
J. Software Engineering & Applications, 2010, 3: 58-64
doi:10.4236/jsea.2010.31007 Published Online January 2010 (http://www.SciRP.org/journal/jsea)

Copyright © 2010 SciRes JSEA

Application of Design Patterns in Process of
Large-Scale Software Evolving

Wei WANG, Hai ZHAO, Hui LI, Peng LI, Dong YAO, Zheng LIU, Bo LI, Shuang YU, Hong LIU,
Kunzhan YANG

Information Science and Engineering, Northeastern University, Shenyang, China.
Email: wangweiwin1@163.com, zhhai@neuera.com

Received September 15th, 2009; revised September 29th, 2009; accepted October 13th, 2009.

ABSTRACT

To search for the Design Patterns’ influence on the software, the paper abstracts the feature models of 9 kinds of
classic exiting design patterns among the 23 kinds and describes the features with algorithm language. Meanwhile,
searching for the specific structure features in the network, the paper designs 9 matching algorithms of the 9 kinds
design patterns mentioned above to research on the structure of the design patterns in the software network. At last, the
paper analyzes the evolving trends of the software scale and the application frequency of the 9 kinds of design patterns
as the software evolves, and search for the rules how these design patterns are applied into 4 kinds of typical software.

Keywords: Design Pattern, Feature Model, Software Network, Evolving Trends

1. Introduction

With the increasing of system scale and complexity, the
reliability and maintainability are highly required. Design
Patterns describe common problems that frequently
occur in the process of the object oriented software
development and give the resolutions of these problems.
Implication Design Patterns into software development
can enhance the open, compatibility, stability and exten-
sibility of software, which makes the development and
maintenance much easier [1].

Does Design Patterns improve the quality of software
efficiently? Can Design Patterns be widely used? How
these patterns are composed reasonably? What is the
reasonable scope of the ratio of the times patterns used
and software scale? Facing these questions, it becomes
an urgent issue to quantify and measure these patterns
when they are used in software in the process of software
designing.

If software continues to evolve, it needs to be reor-
ganized [2–4]. This is called refactoring and the frames
occur during this time. A better understanding of Design
Patterns will reduce the time that is spent on refactoring.
Looking into how design patterns are implied into some
software organized fairly well and evolved continually
can direct the design of software system positively.
Therefore, it is significant to find out the evolving trends

that design patterns are implied into software designing
[5,6].

With the help of open-source software Doxygen, the
object oriented software is abstract into XML. Then with
the help of XmlParse which is developed in my lab,
collect the nodes and edges from XML and abstract the
software into software network.

The topology of software system can be represented
by topology of network [7–9]. In the network, nodes re-
present the component of software and the edges repre-
sent the relation between nodes. Complex networks
theory is applied into software system which mainly
refers to open source software, reverse engineering that
get the class graph and network model of the source code
is taken to get and analyze the organization structure
[10,11]. The abstraction process is shown as Figure 1.

2. Abstracting Process

According to the definition of the design patterns, the
paper abstracts the structure features and expresses in
mathematical language, which is used for designing and
realizing the matching algorithm [12–15].

In the software network, nodes present the abstract
data; edges present the relation between the nodes. Nodes
can be classified into class, struct and interface; edges
can be classified into inherit, usage, static, template and

Application of Design Patterns in Process of Large-Scale Software Evolving 59

class Point {
 int row,column;
}
class Chessman{

Point pos;
 int GetValue();
}
class Move{
 Point start_pos;
 Point end_pos;
 bool IsAllowedMove();
}
class Pawn:public Chessman{
 Move *moves;
 int GetValue();
}

source code class chart software network

Point

Chessman

Move

Pawn

Figure 1. The extraction of the software network

friend. Since software network is digraph and the relation
between data are classified into inherit and aggregation,
the degree of the nodes are classified in-degree and
out-degree of inherit and usage.

2.1 Flyweight

Flyweight supports a number of fine-grained objects with
sharing method. The frame of Flyweight is as shown in
Figure 2.

Abstract the main features of Flyweight. Known from
the frame of the Flyweight, classes in Flyweight can be
mainly classified into Flyweight and FlyweightFactory.
FlyweightFactory is an abstract class and the template of
FlyweightFactory is defined in Flyweight. That is there is
one-to-many relation between Flyweight and Flyweight-
Factory. Flyweight at least has two subclasses. The soft-
ware network of the Flyweight is as shown in Figure 3.

