
J. Software Engineering & Applications, 2010, 3: 65-72
doi:10.4236/jsea.2010.31008 Published Online January 2010 (http://www.SciRP.org/journal/jsea)

Copyright © 2010 SciRes JSEA

Element Retrieval Using Namespace Based on Keyword
Search over XML Documents

Yang WANG1, Zhikui CHEN1, Xiaodi HUANG2

1School of Software, Dalian University of Technology, Dalian, China; 2School of Computing and Mathematics, Charles Sturt Uni-
versity, Australia.
Email: Wayag2000@yahoo.com.cn, zkchen@dlut.edu.cn, xdhuang@csu.edu.au

Received July 31st, 2009; revised September 12th, 2009; accepted September 22nd, 2009.

ABSTRACT

Querying over XML elements using keyword search is steadily gaining popularity. The traditional similarity measure is
widely employed in order to effectively retrieve various XML documents. A number of authors have already proposed
different similarity-measure methods that take advantage of the structure and content of XML documents. However,
they do not consider the similarity between latent semantic information of element texts and that of keywords in a query.
Although many algorithms on XML element search are available, some of them have the high computational complexity
due to searching for a huge number of elements. In this paper, we propose a new algorithm that makes use of the se-
mantic similarity between elements instead of between entire XML documents, considering not only the structure and
content of an XML document, but also semantic information of namespaces in elements. We compare our algorithm
with the three other algorithms by testing on real datasets. The experiments have demonstrated that our proposed
method is able to improve the query accuracy, as well as to reduce the running time.

Keywords: Semantics, Namespace, SVD, Text Matching

1. Introduction

Keyword search querying over XML elements has emer-
ged as one of the most effective paradigms in information
retrieval. To identify relevant results for an XML key-
word query, different approaches lead to various search
results in general. Some authors calculated the similarity
between the content of XML documents and query, only
analyzing the content and structure of XML (e.g., [1–3]).
Many algorithms calculate the degree of text of elements
matching with the keywords to produce the ranked re-
sult-list (e.g., DIL Query processing algorithm [4] and
Top-k algorithm [5]). The classical methods focus on
TF-IEF formula to calculate the cosine similarity between
elements and query (e.g., Tae-Soon Kim et al. [6]; Maria
Izabel M et al. [7]; Yun-tao Zhang et al. [8]).

In particular, overlaps of elements in XML documents
must be considered. For several overlapping relevant ele-
ments, we have to choose which one should be avoided
to ensure that users do not see the same information for
several times. Su Cheng Haw et al. [9] presented the
TwigINLAB algorithm to improve XML Query process-
ing. In this paper, we modify it to deal with the elements
overlap occurring in keyword search results.

On the basis of previous work, we make the following

contributions in this paper. Firstly, we utilize the seman-
tic information of namespaces in elements to filter the
relevant components since the text of elements are com-
monly related with semantic information of namespace.
Secondly, the precision and recall of our algorithm show
that the non-text matching but semantic relevant ele-
ments with respect to the keyword can be effectively
retrieved. Compared with traditional work, our algorithm
also shows the better performance on time execution
over a large collection of elements.

The rest of this paper is organized as follows: Section
2 introduces the element-rank schema by keyword search.
Section 3 presents the Namespace Filter Algorithm
(NFA). The experiments on the comparison of NFA and
related methods are reported in Section 4. Related work
is presented in Section 5, followed by the conclusion.

2. Element-Rank Schema

In this section, we utilize the namespace of elements to
describe our element rank schema. Another goal of util-
izing namespace is to filter relevant elements with the
keyword in a query to reduce time execution compared
with traditional algorithms.

