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Abstract: The generalized eigenspace-based beamformer (GEIB) has demonstrated more robust capabilities 
than the linearly constrained minimum variance beamformer and the eigenspace-based beamformer. However, 
it still couldn’t deal with large pointing errors near the mainlobe edge. To cure the problem, the paper pre-
sents a modified algorithm, which obtains the weight vector by firstly calibrating the presumed steering vec-
tor with a rotated vector, and then utilizing the calibrated steering vector for the GEIB. Several computer 
simulations are provided for illustrating the advantages of the proposed algorithm over the GEIB. 
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1 Introduction 

Linear constraints are used in beamforming to achieve 

various purposes. Ideally the linearly constrained mini-

mum variance beamformer (LCMV) can achieve the 

maximum output SINR. But in practical circumstances, 

there are various mismatches which cause the desired 

signal being suppressed as an interferer. The eigen-

space-based algorithm (ESB) has been widely investi-

gated to improve the robust capabilities of the adaptive 

beamformers [1]. Combining the features of the ESB with 

the LCMV, the generalized eigenspace-based beam-

former (GEIB) is proposed in [2]. It is realized by pro-

jecting the LCMV weight vector onto a modified signal 

subspace and provides more robust capabilities than the 

ESB and the LCMV.  

However, the GEIB couldn’t deal with large pointing 

errors near the mainlobe edge. Especially in the case of a 

large array size, a small pointing error can cause severe 

performance degradation. To cure this problem, several 

modified algorithm for the ESB are proposed in [3~6]. 

The essence of these beamformers is to enhance the ro-

bust capabilities by calibrating the presumed steering 

vector. In [3] the actual steering vector is found by angle 

searching, and in [4] it is estimated using a subarray par-

tition scheme. In [5] a modified GEIB is presented, 

which estimates the actual steering vector by using the 

full array data. Though all the three algorithms men-

tioned above provide more robust capabilities to large 

pointing errors, the processes of searching and estimating 

greatly increase the complexity of calculating.  

In [6], a robust algorithm with low complexity is 

proposed based on the vector-rotating method. Combin-

ing the GEIB with the vector-rotating method, we present 

a modified algorithm with less sensitivity to large point-

ing errors. The algorithm firstly obtains two rotated vec-

tors in two opposite directions and by utilizing the aver-

age of them calibrates the presumed steering vector. The 

calibrated steering vector is then be used for the GEIB to 

obtain the weight vector. By the calibration, the new al-

gorithm provides much more robust capabilities than the 

conventional GEIB. 

2 The GEIB 

Consider P+1 narrowband uncorrelated sources imping-

ing on an M elements uniform linear array with 

half-wavelength interelement spacing. One is the desired 

signal and the others are interferers. The received signal 

can be expressed as 

1
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where ( )ds t  and ( )da  represent the waveform and 

the steering vector of the desired signal, ( )ps t  and 

( )pa

( )tn

 for p =1, 2, …, P are those of the interferers, 

 is the background noise. The correlation matrix of 

the array input is 

2[ ( ) ( )]H H
x sE t t n  R x x AR A I        (2) 

where sR is correlation matrix of  and )(ts
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[ ( ) ( )]H
s E t tR s s , 2

n  is the noise power,  is the 

identity matrix with size M×M. 

I

With the linear constraint , where 

 is the constraint matrix with size L×M, 

gwC H

1 2[ , ,..., ]LC c c c

g  is the response vector with size L×1. The weight vec-

tor of the LCMV can be described as 

1 ](a C 1 ])C 1 1
) [ ( ) ] [ ( )H

d x d     
 
 
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g

 (3) 

The GEIB calculates the weight vector by projecting 

the LCMV weight vector onto a modified signal sub-

space. With the assumption that the received source 

number is less than the array element number (P+1<M), 

the correlation matrix xR can be eigendecomposed as 

1

M
H H H
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i
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where 2
1 21 2 P P M n        

1e 2e

   are eigen-

values in the descending order, , ,…, Me are the 

corresponding eigenvectors,  2 ,...,n Pdiag M Λ

2[ ,..., ]n P M

, 

,1 2[ , ,...,s PE e e e 1] E e e . The column 

vectors of sE  and nE  span the signal subspace and 

the noise subspace respectively.  

Performing the Gram-Schmidt decomposition on the 

column vectors of sE and , we can obtain the matrix 

that contains the orthonormal basis of the modified signal 

subspace  

C
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Generally, the null constraints can be preserved by the 

GEIB for suppressing nonstationary interferes, and other 

constraints for model parameter mismatches would not 

be preserved. Therefore, for simplicity, we assume there 

are only null constraints. Propose the presumed steering 

vector is s sa a

ˆ ˆ
GEIB s sE Ew R

. Projecting the LCMV weight vector 

onto the modified signal subspace, the weight vector of 

the GEIB can be expressed as  

1 1]([ ] [ ])H H
s x s

 a C a C R a 1 1 
 
 

C[x s g
    (6) 

Though the GEIB has much more robust capabilities 

than the LCMV and the ESB, it can’t deal with large 

pointing errors. According to the result in [7], with a 

pointing error present, the separation of the presumed 

steering vector sa  and the actual steering vector can 

be represented by 
da

 cos
H

d s

M
 

a a
                (7) 

which determines the array performance. The smallzer 

the cos , the lower the output SINR. When the desired 

signal impinges from the direction near the edge of the 

mainlobe, 0H
d s a a , the output SINR approaches to zero. 

And the larger the array size, the narrower the error 

scope in which the GEIB beamformer can perform well. 

