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Abstract 
 
As an important parameter to describe the sudden nature of network traffic, Hurst index typically conducts 
behaviors of both self-similarity and long-range dependence. With the evolution of network traffic over time, 
more and more data are generated. Hurst index estimation value changes with it, which is strictly consistent 
with the asymptotic property of long-range dependence. This paper presents an approach towards dynamic 
asymptotic estimation for Hurst index. Based on the calculations in terms of the incremental part of time se-
ries, the algorithm enjoys a considerable reduction in computational complexity. Moreover, the local sudden 
nature of network traffic can be readily captured by a series of real-time Hurst index estimation values dy-
namically. The effectiveness and tractability of the proposed approach are demonstrated through the traffic 
data from OPNET simulations as well as real network, respectively. 
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1. Introduction 

A large number of studies have shown that the real ne- 
twork traffic has self-similarity and long-range depend-
ence, the characteristic exists in the traffic streaming and 
video streaming of LAN, MAN, WAN, ISDN, CDPN, 
CDMA, GPRS, wireless networks and Adhoc networks 
[1–6]. Hurst index is a primary parameter to describe the 
sudden nature of network traffic. Hurst index estimation 
methods are mainly two types [7]: one is time-domain 
methods, including the absolute value estimation, vari-
ance, R/S and the IDC method. The other is the frequency 
domain or wavelet domain methods, including Whittle’s 
maximum likelihood estimation, periodgram method and 
wavelet domain estimation method. Time-domain meth-
ods calculate the law of power function between data 
statistics value and the aggregated order. Similarly, the 
frequency domain or the wavelet domain methods find 
the law of power function between frequency domain 
spectrum or energy and time scale. 

Contrary to the methods using limited data series, 
this paper presents an approach to dynamic asymptotic 
method for Hurst index estimation using infinite time 
series, which is strictly consistent with the asymptotic 
property of long-range dependence. With the evolution 
of network traffic over time, more and more data are 

generated. Based on the calculations in terms of the in- 
cremental part of time series, the algorithm enjoys a 
considerable reduction in computational complexity. 
The algorithm can also capture the local sudden infor-
mation of network traffic at the same time by a series 
of Hurst index values. Wei Jinwu [8] proposed a long- 
range dependence sliding window time-varying esti-
mation algorithm to capture local sudden information. 
But its Hurst index estimation is still based on the lim-
ited time series. Hurst index estimation without previ-
ous network traffic information is not accurate.  

The second part of this paper introduces the network 
traffic self-similarity and long-range dependence the-
ory, uses ON/OFF model in OPNET simulation soft-
ware to generate the self-similar traffic, and applies the 
traditional R/S algorithm to estimate Hurst index. The 
third part presents an approach to dynamic asymptotic 
estimation for Hurst index of Network Traffic. The fo- 
urth part shows the effectiveness and tractability of 
algorithm using simulated data and real network traffic. 
The last part concludes the paper. 

2. Self-Similarity, Long-Range Dependence 
and Traditional Hurst Index Estimation 
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Definition 1 [9]: For stochastic process X, if 
)(var~]var[ )( xmX m   and , m= 

1,2,3,…,then X is called second-order accurate 
self-similar process. Its self-similarity parameter (Hurst 
parameter) is H = 1-β/2, in which 0 <β <1.  
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Definition 2[9]: For stochastic process X, if k is big 
enough, )(var~]var[ )( xmX m  and )() kr()( kr m  , 

, then X is called a asymptotic second-order 
self-similar process. Its self-similarity parameter is H = 
1-β/2, in which 0 <β <1. 
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Theory 1[9]: For a stationary process X, if 
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process X has long-range dependence. The spectral den-
sity is attenuated according to the hyperbolic form, 
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Definition 2[9]: For random process X, if the tail dis-
tribution function approximates in power law, 

  xcxxXP ,~][  , 0< <2, c>0, then X is 

called heavy-tailed distribution. 
A significant feature of heavy-tailed distribution is that 

it has infinite variance. One of the most commonly used 
heavy-tailed distributions is the Pareto distribution. The 

distribution function is bx
x

b
xXPxF

a
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0<α<2, α for the shape parameter determining the sever-
ity of trailing of tail distribution function and b for the 
location parameter. 