Interestingly, namespaces can distinguish different ele-

Element Retrieval Using Namespace Based on Keyword Search over XML Documents 66

ments containing the same markup that refers to different
semantic meanings. As an illustration, we consider two
elements with the same markup of <table>:
<table>

 <td>apple</td>
<td>banana<td>

</table>
<table>

<name>coffee table</name>
<width>80</width>

</table>
This will lead to the confliction when they are in the

same XML document. Thus, we utilize different name-
spaces of 'h' and 'f' to distinguish them as below.
<h:table xmlns:h = "http://.../fruit">

<h:td>apple</h:td>
<h:td>banana</h:td>

</h:table>
 <f:table xmlns:f = "http://.../furniture">

<f:name>coffee table</f:name>
<f:width>80</f:width>
<f:length>120</f:length>

</f:table>
As discussed above, the text of elements is commonly

related with the semantic information of their namespaces.
Given the semantic information of namespace that is ir-
relevant to the keyword, it is not desirable to access all the
elements containing this namespace. In order to calculate
the semantic similarity between namespaces and key-
words, we map semantic information of namespaces and
keywords into different vectors in a concept vector space
created by Singular Value Decomposition (SVD) [10]
over a collection of elements. In order to do this, Defini-
tions 1 and 2 are provided as follows.

Definition 1: : a function that maps the
namespace of element v into a vector and represents a
special meaning in the concept vector space created by
SVD.

)(vprefix

Definition 2: : the
degree of relevance calculated by the cosine similarity
between the namespace vector of element v and the key-
word vector in concept vector space created by SVD.

)),((keywordvprefixncorrelatio

The value of the correlation is commonly normalized
between the range [-1,1]. If the semantic meaning of
namespaces is very close to that of the keywords, the
value of ‘correlation’ will be around 1. Nobert Govert et
al. [2] proposed the concept of degree of relevance be-
tween elements. We extend it to include several intervals
in [-1,1] to describe the degree of the semantic similarity
of namespaces and keywords. Without loss of generality,
some definitions are provided to describe the degree of
relevance between namespaces and keywords.

Definition 3: High relevance: the high correlation
between namespaces and keywords which satisfies

1)),((1  keywordvprefixncorrelatio (1)

Definition 4: Common relevance: the median corre-
lation between namespaces and keywords which satisfies

12)),((  keywordvprefixncorrelatio (2)

Definition 5: Irrelevance: the lower correlation be-
tween namespaces and keywords which satisfies

2)),((1  keywordvprefixncorrelatio (3)

In the above equations, we have 10 12   , our

ranking algorithm accesses the elements containing the
namespaces that satisfy either Equation (1) or Equation
(2) rather than Equation (3).

3. Espace Filter Algorithm

In this section, we introduce some preliminary knowl-
edge, followed by presenting our algorithm called the
Namespace Filter Algorithm (NFA).

3.1 Preliminaries

The idftf  weight is commonly used to calculate the

term weight in documents in the field of traditional in-
formation retrieval. The purpose of our work is to re-
trieve the appropriate nested elements that contain the
relevant text to keywords instead of entire XML docu-
ments. So we extend idftf  to for ele-

ments in XML documents.

ieftf et ,

Notations:

ettf , the number of times that keyword t occurs in

the text of element e.

qttf , the number of times that keyword t occurs

in the query q.

ef

N
ief 10log where is the total number of elements

over a collection of XML documents, and is the

number of elements that contain the keyword. We
then give Definition 6 as below.

N

ef

Definition 6: keyword weights in elements and query



 


otherwise

tfifieftf
W etet

et
　　　　　　　　　　　

　　　　　

0

0)log1(,,10
, (4)

ieftfW qtqt )log1(,10, (5)

where is keyword weight in the text of element ,

and keyword weight in a query . We calculate

the cosine similarity between query vector

etW ,

qt ,

e

W q

q


 and ele-

ment vector e


 in Equation (6) on text matching factor.

　










n

i i
n

i i

n

i ii

eq

eq

eq

eq
eqscore

1

2

1

2

1),((6)

Copyright © 2010 SciRes JSEA

Element Retrieval Using Namespace Based on Keyword Search over XML Documents 67

Figure 1. Example of elements with the label ID in the XML
document tree

where is the ith keyword weight in ie e


, and is the

ith keyword weight in
iq

q


. Their weight values are calcu-

lated using Equation (4) and Equation (5), respectively.
In XML documents, elements are of varying size and

nested. Since relevant elements can be at any level of
granularity, either an element or its children can be rele-
vant to a given query. These facts commonly lead to a
problem that the same resulting elements of a query based
on keyword search will be presented to users for several
times. As an illustration, Consider the structure of an XML
document that is shown as the labeled tree in Figure 1.

