和电厂的关注,该技术也得以逐步推广应用。

进入 21 世纪,降低 NO_X 排放逐步受到人们的重 视。为了满足不断严格的环保要求,国外开发出更加 深度空气分级的 SOFA (见图 4) 技术,并引入我国。

该技术的采用,对降低 NO_X 排放起到了显著的效果。 目前已经逐步在大型电站锅炉中广泛采用。而且,在 老机组的改造中,也取得了较好的效果^[6]。

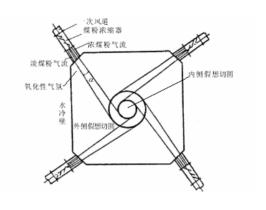


图 3 水平浓淡煤粉燃烧器原理图

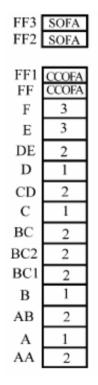


图 4 SOFA 布置示意图

低 NO_X 燃烧技术,是一个要求实现综合性能指标的燃烧技术。在实现低 NO_X 排放的同时,要保证较高的燃烧效率、稳定可靠的燃烧效果、以及避免对主汽参数产生显著的不良影响等等,否则,就失去了实

际的应用意义。采用空气分级,主要是在主燃区制造还原性气氛,而在后燃区(燃尽区)采用氧化性气氛,以实现完全燃烧。而还原性气氛是造成炉膛严重结焦和高温腐蚀的主要因素之一,因此在应用中,应采用适当措施以解决这一矛盾。此外,如何保证燃尽风(OFA)的及时和充分混合以保证燃尽、如何减轻炉膛出口的残余旋转气流以减轻烟温偏差等^[7],都是分级燃烧技术要考虑的关键。目前很多技术都是将浓淡燃烧与空气分级燃烧等结合,从而达到较好的综合效果。在一些新建大型电站锅炉和老机组技术改造项目上,采用低 NO_x 燃烧技术已经达到了 NO_x 排放小于300 mg/m³(标态)的指标。图 5 为某 600MWe 机组锅炉运行时的 NO_x 排放在线监测截图。

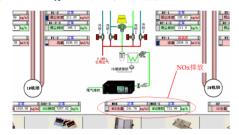


图 5 某 600MWe 机组锅炉运行时的 NOx 排放在线监测截图

3 今后的研究与发展

随着 NO_X 排放指标的日益严格,人们逐渐采用低 NO_X 燃烧技术与其他低 NO_X 技术如 SNCR、SCR 联合使用的方式,而其中低 NO_X 燃烧技术的效果,直接显著影响其他低 NO_X 技术设备的运行成本,从而影响设备的运行成本。因此,在煤粉燃烧锅炉的低 NO_X 技术中,低 NO_X 燃烧技术是关键。目前,低 NO_X 燃烧技术正在逐步发展,相信更加低的 NOX 排放燃烧技术得以实现。

此外,研究和应用表明,目前的空气分级和燃料 分级燃烧技术,主要对高挥发份的烟煤与褐煤效果比 较明显,而对于挥发份比较低的贫煤与无烟煤,效果 不明显^[8],而且由于这类煤的着火、稳燃和燃尽的难度更大,采用空气分级可能会对燃尽带来影响。我国实际应用的煤炭种类较多,如何在这类低挥发份动力用煤种实现理想的低 NO_X 燃烧,是目前要攻克的技术关键之一^[9]。

References (参考文献)

- [1] Zhang jianwen. Introduction of Low NO_X Jet PC Burner Design [J]. *Boiler Technology*, 2000. 31 (6), P23. 张建文. 低NO_X直流煤粉燃烧器设计简介. 锅炉技术[J]. 2000. 31 (6), P23.
- [2] Wu Shenglai, Bi Zhengyi. Proposals on Corner Tangential Combustion Technology[J]. *Electric Power*, 1999.32(1), P15-18. 吴生来, 毕政益. 电站锅炉四角切圆燃烧技术刍议[J]. 中国电力, 1999.32(1), P15-18.
- [3] Liou Fuguo. Principle And Implement of Air Staging Low-NOx Combustion of Pulverized coal [J]. Shandong Electric Power, 1999, 105 (1), P4.
 刘福国. 分级配风低 NOx 煤粉燃烧的基本原理及实现[J]. 山东电力技术, 1999, 105 (1), P4.
- [4] Weidong Fan, Zhengchun Lin, Youyi Li, Mingchuan Zhang. Experimental flow field characteristics of OFA for large-angle counter flow of fuel-rich jet combustion technology. *Applied Energy*, 2010, 87(8), P2737-2745.
- [5] Qin Ming,Wu Shaohua, Sun Shaozeng. Low NOX Emission Study For Six Point Tangential Burning of PC Boiler Firing Lignite Coal [J]. Proceedings of the CSEE, 2005. 25 (1), P159. 秦 明,吴少华,孙绍增. 等六角切圆燃烧褐煤煤粉锅炉低 NOx 燃烧技术研究. 中国电机工程学报[J], 2005. 25 (1), P159.
- [6] Zhang Xiaohui, Sun Rui, Sun Shaozeng, etal. Experimental Study of an Air-staged and Low NOx Emission based Combustion Modification to a 200 MW Boiler [J]. Journal of Engineering for Thermal Energy & Power, 2008, 23(6),P 678-680. 张晓辉,孙锐,孙绍增。200MW 锅炉空气分级低 NOx 燃烧改
 - 造实验研究. 热能动力工程[J], 2008, 23(6), P678-680

 Manish Kumar and Santi Gopal Sahu. Study on the Effect of the
- [7] Manish Kumar and Santi Gopal Sahu. Study on the Effect of the Operating Condition on a Pulverized Coal-Fired Furnace Using Computational Fluid Dynamics Commercial Code. *Energy & Fuels* 2007, *21*, 3189–3193.
- [8] Huo Xuezhi, Wang Chunchang. Study on Adaptability Of Low NOx Burners To Various Coal Quality [J], Thermal Power Generation, 2003(8), P12. 贺学志 王春昌. 低 NOx 燃烧器的煤质适应性研究. 热力发电 [J], 2003(8),P12.
- [9] Zhengqi Li, Feng Ren, Zhichao Chen, etc. Experimental investigations into gas/particle flows in a down-fired boiler: influence of down-draft secondary air. *Energy & Fuels*, 2010, 24(3), P1592–1602.