All of the nodes in Flyweight are class. There is an
edge with double value, template and usage, between
node Flyweight and node FlyweightFactory, and the edge
is from node FlyweightFactory to node Flyweight. The
inherit in-degree of node Flyweitht is more than 1.

FlyweightFactory

GetFlyweight(key)

Flyweight

Operation(extrinsicState)1 *1 *

flyweight

ConcreteFlyweight

intrinsicState

Operation(extrinsicState)

UnsharedConcreteFlyweight

allState

Operation(extrinsicState)

Figure 2. The frame of the Flyweight Pattern

Figure 3. The software network of the Flyweight Pattern

Figure 4. The flow chart of the matching algorithm of the
Flyweight Pattern

The key judgment standards are concluded as follows:
(1) The relation between node FlyweightFactory and

node Flyweitht are merely usage and template.
(2) The inherit in-degree of node Flyweitht is more than 1.
Figure 4 is the flow chart of Flyweitht.

2.2 The Other Eight Design Patterns

The abstracting processes of the other eight design patte-
rns are similar to Flyweitht. The software network of the
nine design patterns are shown in Figure 5. The abstract-
ting standards of the nine design patterns are shown in
Table 1.

Copyright © 2010 SciRes JSEA

Application of Design Patterns in Process of Large-Scale Software Evolving 60

Singleton Bridge Decorator Composite

Observer Memento Mediator Chain of Responsibility

Figure 5. The software network of the nine design patterns

Table 1. The abstraction standards of the nine design patterns

design pattern the abstraction standards

Singleton
The starting node is the ending node.

The starting node of the edge is its ending node.

Bridge
The relation between node Abstract and node Implementor is merely usage.

The inherit in-degree of node Implementor is more than 1.

Decorator
The relation between node Decorator and node Component are usage and template.

The inherit in-degree of node Component is more than 1.

Composite
The relation between node Component and node Composite are inherit, usage and template.

The inherit in-degree of node Component is more than 1.

Flyweight
The relation between node FlyweightFactory and node Flyweitht are merely usage and template.

The inherit in-degree of node Flyweitht is more than 1.

Observer
The relation between node Observer and node Subject are usage and template.

There is one-to-one usage-relation between child nodes of node Observer and child nodes of node
Subject.

Memento
The edge values are friend and usage.

The starting node and ending node are class.

Mediator
The relation between node Mediator and node College is merely usage.

There is one-to-one usage-relation between child nodes of node Mediator and child nodes of node
College.

Chain of
Responsibility

The edge value is merely usage.
The starting node of the edge is its ending node.

3. The Application and Analysis of Design
Patterns in Software Evolving

The paper makes research on four kinds of open-source
software: text-processing software abiword, image-proce
ssing software blender, web browser software firefox,
and language-development software eclipse. There are
more than one version can be used in these four widely
used software, for this reason these software are taken as
examples.

3.1 How Software Scale Changes in Software
Evolving

Since there is linear relationship between number of
nodes and number of edges, the software scale can be

represented by the number of nodes. These results can be
received: during the software evolving, number of nodes
in abiword changes smoothly, that in blender and eclipse
increases a little, and that in firefox increase first and
decrease at last. Through checking software files, we find
that the cores of abiword, blender and eclipse hardly
change, while the core of firefox changes from the versi-
on of 3.0 to the version of 3.0.7.

3.2 The Application of Design Patterns in
Software Evolving

The evolving trends of the implication of design patterns
in abiword, blender, firefox and eclipse are shown as
Figure 6, Figure 7, Figure 8, and Figure 9. The abscissa
is the design patterns being used and the ordinate is times

Copyright © 2010 SciRes JSEA

Application of Design Patterns in Process of Large-Scale Software Evolving 61

Figure 6. The changes of the application of the Design Patterns in the evolution of abiword

Figure 7. The changes of the application of the Design Patterns in the evolution of blender

N of the design patterns being used.

As Figure 6 shows, six patterns are used in abiword:
Singleton, Bridge, Decorator, Memento, Mediator and
Chain of Responsibility. The times of these six patterns
being used goes up first, and then goes down, at last goes
smoothly. Meanwhile, the average using times of each
pattern in all versions are far away different. The average
using times of Singleton, Bridge, Decorator and Chain of
Responsibility are no more than ten, that of Mediator is
slightly more than ten, while being different from the
other patterns, the average using times of Memento is up
to 30.