Besides, let us suppose the relevant element list after key-
word search are listed in Table 1.

Elements with ID 0.2.1 and 0.2 are overlapping, so are
with 0.1, 0.1.1, and 0.12. If one element's parent is the
component of another element, the two relevant compo-
nents can be merged into one. An element will be merged
into its parent only if the number of the keyword occur-
ring in this particular element is less than that of its par-
ent element. In this way, there will be no overlap in the
resulting list shown in Table 2.

Furthermore, we denote value[v] calculated by NFA in
Section 3.2 as element v. Combining with Definition 2.
The final comprehensive evaluation formula about rele-

Table 1. Example of ranked list

Rank Self Parent

1 0.2.1 0.2

2 0.2 Root

3 0.1 Root

4 0.1.1 0.1

5 0.1.2 0.1

Table 2. Result list without overlap

Rank Self Parent

1 0.2.1 0.2

2 0.1 Root

vant elements ranking is given as Equation (7).

][)),(()(21 vvalueakeywordvprefixncorrelatioavrank 

(7)

where 121  aa . In order to highlight the factor of

namespace's semantic, we have . 10 12  aa

3.2 NFA Description

In the following discussion, we will focus on presenting
the Namespace Filter Algorithm (NFA) and how it per-
forms based on the keyword search over a collection of
elements.

Let A be a set consisting of different elements to be
accessed by NFA, and the namespaces of elements in set
A satisfy either Equation (1) or Equation (2). Other ele-
ments not included in A will be neglected by NFA. The

length[e] in Equation (6) is defined as  

n

i ie
1

2 .

Value[e] in Figure 2 gives the degree of text matching
between the text of element and keywords.

3.3 An Example

To evaluate the effectiveness of NFA, using an example,
we perform it with different pair values of 1 and 2 in

Equations (1) and (2). We empirically provide an XML
document named as record.xml in Figure 3 which con-
sists of many elements with namespace 'c' describing
semantic "computer" and 'n' describing "joy". Let the
query be "data and space in algorithm". Meanwhile, we
set 1 in Equation (1) and 2 in Equation (2) to 0.8

and 0.6, respectively. SVD is commonly applied to docu-
ments in traditional information retrieval. We extend it to

 NFA : retrieve the ranked element based on the keyword

Input:query, a collection of relevant elements denoted as A

Output: top k elements of ranked result list
Description:

01 float value[N] = 0//N is the number of elements A

02 float Length[N]

03 for each keyword t in the query

04 do for each pair(element  A,tf(t,e))

05 do value[e] += //Equations.(4) and (5)qtet WW ,, 

06 end-for

07 end-for

08 for each element e

09 do value[e] = value[e] / length[e]

10 end-for

11 merge the overlap

12 calculate the rank[] with Equation (7)

13 return top K elements of rank[] over all documents

Figure 2. Namespace filter algorithm

Copyright © 2010 SciRes JSEA

Element Retrieval Using Namespace Based on Keyword Search over XML Documents

Copyright © 2010 SciRes JSEA

68

Table 3. Term-element matrix M <root1>

<c:cs xmlns:c = "http://....../computer">

<c:DBMS>

<c:DB>attribute</c:DB>

<c:DB>Management</c:DB>

</c:DBMS>

<c:programming>

<c:complexity>data and space</c:complexity>

<c:time>data in computer's Algorithm</c:time>

</c:programming>

<c:java>data of Algorithm in computer science</c:java>

</c:cs>

<n:joy xmlns:n = "http://....../happiness">

<n:entertainment>

<n:in>no space with audience's joy</n:in>

<n:out>jackson dance in large space</n:out>

</n:entertainment>

</n:joy>

</root1>

0.1.1.1 0.1.1.2 0.1.2 0.1.3.1 0.1.3.2 0.1.4 0.2.1.1 0.2.1.2

Computer 0 0 1 0 1 1 0 0

Data 0 0 1 1 1 1 0 0

Space 0 0 1 1 1 0 1 1

AAlgorithm 0 0 0 0 1 1 0 0
Joy 0 0 0 0 0 0 1 0

elements in this example.