The transmission of network business includes the ap-
plication layer, transport layer, network layer and data 
link layer. The application layer is the data source of 
network transmission, presents the self-similarity in wide 
time range, for example the heavy-tailed distribution of 
the file size and packet arrival time interval. The heavy- 
tailed distribution in application-layer is considered the 
main physical characteristic of network traffic self-simi- 
larity. The self-similarity in application layer is thus ma- 
pped and introduces the self-similarity to the underlying 
network layer. 

Theory 2[9]: For a given time series  iXX i ,{
n
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If , 1/2<H<1, c is the 

normal number which is independent with n, then the 
time series has long-dependence. 

ncnnSnRE H ,~))(/)((

The R/S estimation method for Hurst index is as fol-
lows: 
 Divide the time series ),...  into K 

groups. The length of each group is n=N/K, 
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 Repeat the above steps to get several 
)}(/)  for different n and K; ({ nSnRE kk

 Draw all the points ( nlog , )}(/) ) 

in the coordinate diagram; fit a straight line through 
these points according to the least mean square cri-
teria, and then the slope of this line is the Hurst in-
dex. 

({log nSnRE kk

Superposition of a large number of independent 
ON/OFF sources can generate self-similar volume of 
business. In the ON period, the packets enter the network, 
in the OFF period, no packet generated. ON/OFF dura-
tion is Pareto distribution. When 1<α<2, the infinite 
number of such ON/OFF sources will generate 
self-similar volume of business, of which Hurst parame-
ter is H = (3-α)/2. When a sufficient not infinite number 
of superposition of independent ON/OFF sources, we 
will get a very high degree of self-similar volume of 
business. In this section, simulation software OPNET is 
used. The packet arrival time interval is the 0.2s in each 
ON cycle, so the send rate is 5packet/s. The superpos-
etion of 50 such ON/OFF source will generate network 
similar traffic, of which the average packet arrival rate is 

spacketsNR /1252/  , R for the sending rate of 

each ON/OFF sources and N for the superposition num-
ber of ON/OFF sources. In OPNET, each ON/OFF 
source packet inter-arrival interval is the Pareto distribu-
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tion. When the value of α is set to 1.8, 1.6, 1.4 and 1.2 
respectively, the corresponding Hurst index of the self- 
similar traffic is 0.6, 0.7, 0.8 and 0.9 accordingly. In the 
above modeling, simulation time was 24576 seconds and 
the data time series length is 8192, as shown in Figure 1.  

Figure 2 shows the Hurst index estimation results of 
ON/OFF simulated flows using the R/S estimation meth- 
od. Not any Hurst index estimation algorithm is gener-
ally applicable to any situation; there is always the esti-
mate error in the different circumstances. Each estima-
tion algorithm uses the different statistics; different fac-
tors have an impact on the corresponding statistics, and 
therefore cause the algorithms the different degrees of 
estimation error. The main factors are non-stationary na- 
ture and periodic component, and the white noise when 
sampling the data series. In addition, the various types of 
algorithms are based on the global domain summation 
and average, so the variability of data series will be smo- 
othed out. The stronger variability the data series have, 
the bigger estimation error the algorithm will cause. 

In addition, Hurst index estimation based on limited 
time series will also cause some degree of estimation  
 

 

Figure 1. The simulation of time series. 