As Figure 7 shows, seven patterns are used in blender:
Singleton, Bridge, Decorator, Flyweight, Memento,
Mediator and Chain of Responsibility. And except
Flyweight, the using times of the other six patterns are no

more than 5. The using times of Flyweight goes up along
with the software involving, and in the latest versions it
goes up so quick that it goes far away from the usual lin-
ear growth mode. The other patterns are merely uncha-
nged.

As Figure 8 shows, seven patterns are used in firefox:
Singleton, Bridge, Decorator, Flyweight, Memento, Med-
iator and Chain of Responsibility. The using times of
Bridge and Decorator are merely unchanged, and those
of Singleton, Memento, Mediator and Chain of Respon-
sibility show fluctuations that increase first, and then
decrease, at last increase, but the amplitudes is very small.
The using times of Flyweight increases to a large extent
in the latest two versions.

As Figure 9 shows, seven patterns are used in eclipse:
Singleton, Bridge, Decorator, Composite, Flyweight,

Copyright © 2010 SciRes JSEA

Application of Design Patterns in Process of Large-Scale Software Evolving 62

Figure 8. The changes of the application of the Design Patterns in the evolution of firefox

Figure 9. The changes of the application of the Design Patterns in the evolution of eclipse

Mediator and Chain of Responsibility. Except Singleton,
the average using times of the other six patterns are no
more than 50. The using times of Singleton increase first,
and then decrease, but those of the other patterns increase
to some extent continuously.

3.3 The Analysis on How Design Patterns are
Used in Software Evolving

Known from Table 2 which shows the average using
times of each design pattern in the chosen software, the
average using times of Memento comes up to 32.71
which takes up of 49.7 percent of the sum of the using
times of the six patterns used in abiword. Memento is
used to catch the state of an object and store it outside of

the object which is up for restoring the object in the
future. Text-processing software must remember the state
at any moment that can help the users restore the state
when it is necessary. For these reasons, Memento is used
far more frequently than the other patterns in abiword.

Known from Table 2, the average using times of
Flyweight comes up to 24 which takes up of 54.5 percent
of the sum of the using times of the seven patterns used
in blender. Since the subclasses of class Flyweight are
divided into shared data field and unshared data field,
Flyweight deals with common graphs and exceptional
graphs very well. A large amount of common graphs and
exceptional graphs are provided for users in image-
processing software. For these reasons, Flyweight is used

Copyright © 2010 SciRes JSEA

Application of Design Patterns in Process of Large-Scale Software Evolving 63

Table 2. The average using times of each design pattern in the software

Design Patterns abiword blender firefox eclipse

Singleton 8.75 4.2 54.1 242.8

Bridge 5.875 2.8 12 14.91

Decorator 0.8125 1 2.7 25.64

Composite 0 0 0 0.364

Flyweight 0 24 30.3 3.09

Observer 0 0 0 0

Memento 32.71 3 130.4 0

Mediator 11.5 5 73.7 56.82

Chain of Responsibility 6.125 4 54.7 22.73

far more frequently than the other patterns in blender.

Known from Table 2: the using times of Singleton
comes up to 54.1 which takes up of 15.1 percent of the
sum of the average using times of the seven patterns used
in firefox; the using times of Memento comes up to 130.4
which takes up of 36.4 percent of the sum of the average
using times of the seven patterns used in firefox; the
using times of Mediator comes up to 73.7 which takes up
of 20.6 percent of the sum of the average using times of
the seven patterns used in firefox; the using times of
Chain of Responsibility comes up to 54.7 which takes up
of 15.3 percent of the sum of the average using times of
the seven patterns used in firefox. Mediator can deal with
the communication among the objects implicitly. Chain
of Responsibility can make these requests a line and pass
these requests along the line till the final processing.
Memento can store the reply data being received for
client processing. At the same time, web browser takes
C/S model, so users will sent and receive large amount of
data request and reply continuously. For these reasons,
Memento, Mediator, Chain of Responsibility and Chain
of Responsibility are used far more frequently than the
other patterns in firefox.

Known from Table 2, the average using times of
Singleton comes up to 242.8 which takes up of 66.3
percent of the sum of the using times of the seven patt-
erns used in eclipse. The developers have to call the
system functions through the interfaces provided by
eclipse when they use eclipse and these system interfaces
permit being called but not changed, while Singleton can
prevent the change made by developers when they use
these interfaces. For these reasons, Singleton is used far
more frequently than the other patterns in eclipse.