Each element in record.xml corresponds to a node in
the tree with labeled IDs in Figure 4.

Given the correlation value between the semantic
meaning of namespaces: 'c', and 'n', and that of the key-
words :"data","space", and "Algorithm", we construct a
term-element matrix denoted as M, the elements of
which are term frequencies occurring over all of ele-
ments in record.xml in Table 3.

Then we normalize matrix M denoted by M1 as fol-
lows























07071.0000000

005774.05774.00000

17071.0007071.05774.000

005774.05774.07071.05774.000

005774.05774.005774.000

M1 is decomposed into the following three matrixes
by SVD Figure 3. Example of record.xml
































1403.04420.08437.02458.01122.0

7261.03172.03754.04147.02435.0

1073.02915.01155.06863.06474.0

0637.06617.03163.03361.05874.0

6614.04256.01839.04285.04050.0

U

 























0003433.00000

00004126.0000

000006569.000

0000003770.10

00000008397.1

S

Figure 4. Tree structure of record.xml















































0003124.07066.01757.04984.03519.0

0000681.02579.07839.04786.02920.0

2877.04082.05.02159.01133.02135.04945.03878.0

2887.04082.05.02159.01133.02135.04945.03878.0

0003520.06345.04647.01798.04746.0

0008250.00774.02179.00328.05146.0

5722.07654.02946.000000

7113.02843.06428.000000

V

Element Retrieval Using Namespace Based on Keyword Search over XML Documents 69

In the following, we consider the reduced semantic
space with two most informative dimensions. Let U1 be
first two columns of U, S1 be the diagonal square matrix
that contains the first two biggest eigenvalues 1.8397, and
13770 of S as diagonal elements, and other elements in
S1 are 0.V1 be the transpose of first two columns of V.
We then build up a new term-element matrix M2 by us-
ing U1* S1*V1 as below.






























2413.02222.00874.00874.01587.00950.000

1271.01426.04559.04559.01097.02490.000

8897.07997.00059.00059.07346.05813.000

1492.00937.06475.06475.04292.05707.000

0321.00650.05804.05804.02472.04024.000

The correlation values between terms are shown in Ta-

ble 4a by using TMM 22 . We then normalize these
values in table 4a to the range of [-1,1] as given in Table 4b.

According to Table 4b, the correlation values between
the semantic meanings of namespaces 'c','n' and those of
the keywords in the query are given in Table 5.

Consider the keyword search for "data" or "Algorith-
m" in a query. As shown in Table 5, both the values of
correlation of Namespace 'c' vector with "data" and "Al-
gorithm" vector satisfies Equation (1) and Equation (2).
In contrast, the correlation value of Namespace 'n' vector
and keyword vectors does not satisfy Equations (1) and
(2). So we have {0.2,0.2.1,0.2.1.1,0.2.1.2}A. The pa-
rameter values (in Section 3.1) of elements in set A are
listed in Table 6.

From line 05 to 11 of NFA in Figure 2, combining
with Table 6, the value[e] s of elements in set A are
shown in Table 7.

As shown in Table 7, there exists the overlap between
element 0.1 and other elements. After merging the over-
lap, the result is 0.1 including its descendent elements
0.1.2,0.1.3,0.1.4 as a whole components. The other re-
sulting element is 0.1.1 including all its descendent ele-
ments. Let , and in Equation (7) be 0.9 and 0.1,

respectively, and the correlation value between name-
space and keywords be 0.8085, which is the average cor-
relation value between “data" and "Algorithm". Then we
can get the final ranked result by using Equation (7) in
Table 8.

1a 2a

In order to exploit the relation between in Equation

(1), and in Equation (2) and search result, we assign

different pair values to and such as 0.6 and 0.3.