 

 
 

Figure 2. The hurst index estimation using the R/S method. 

error. According to the definition of long-range depend-
ence, we need to estimate the Hurst index with infinite 
time series. We know that with the evolution of network 
traffic over time, more and more data are generated. 
Based on the gradually increased data set, we can get a 
series of Hurst index estimation values which asymp-
totically tend to theory value. Moreover, a single Hurst 
index estimation based on limited time series is difficult 
to reflect the sudden nature of network traffic, but a se-
ries of Hurst index estimation values can capture the 
sudden information in local network traffic dynamically.  

 
3. The Dynamic and Asymptotic Algorithm 

of Hurst Index Estimation 
 

The length of network traffic time series will increase 
limitless in real-time sampling process. Strictly speaking, 
Hurst index estimation should not use the time series 
with limited length, because the mathematical definitions 
of self-similarity and long-range dependence are asymp-
totic. According to the inference method of mathematical 
statistics [10–11], this paper presents the dynamic and 
asymptotic algorithm using infinite time series.  

The length of time series increase gradually, though 
the algorithm only computes the incremental part of time 
series to improve the execution speed and reduce the 
computational complexity. The algorithm estimates the 
Hurst index with the current computation values and the 
previous results in order not to lose previous network 
traffic information. The algorithm is introduced below 
using R/S method as an example. 

The original data series is X , the initial data series is 
0X  with the length of n0, the following data series are 
1X , 2X , . . . ,  with the growing length n0 < n1 

< · · · < nm, the value of nm is equal to or close to the 
length of the data series 
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 STEP5: Repeat above steps to get more value of 
)}(/)  for different n; ({ nSnRE kk

 STEP6: Draw all the points ( , )}(/)( ) 

in the coordinate diagram, fit a straight line through 
these points according to the least mean square cri-
teria, and then the slope of this line is the Hurst in-
dex of time series which length is m1; 
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so the old value is revised in this step based on the 
incremental data. 
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 STEP11：For different n, repeat above steps to get 
all the new revised value of )}(/) . ({ nSnRE kk

 STEP12：Draw all the points ( nlog ,  /)({log nRE k

 )}(nSk ) in the coordinate diagram, fit a straight line 

through these points according to the least mean 
square criteria, and then the slope of this line is the 
Hurst index value of time series which length is m2. 

 STEP13：m1=m2,K1=K2; 
 STEP14：If the length of time series increases con-

tinually, repeat the steps from 7 to 13 to revise all 
the values of )}(/) , 2,...,1({ nSnRE kk 1 KKk   

based on the incremental data accordingly, or the 
loop is finished.  

From above steps we can see that, by calculating the 
incremental part of data series, we get a series of Hurst 
index values which asymptotically tend to theory value. 
These Hurst index are continually revised based on a new 
period of data series, so the new revised Hurst index 
value can reflect the degree of sudden nature of current 
local network traffic dynamically. At the same time, 
when the length of time series increases to infinite, the 
obtained Hurst index value will reflect the long-range 
dependence of the overall network traffic.  

 

4. Algorithm Validations 
 

4.1. The Simulation Data Validation 
 

In OPNET, the ON/OFF source packet inter-arrival in-
terval is the Pareto distribution. The value of α is set to 
1.6. According to H=(3-α)/2, the corresponding Hurst 
index of the self-similar traffic is 0.7. The simulation 
time is extended to 904.8 hours, and the length of time 
series D is extended to 524288. 

We apply the proposed algorithm to estimate the Hurst 
index of the data series D. The value of variable i is in-
creased to 9, and the length of the data series is increased 
as follows, = 512, 1024, 2048, 4096, 8192, 

16384, 32768, 65536, 131072, 262144 and 524288 re-
spectively. As shown in Figure 3, the time-scales are 
from 9 to 19. A series of Hurst index fluctuate in form of 
the asymptotic trend around the theory value of 0.7, 
proving that data series D has long-range dependence. 
The Hurst index is not static and will change with the 
evolution of network traffic. Any estimation of Hurst 
index based on the limited data series will draw the 
wrong conclusion. 

i102 in

Secondly, we use the data series E with the Hurst index 
of 0.5 to verify the algorithm presented in this paper. 
Same as the data series D, the simulation time is 904.8 
hours, and the length is 524288. The ON/OFF source pa- 
cket inter-arrival interval is the exponential distribution. 
 

