On a problem of F.Smarandache
 \author{ Yang Ming-shun

}
(Department of Mathematics, Weinan Teacher's College, Weinan 714000, China)
yangms64@sohu.com
Abstract In this paper, the generalized constructive set S is defined as: numbers formed by digits $d_{1}, d_{2}, \cdots, d_{m}$ only, all d_{i} being different each other, $1 \leq m \leq 9$. That is to say: (1) $d_{1}, d_{2}, \cdots, d_{m}$ belongs to S,(2) If a, b belong to S, then $\overline{a b}$ belongs to S too,(3) Only elements obtained by rules (1) and (2); we use the elementary methods to study the summation $\sum_{k=1}^{n} S_{k}$ and $\sum_{k=1}^{n} T_{k}$, where S_{k} denotes the summation of all k digits numbers in S, T_{k} denotes the summation of each digits of all k digits numbers in S, and obtain some interesting properties for it.

Keywords Generalized constructive set, summation, recurrence equation, characteristic equation.

1. Introduction and Results

The generalized constructive set S is defined as: numbers formed by digits $d_{1}, d_{2}, \cdots, d_{m}$ only, all d_{i} being different each other, $1 \leq m \leq 9$. That is to say:
(1) $d_{1}, d_{2}, \cdots, d_{m}$ belongs to S;
(2) If a, b belong to S, then $\overline{a b}$ belongs to S too;
(3) Only elements obtained by rules (1) and (2) applied a finite number of times belongs to S.

For example, the constructive set (of digits 1, 2) is: $1,2,11,12,21,22,111,112,121,122,211,212,221$, $222,1111,1112,1121, \cdots$, And the constructive set (of digits $1,2,3$) is: $1,2,3,11,12,13,21,22,23,31,32,33$, 111, 112, 113, 121, 122, 123, 131, 132, 133, 211, 212, 213, 221, 222, 223, 231, 232, 233,311, 312, 313, $321,322,323,331,332,333,1111, \cdots$, In problem 6, 7 and 8 of reference [1], Professor F.Smarandache asked us to study the properties of this sequence. In [2], Gou Su had studied the convergent property of the series
$\sum_{n=1}^{+\infty} \frac{1}{a_{n}^{\alpha}}$ and proved that the series is convergent if $\alpha>\log m \quad$, and divergent if $\alpha \leq \log m$, where $\left\{a_{n}\right\}$ denotes the sequence of the constructive set S,
formed by digits $d_{1}, d_{2}, \cdots, d_{m}$ only, all d_{i} being different each other, $1 \leq m \leq 9$. In this paper, we shall use the elementary methods to study the

[^0]summation $\sum_{k=1}^{n} S_{k}$ and $\sum_{k=1}^{n} T_{k}$, where S_{k} denotes the summation of all k digits numbers in S, T_{k} denotes the summation of each digits of all k digits numbers in S. That is, we shall prove the following:

Theorem 1. For the generalized constructive set S of digits $d_{1}, d_{2}, \cdots, d_{m}(1 \leq m \leq 9)$, we have

$$
\sum_{k=1}^{n} S_{k}=\frac{d_{1}+d_{2}+\cdots+d_{m}}{9}\left(10 \times \frac{(10 m)^{n}-1}{10 m-1}-\frac{m^{n}-1}{m-1}\right)
$$

where S_{k} denotes the summation of all k digits numbers

Taking $m=2, d_{1}=1$ and $d_{2}=2$ in Theorem 1, we may immediately get

Corollary 1. For the generalized constructive set S of digits 1 and 2 , we have

$$
\sum_{k=1}^{n} S_{k}=\frac{1}{3}\left(10 \times \frac{(20)^{n}-1}{19}-2^{n}+1\right) \quad \text { Taking }
$$

$m=3, d_{1}=1, d_{2}=2$ and $d_{3}=3$ in Theorem 1, we may immediately get the following:

Corollary 2. For the generalized constructive set S of digits 1; 2 and 3, we have

$$
\sum_{k=1}^{n} S_{k}=\frac{2}{3}\left(10 \times \frac{(30)^{n}-1}{29}-\frac{3^{n}}{2}+\frac{1}{2}\right)
$$

Theorem 2. For the generalized constructive set S of digits $d_{1}, d_{2}, \cdots, d_{m}(1 \leq m \leq 9)$, we have

$$
\sum_{k=1}^{n} T_{k}
$$

$=\left(d_{1}+d_{2}+\cdots+d_{m}\right) \frac{n m^{n+1}-(n+1) m^{n}+1}{(m-1)^{2}}$ where
T_{k} denotes the summation of each digits of all k digits numbers in S ．

Taking $m=2$ ；$d 1=1$ and $d 2=2$ in Theorem 2，we may immediately get the following：

Corollary 3．For the the generalized constructive set S of digits 1 and 2 ，we have

$$
\sum_{k=1}^{n} T_{k}=3 n \cdot 2^{n+1}-3(n+1) 2^{n}+3
$$

Taking $m=3, d_{1}=1, d_{2}=2$ and $d_{3}=3$ in Theorem 2 ，we may immediately get

Corollary 4．For the the generalized constructive set S of digits $1 ; 2$ and 3 ，we have

$$
\sum_{k=1}^{n} T_{k}=\frac{3}{2} n \cdot 3^{n+1}-\frac{3}{2}(n+1) 3^{n}+\frac{3}{2}
$$

2．Proof of the theorems

In this section，we shall complete the proof of the theorems．First we prove Theorem 1.