We still give the same query to perform NFA over re-
cord.xml. This time we focus on "space" in the query
rather than "Algorithm" and "data". Table 5 shows that
the correlation value between namespace 'c' vector and
"space" vector is 0.3038, which satisfies Equation (2) and
namespace 'n' vector and "space" vector is 0.5233, which
satisfies Equation (2). Consequently, the search result
performed by NFA is given in Figure 6.

1

2

1 2

As shown in Figures 5 and 6, the different degrees of
semantic information relevance between the name-
spaces and keywords will lead to various search results
by using NFA.

In summary, the degree of semantic relevance between
the namespace and keywords depends not only on their
semantic information similarity, but also on user-speci-
fied weights on other factors.

4. Experiments

In our experiments, we compare NFA with other related

Table 4. Correlation value between different pair of terms
in record.xml

a






























1571.01010.05652.00660.00462.0

1010.05262.00072.07473.06699.0

5652.00072.03087.28471.03281.0

0660.07473.08471.03795.10765.1

0462.06699.03281.00765.19020.0

b






























1455.00935.05233.00611.00428.0

0935.04872.00066.06919.06203.0

5233.00066.01377.27843.03038.0

0611.06919.07843.02773.19967.0

0428.06203.03038.09967.08352.0

Table 5. Correlation value between semantic of namespace
'c', 'n' vectors and other three keyword vectors over ele-
ments in record.xml

Correlation data space Algorithm
computer 0.9967 0.3038 0.6203

joy 0.0611 0.5233 -0.0935

Table 6. Times of "data","space","algorithm" occurring in
query and revelant elements of record.xml

Dewey ID)(, dataettf)(, spaceettf)lg(, orithmaettf

0.1 3 3 2
0.1.2 1 1 0
0.1.3 1 1 1

0.1.3.1 1 1 0
0.1.3.2 0 0 1
0.1.4 1 1 1

Table 7. The ranked result-list with element overlap

Rank Self Parent Value[e]
1 0.1 Root 1.6160
2 0.1.4 0.1 1.5779
3 0.1.3 0.1 1.5779
4 0.1.2 0.1 1.4145
5 0.1.3.1 0.1.3 1.4145
6 0.1.3.2 0.1.3 1

Table 8. Comprehensive ranking using Equation (7)

Rank Dewey ID Score
1 0.1 0.8893
2 0.1.1 0.7277

Copyright © 2010 SciRes JSEA

Element Retrieval Using Namespace Based on Keyword Search over XML Documents 70

algorithms and methods on two metrics: precision and
recall. The result of comparing NFA with the methods
that have the similar Precision and Recall on aspect of
time execution of algorithm is also presented. We set 0.9
to 1 , 0.6 to 2 , 0.9 to , and 0.1 to in Equation

(7) to perform NFA.
1a 2a

4.1 Experimental Setup and Results

Equipment: Our experiments are performed on a PC
with a 2.33GHz Intel(R) Core(TM) 2 Duo CPU, 3.25 GB
memory, and Microsoft Windows XP. The TermJoin
algorithm [11], semantic tree creation algorithm [12], and
NFA are all implemented in C++.

Data set: We have tested NFA on two data sets called
Dataset1 [13] and Dataset2 [14], respectively. In order to
show its performance, we add some namespaces to ele-
ments [13]. Each namespace represents the general idea
of text embedded in elements [13].

Query set: the query set consists of two parts with 13
queries that represent all kinds of queries over Dataset1
and Dataset2 in Table 9.

4.1.1 Precision and Recall
Precision is defined as the number of relevant elements
retrieved by keyword search divided by the total number
of elements, while recall refers to as the number of rele-
vant elements retrieved by keyword search divided by the
total number of existing relevant elements. We compare
the precision and recall of NFA with the Termjoin algo-
rithm [11], semantic tree creation algorithm [12] on
Dataset1 and CAS Query [7] on Dataset2. We then cal-
culate the precision and recall of top 20 components re-
trieved by each algorithm as reported in Figure 7.