 
 

Figure 3. Hurst index estimation for data series D. 
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As can be seen in Figure 4, a series of Hurst index values 
also fluctuate slowly. The difference from Figure 3 is 
that Figure 4 is in form of the asymptotic trend around 
0.5. The reason is due to the exponential distribution in 
the ON/OFF source packet inter-arrival interval. So the 
time series E has not characteristics of self-similar and 
long-range dependence. But if the Hurst index estimation 
is based on the limited length of time series of time scale 
9, 10, or 11, then Hurst index will be greater than 0.5 and  
 

 

Figure 4. Hurst index estimation for data series E. 
 

 
(a)                          (b)  

 
 (c)                            (d) 

 

  
(e)                            (f) 

 
Figure 5. BC-pAu989 data series. (a)BC-pAu989 data series; 
(b)Length of 1024; (c) Length of 2048; (d) Length of 4096; 
(e) Length of 8192; (f) Length of 16384. 

the wrong conclusions may be drawn. The algorithm 
presented in this paper considers the asymptotic trend of 
a series of Hurst index, and comes to the conclusion that 
the busty traffic of time series E becomes weaker and 
weaker to zero, and do not have the characteristics of 
long-range dependence. 
 
4.2. The Actual Network Traffic Data Validation 

 
Finally, the proposed algorithm is applied to the BC-pA- 
u989 data series. BC-pAu989 data series is a real net-
work traffic data series collected in Bellcore [12]. 

The real data series has a clear evidence of self-simi- 
larity, shown in Figure 5(a). The sudden nature of data 
series with length of 1024 shown in Figure 5(b) is week. 
The sudden nature is enhanced significantly in Figure  
5(c) decreased slightly in Figure 5(d), decreased signifi-
cantly in Figure 5(e), and enhanced significantly again in 
Figure5(f). 

The algorithm is applied to all these data series, a  
series of Hurst index estimation values are shown in Ta-
ble 1. We can see that the Hurst index values change 
with the degree of sudden network traffic accordingly. 
The time-varying Hurst index estimation values dy-
namically track the local sudden degree of BC-pAu989 
network traffic analyzed above. 

Certainly, Figure 6 shows that this series of Hurst in-
dex fluctuate in form of the asymptotic trend around the  
theory value of 0.72, proving that the BC-pAu989 time  
 
Table 1. Hurst index estimation on BC-pAu989 data series. 

Data Series  Hurst Index 

1024 
2048 
4096 
8192 
16384 
32768 
65536 

131072 
262144 

0.7047 
0.7133 
0.7026 
0.6762 
0.7232 
0.7227 
0.7010 
0.7124 
0.7362 

 

 
 

Figure 6. Tracking the local sudden traffic dynamically. 
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series has long-range dependence, which is consistent 
with the results of the literature [13]. 
 
5. Conclusions 
 
Hurst index is an important parameter to describe the 
sudden nature of network traffic. To avoid the estimation 
error, the dynamic and asymptotic algorithm of Hurst in- 
dex estimation is proposed in this paper. As the length of 
data series is gradually increased, the algorithm only 
calculates the incremental part of data series to reduce 
the computational complexity. A series of Hurst index 
values will be getting quickly in real-time. This series of 
Hurst index will change asymptotically from near to far 
infinite time scales, which is strictly in line with the mat- 
hematical definition of long-range dependence. At the 
same, the time-varying Hurst index values also track the 
local sudden information of network traffic dynamically. 
The effectiveness and tractability of the algorithm are 
validated by the simulated data series generated in 
OPENNET software and the real network traffic respec-
tively. The algorithm can truly reflect the local sudden 
nature and the long-range dependence of network traffic. 
 
6
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