Let S_{k} denotes the summation of all k digits numbers in the generalized constructive set S．Note that for $k=1,2,3, \cdots$ ，there are m^{k} numbers of k digits in S ．So we have
$S_{k}=10^{k-1} m^{k-1}\left(d_{1}+d_{2}+\cdots+d_{m}\right)+m S_{k-1}$
Meanwhile，we have
$S_{k-1}=10^{k-2} m^{k-2}\left(d_{1}+d_{2}+\cdots+d_{m}\right)+m S_{k-2}$
（2）
Combining（1）and（2），we can get the following recurrence equation

$$
S_{k}-11 m S_{k-1}+10 m^{2} S_{k-2}=0
$$

Its characteristic equation

$$
x^{2}-11 m x+10 m^{2}=0
$$

have two different real solution $\quad x=m ; 10 m$ ：
So we let $\quad S_{k}=A m^{k}+B(10 m)^{k}$
Note that $\quad S_{0}=0, S_{1}=d_{1}+d_{2}+\cdots+d_{m}$ we can get

$$
\begin{aligned}
& A=-\frac{d_{1}+d_{2}+\cdots+d_{m}}{9 m}, B=\frac{d_{1}+d_{2}+\cdots+d_{m}}{9 m} \\
& \text { So } \quad S_{k}=\frac{d_{1}+d_{2}+\cdots+d_{m}}{9 m}\left((10 m)^{k}-m^{k}\right)
\end{aligned}
$$

Then
$\sum_{k=1}^{n} S_{k}=\frac{d_{1}+d_{2}+\cdots+d_{m}}{9}\left(10 \times \frac{(10 m)^{n}-1}{10 m-1}-\frac{m^{n}-1}{m-1}\right)$
This completes the proof of Theorem 1.
Now we come to prove Theorem 2．Let T_{k} is denotes the summation of each digits of all kdigits numbers in the generalized constructive set S ．
Similarly，note that for $k=1,2,3, \cdots$ ，there are m^{k} numbers of k digits in S ，so we have

$$
T_{k}=m^{k-1}\left(d_{1}+d_{2}+\cdots+d_{m}\right)+m T_{k-1}
$$

（3）
Meanwhile，we have

$$
T_{k-1}=m^{k-2}\left(d_{1}+d_{2}+\cdots+d_{m}\right)+m T_{k-2}
$$

（4）
Combining（3）and（4），we can get the following recurrence equation

$$
T_{k}-2 m T_{k-1}+m^{2} T_{k-2}=0
$$

its characteristic equation $\quad x^{2}-2 m x+m^{2}=0$
have two solutions $\quad x_{1}=x_{2}=m$
So we let

$$
T_{k}=A m^{k}+k B(m)^{k}
$$

Note that $\quad T_{0}=0, T_{1}=d_{1}+d_{2}+\cdots+d_{m}$
We may immediately deduce that

$$
A=0, B=\frac{d_{1}+d_{2}+\cdots+d_{m}}{m}
$$

So

$$
T_{k}=k\left(d_{1}+d_{2}+\cdots+d_{m}\right) m^{k-1}
$$

Then

$$
\begin{aligned}
& \sum_{k=1}^{n} T_{k} \quad=\sum_{k=1}^{n} k\left(d_{1}+d_{2}+\cdots+d_{m}\right) m^{k-1} \\
& =\left(d_{1}+d_{2}+\cdots+d_{m}\right) \sum_{k=1}^{n} k m^{k-1} \\
& =\left(d_{1}+d_{2}+\cdots+d_{m}\right)\left(\sum_{k=1}^{n} m^{k}\right) \\
& =\left(d_{1}+d_{2}+\cdots+d_{m}\right) \frac{n m^{n+1}-(n+1) m^{n}+1}{(m-1)^{2}}
\end{aligned}
$$

This completes the proof of Theorem 2.

References（参考文献）

［1］F．Smarandache，Only Problems，Not Solutions，Chicago， Xiquan Publishing House，1993．
［2］Gou Su，On the generalized constructive set，Research on Smarandache problems innumber theory，Hexis，2005，53－55．
［3］ZhangWenpeng，On an equation of Smarandache and its integer solutions，SmarandAche Notions（Book series），American Research Press，13（2002），176－178．
［4］Wenpeng Zhang，On Chebyshevs polynomials and Fibonacii numbers，The Fibonacii Quarterly，40（2005），420－428．

Part 5

Network Theory and Technology

第五部分

网络理论与技术

[^0]: Foundation project: Supported by the Education
 Department Foundation of shanxi Province (09jk432) .
 Biography: Yang Mingshun (1964-), male , native
 of Weinan, Shannxi, an associate professor of
 Weinan Teacher's college ,engage in number theory