As shown in Figure 7, the Term-join algorithm re-
trieves the relevant elements. However, it also retrieves
some non-relevant elements. The basic idea of the Term-
join algorithm is to calculate the degree of text matching
of elements with keywords rather than the latent semantic
information of text of elements. Furthermore, both NFA
and semantic tree creation algorithm efficiently solve the
semantic information similarity between text of elements
and keyword. However, they do not have the equal run-
ning time as given in Section 4.1.2. In [6, 7], authors pro-
vide the methods that utilize the semantic

Figure 5. Experimental result elements in record.xml re-
trieved by NFA with in Equation (1) be 0.8 and in Equa-

tion (2) be 0.6
1 2

Figure 6. Experimental result elements in record.xml retrieved by
NFA with in Equation (1) be 0.6 and in Equation (2) be 0.3 1 2

Table 9. Query set on Dataset 1 and Dataset 2

Dataset1
Q11: pitch step B and octave 2

Q12: natural type
Q13: voice 1 and type eighth

Q14: music with voice 1 staff 1
Q15: music with beam begin and down

Q16: 16th type in music

Q17: 16th type and type of beam

Q18: 16th type and duration 2
Dataset2

Q21: best table in furniture
Q22: best fruit table in furniture
Q23: eat apple at the table
Q24: have coffee at the table
Q25: the list of table

Figure 7. Precision and recall on Dataset1

Figure 8. Precision and recall on Dataset2

Copyright © 2010 SciRes JSEA

Element Retrieval Using Namespace Based on Keyword Search over XML Documents 71

Figure 9. The average running time of NFA and semantic

formation of markups in elements to calculate the se-

ussed in Section 2.1, namespace can distinguish
di

In term e in practice, we compare NFA to

ts with
re

 knowledge, no existing work has

earches have been done on the area of
ta

er related area in elements retrieval is ranking
sc

 the

tree creation algorithm over 100 thousand elements from
Dataset1 based on the queries from Q11 to Q18 in Table 9

in
mantic information similarity between the elements and
query. However, sometimes it can only get the relevant
components with various markups. In order to present the
difference of search results of CAS Query [7] and NFA,
we test both of them on Dataset2 consisting of elements
with namespace 'h' and 'f' nested in the same markup <ta-
ble>. Both of them are tested by queries from Q21 to Q25
in Table 9 and the precision and recall is shown in Figure
8.

As disc
fferent elements even with the same markup which

leads to different precision of NFA and CAS in Figure 8.

4.1.2. Running Time of NFA and Semantic Tree Crea-
tion Algorithm

s of running tim
the semantic tree creation algorithm. We test both of
them on Dataset1, and plot the average running time
based on the queries from Q11 to Q18 in Table 9 over
100 thousand elements from Dataset1 in Figure 9.

The idea of NFA is to filter the relevant elemen
spect to keywords in order to reduce the running time

of the semantic tree creation algorithm [12], which ac-
cesses all elements in a collection to get the semantic
information similarity between the text of elements and
keywords. Figure 9 shows that the semantic information
of namespace in elements significantly reduces running
time compared with the semantic tree creation algorithm
over a large collection of elements.

5. Related Work

To be the best of our
formally studied on the namespaces [14] for elements
retrieval. There has been a large body of work on con-
tent-oriented of XML documents and corresponding
ranking schema.