Definition 1: the using times of some design patterns
takes up more than 50 percent of the sum of the using
times of all the patterns in software, then this pattern is
key pattern.

According to the Definition 1, the key pattern of
software is similar to the key in database. Since the key
pattern decides the main function of software, it can be
some kind of symbol of the software. Based on the
Definition 1, the key pattern of abiword is Memento; the
key pattern of blender is Flyweight; the key patterns of
firefox are Memento and Mediator; the key pattern of
eclipse is Singleton.

As Figure 6, Figure 7, Figure 8, and Figure 9 show, the
using times of Flyweight appears abnormal changes in
the last versions of firefox and blender. Through referring
to the white books of firefox and blender, we find that the
cores of firefox and blender changed too where these
abnormal changes happens [16].

4. Conclusions

According what mentioned above, the application and
rule of software in the process of evolving is abstracted
as follows:

The application of design patterns is changed along
with the change of software core and the using times of
key pattern of software increases first, then decreases, at
last swing around a certain number.

REFERENCES
[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,

“Design patterns: Elements of reusable object-oriented
software [M],” Addison-Wesley Longman Publishing Co.,
Inc. Boston, MA, USA, 1995.

[2] M. M. Lehma, and J. F. Rmail, “Software evolution and
software evolution processes [J],” Annals of Software
Engineering, Vol. 14, No. 1, pp. 275–309, 2002.

[3] B. Dougherty, J. White, C. Thompson, and D. C. Schmidt,
“Automating hardware and software evolution analysis
[A],” Engineering of Computer Based Systems, ECBS
2009. 16th Annual IEEE International Conference and
Workshop on the [C], Vol. 35, No. 5, pp. 265–274, 2009.

Copyright © 2010 SciRes JSEA

Application of Design Patterns in Process of Large-Scale Software Evolving64

[4] S. N. Dorogovtsev, and J. F. Mendes, “Scaling properties
of scale-free evolving networks: continuous approach
[J],” Physical Review E, Vol. 63, No. 5, pp. 56125.

[5] N. Zhao, T. Li, L. L. Yang, Y. Yu, F. Dai, and W. Zhang,
“The resource optimization of software evolution
processes [A],” Advanced Computer Control, ICACC’09,
International Conference on [C], pp. 332–336, 2009.

[6] B. Behm, “Some future trends and implications for
systems and software engineering processes [J],” Systems
Engineering, Vol. 9, No. 1, pp. 1–19, 2006.

[7] L. Paolo, B. Andrea, and D. G. Felicita, “A decom-
position-based modeling framework for complex systems
[J],” IEEE Transaction on Reliability, Vol. 58, No. 1, pp.
20–33, 2009.

[8] Y. Ma, and K. A. He, “Complexity metrics set for
large-scale object-oriented software systems, in procee-
dings of 6th international conference on computer and
information technology [J],” pp. 189–189, 2006.

[9] K. Madhavi, and A. A. A. Rao, “Framework for visua-
lizing model-driven software evolution [A], Advance
Computing Conference IACC’09 IEEE International
[C],” pp. 1628–1633, 2009.

[10] S. Valverde, and R. V. Sole, “Network notifs in com-

putational graphs: a case study in software architecture
[J],” Physical Review E, Vol. 72, No. 2, pp. 26107, 2005.

[11] C. R. Myers, “Software systems as complex networks:
structure, function, and evolvability of software
collaboration graphs [J],” Physical Review E, Vol. 68, No.
4, pp. 46116, 2003.

[12] A. Potanin, et al. “Scale-free geometry in OO programs
[J],” Communications of ACM, Vol. 48, No. 5, pp.
99–103, 2005.

[13] S. Meyers, “Effective C++ (3rd Edition) [M],” Addison-
Wesley Professional, pp. 10–50, 2005.

[14] C. A. Conley, and L. Sproull, “Easier said than done: an
empirical investigation of software design and quality in
open source software development [A],” System Sciences,
HICSS’09 42nd Hawaii International Conference on [C],
pp. 1–10, 2009.

[15] W. Lian, R. G. Dromey, and D. Kirk, “Software
Engineering and Scale-free Networks [J],” IEEE Trans-
actions on Systems, Vol. 39, No. 3, pp. 648–657, 2009.

[16] M. M. Lehma, and J. F. Rmail, “Software evolution
background, theory, practice [J],” Information Processing
Letters, Vol. 88, No. 1/2, pp. 33–44, 2003.

Copyright © 2010 SciRes JSEA