Substantial res
king relevant matches between the content and the

query as the criteria. e.g., DIL Query processing algo-
rithm [4], Termjoin Algorithm [11] and Top-k algorithm
[5]. Jovan Pehcevski et al. [15] content that the purpose
of XML retrieval task is to find elements that contain as
much relevant information. However, some elements that
are not keyword matches may be also relevant to the
query but not return in those algorithms. The classical
method is to calculate the value of consine similarity be-
tween the content and keyword utilizing the formula of
TF-IEF, the related work have been reported in
[6–8,11,16,18,19]. Unfortunately, most of them still can-
not accurately calculate the similarity on semantic prob-
lem only by this formula. Li Deng et al. [12] present the
semantic tree creation algorithm. Other proposals are
given on semantic problem from the inner structure of
XML document (e.g., Hongzhi Wang et al. [1]; Norbert
Govert et al. [20]; Felix Weigel et al. [3]; Sihem
Amer-Yahia et al. [5]; M.S.Ali et al. [21]). However,
they have to do a large time execution. Benny Kimelfeld
et al. [5] have observed this shortcoming. They presented
the method which filters the relevant documents before
processing the algorithm. Due to the notion of methods
[22], we interestingly find that the namespace in elements
not only solve the latent semantic problems between
elements and keyword, but also filter the relevant ele-
ments based on the keyword to reduce time execution in
the traditional algorithm. The most related work to this
paper is [6,11], both of which have proposed the content
of markup or frequency of markup as a factor contributed
to semantic similarity between the content and query.
However, It cannot effectively distinguish the elements
with same markup representing different semantic infor-
mation.

Anoth
hema based on keyword search. The classical scoring

function is tf-ief (e.g., [5,23]) in information retrieval.
However, many approaches simply calculate ettf , with

respect to all elements of the collection [9] or p con-
sider it by estimating ettf , across elements of the same

type [25]. ettf , is also calculated based on the concen-

tration of th xt of the element and that of its descen-
dants [25,26]. A different approach is to compute ettf ,

for leaf-elements only, which are then used to score
leaf-elements themselves. All non-leaf elements are
scored based on combination of the score of their de-
scendants elements. The propagation of score starts from
the leaf elements and can consider the distance between
the element being considered and its descendent
leaf-elements [27]. Similar notion is adopted by the DIL
algorithm [4]. V. Mihajlovi et al. [28] rank elements us-
ing a utility function that is based not only on the rele-
vance score of an element, but also on its size.

artly

e te

Copyright © 2010 SciRes JSEA

Element Retrieval Using Namespace Based on Keyword Search over XML Documents

Copyright © 2010 SciRes JSEA

72

s the keyword search over elem

nymous reviewers for their

REFERENCES
[1] H. Z. Wang, J X. M. Lin, “Cod

uhr, and M. Lalmas, “Evalua

gasundaram,

A. Marian, D. Srivastava, and D

Lee, J. W. Song, and D. H. Kim, “Similar-

g, and Y. C. Wang, “An improved

aw and C. S. Lee, “TwigINLAB: A decomposi-

 Schutze,” Introduc-

C. Yu, and H. V. Jagadish, “Querying

oral

cxml.org/xml/elite.xml.

www.w3schools.

[15] “HixEval: Highlighting

ring similarity of

, G. Lin, C. Botev, and J. Shanmugasundaram,

“XML

 “A novel method for

onsens, and M. Lalmas, “Structural

, Y. Sagiv, and D. Yahav, “Using

anmugasundaram, “Context-sensitive

ct

XXL

. Callan, “Parameter estimation for a sim-

t XML,” IR at INEX 2005.

6. Conclusions

This paper addresse ents
tion to information retrieval,” Cambridge Press, April,
2008.

[11] S. Al-Khalifa, in XML documents. Using the namespaces of elements,
we have presented the Namespace Filter Algorithm (NFA)
that retrieves the relevant components of XML docu-
ments with respect to keyword queries. In addition, we
provide a new approach that can remove effectively the
element overlaps occurring in query results. Using an
evaluation formula, our approach is able to produce a
ranking result-list without element overlaps. Compared
with previous algorithms, NFA has demonstrated a better
performance not only on time execution but also on the
precision and recall of query results. Our future work will
study the relation of the previous factors on the back-
ground of graph structures in XML documents.

7. Acknowledgments

We are grateful to the ano

stru

helpful comments.

. Z. Li, W. Wang, and -

sem

ing-based join algorithm for structure queries on
graph-structured XML document,” World Wide Web, Vol.
11, pp. 485–510, 2008.

[2] N. Govert, G. Kazai, N. F ting retrieval: What about using contextualrelevance?” SAC,
pp. 1114–1115, April 23–27, 2006.

[20] B. Jeong, D. Lee, H. Cho, and J. Lee,
the effectiveness of content-oriented XML retrieval,” In-
formation Retrieval, Vol. 9, No. 6, pp. 699–722, 2006.

[3] F. Weigel, H. Meuss, and K. U. Schulz, “Francois bry me

content and structure in indexing and ranking XML,”
WebDB, Vol. 17–18, pp. 68–72, June 2004.

[4] G. Lin, S. Feng, C. Botev, and J. Shanmu
“XRank: Ranked keyword search over XML documents,”
ACM International Conference Proceeding, SIGMOD, pp.
7–11, June 9–12, 2003.

[5] S. A. Yahia, N. Koudas, .

rel

Toman, “Structure and content scoring for XML,” Pro-
ceedings of the 31st VLDB Conference, pp. 362–372,
2005.

[6] T. S. Kim, J. H.
ity measurement of XML documents based on structure
and contents,” International Conference on Computational
Science (ICCS), Part 3, LNCS 4489, pp. 902–905, 2007.

[7] M. Izabel, M. Azevedo, L. P. Amorim, and N. Ziviani, “A

of st

universal model for XML information retrieval,” LNCS
pp. 312–318, 2005.

[8] Y. T. Zhang, L. Gon
TF-IDF approach for text classification,” Journal of
Zhejiang University Science, Vol. 6A, No. 1, pp. 49–55,
2005.

[9] S. C. H
tion-matching-merging approach to improving XML
query processing,” American Journal of Applied Sciences,
Vol. 5, No. 9, pp. 1199–1205, 2008.

[10] C. D. Manning, P. Raghavan, and H.

structured text in an XML database,” ACM International
Conference Proceeding, SIGMOD, June 9–12, 2003.

[12] D. Li, X. J. Wang, and L. H. Wang, “Indexing temp
XML using semantic tree index,” IEEE Xplore, pp. 448–
451, 2008.

[13] http://www.musi

[14] Namespaces in XML Available: http://
com/XML/xml_namespaces.asp/.

 J. Pehcevski and J. A. Thom,
XML retrieval evaluation,” LNCS 3977, pp. 43–57, 2006.

[16] T. S. Kim, J. H. Lee, J. W. Song, and S. L. Lee, “Semantic
ctural similarity for clustering XML documents,” Inha

University Technical Report, 2006. http://webbase.inha.
ac.kr/TechnicalReport/tech_04.pdf.

[17] C. Yang and N. Liu, “Measu
i-structured documents with context weights,” ACM

International Conference Proceeding, pp. 719–720, Au-
gust 6–11, 2006.

[18] S. Feng
“Efficient keyword search over virtual XML views,”
VLDB, pp. 1057–1065, September 23–28, 2007.

[19] K. Sauvagnat, L. Hlaoua, and M. Boughanem,

asuring semantic similarity for XML schema match-
ing,” Expert Systems with Applications, Vol. 24, pp.
1651–1658, 2008.

[21] M. S. Ali, M. P. C
evance in XML retrieval evaluation,” Proceedings of

the SIGIR Workshop on XML and Information Retrieval,
pp. 2–8, July 27, 2007.

[22] B. Kimelfeld, E. Kovacs
language models and the HITS algorithm for XML re-
trieval,” LNCS 4518, Springer-Verlag Berlin Heidelberg,
pp. 253–260, 2007.

[23] C. Botev and J. Sh
keyword search and ranking for XML,” WebDB, 2005.

[24] B. Sigurbjornsson, J. Kamps, and M. de Rijke, “The effe
ructured Queries and selective Indexing on XML re-

trieval,” INEX’05, LNCS 3977, pp. 104–118, 2006.

[25] M. Theobald, R. Schenkel, and G. Weikum, TopX &
at INEX 2005.

[26] P. Ogilvie and J
ple hierarchical generative model for XML component re-
trieval,” INEX, 2004.

[27] S. Geva, “GPX-gardens poin

[28] V. Mihajlovic, G. Ramirez, T. Westerveld, D. Hiemstra, H.
E. Blok, and A. P. de Vries, “Vague element selection,
image search, overlap, and relevance feedback,” INEX
2005.