3 The Proposed Algorithm 

To cure the sensitivity of the GEIB to pointing errors 

near the mainlobe edge, a modified algorithm based on 

the vector-rotating method (RGEIB) is presented in the 

paper. The algorithm obtains the weight vector by cali-

brating the presumed steering vector with a rotated vec-

tor and utilizing the new one for the GEIB beamforming. 

The calibration process is as follows. 

Rotating the presumed direction to the right and to the 

left responsively with an angle  , we can obtain two 

rotated vectors 

 
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where 1 sin( )s       and 2 sin( )s      . When 

  is very small, we can get the approximations of 1  

and 2  

1
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where sin s   and cos s      . The rotated 

vectors can be approximately expressed as 
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Assuming  1,exp( ),...,exp( ( 1) )diag j j M   B  , we 

can get  
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Now we obtain the approximations of two rotated 

vectors. Utilizing the average of them, the calibrated 

steering vector is given by 

  1 1
( ) ( ) ( ) ( ) ( )

2 2
H

s s s s            b a a B B a   

(12) 

We assume 

  1
( ) 1,cos( ),..., cos(( 1) )

2
H diag M      C B B  

(13) 

The calibrated steering vector can be expressed as 

( ) ( )s s b Ca                (14) 

From the process above, we can see that the calibrated 

vector equals to the original steering vector multiplying a 

diagonal matrix. By utilizing the calibrated steering vec-

tor ( )s sb b  instead of sa , we can get the modified 

weight vector of the LCMV beamformer. Then by pro-

jecting it onto the modified signal subspace, the weight 

vector of the proposed RGEIB algorithm can be ex-

pressed as    

1 1 1ˆ ˆ [ ]([ ] [ ])H H
RGEIB s s x s s x sE E    

  
 

w R b C b C R b C 1

g
  (15) 

The value of the diagonal matrix is related to the 

presumed direction 

C

s  and the rotated angle  . The 

half-power bandwidth of a M-element uniform linear 

with half-wavelength interelement spacing can be ex-

pressed as 0.5 1.772sec sBW M . Avoiding the rotated 

angle going beyond the mainlobe,   can not exceed 

half of the mainlobe width [6]. So 0.886sec s M   , 

and 0.886 M   .      

4 Computing Simulation 

Several simulation examples are presented in this section 

for illustrating the effectiveness of the proposed algo-

rithm. Suppose a desired signal and two uncorrelated 

interferers from the directions of 40º and -30º impinging 

on a uniform linear array with half-wavelength interele-

ment spacing. The interfere-noise ratios of the interferers 

are 10dB and 15dB respectively. There is a null con-

straint of 60º. Each of the simulation results is obtained 

by taking the average of 100 independent runs. 
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Figure 1. Ou tput SINR versus the  pointing error f or the GEIB in  
different array sizes 

 

Example 1: Suppose the presumed direction is 0º, the 

element number of the array is assumed to be 10, 20 and 

30 respectively. Observe the sensitivity for the GEIB to 

pointing errors. Figure 1 shows the curves of its output 

SINR versus the pointing error in different array sizes. 

From the figure we can see that, the output SINR of the 

GEIB drops periodically along with the pointing error. 

The drop curves are close to the beam patterns of the 

presumed direction. So when the pointing error is near 

the mainlobe edge, the performance of the GEIB suffers 

from severe degradation. As the array element increases, 

the mainlobe width becomes narrow, the scope of the 

pointing error in which the GEIB could maintain good 

performance becomes smaller, and then a very small 

pointing error can severely degrade its performance. 

Example 2: Suppose the presumed direction is 0º and a 

10-element array is used. Investigate the performance of 

the proposed RGEIB algorithm and compare it with the 

LCMV algorithm and the GEIB algorithm. Assume the 

rotated angle Δθ = 0.6/M. Figure 2 shows the curves of 

the output SINR versus the pointing error for different 

algorithms. From the figure we can see that, both of the 

RGEIB algorithm and the GEIB algorithm have better 

output performance than the LCMV algorithm. However, 

as same as the LCMV algorithm, the output SINR is 

dropped sharply when the pointing error is about 12º. 

The proposed algorithm overcomes their shortcomings 
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and have robust capabilities in a wide scope of pointing 

errors.  
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Figure 2. Output SINR versus the pointing error for different algo-
rithms 
 

Example 3: The desired signal is supposed to be 0º and 

the other supposes are the same with example 2. Com-

pare the beam patterns of different beamformers in figure 

3. From the figure we can see that, all of the three afore-

mentioned algorithms form deep hollows in the direction 

of the null constraint. Due to the pointing error, the 

LCMV suppressed the desired signal as an interferer, 

while the other two methods form mainlobes in the di-

rection of the desired signal. In the presence of the small 

pointing error, the beam patterns of the later two algo-

rithms are almost the same. When the pointing error is 

12º, which goes near the mainlobe edge, the sidelobe 

level of the GEIB becomes high and it can not suppress 

the interferers efficiently. The RGEIB improves the 

sidelobe level obviously and forms deep hollow in the 

directions of the two interferers. Its beam pattern ap-

proaches to the optimum one.  
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(a) The pointing error is 2º 
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(b) The pointing error is 12º 

Figure 3. The beam patterns of different beamformers 
 

Example 4: Suppose the condition is the same as ex-

ample 3. Investigate the curves of the output SINR ver-

sus the input SNR for different algorithms in figure 4. 

From the figure we also can see that, the performances of 

the RGEIB and the GEIB are almost the same and both 

are better than the LCMV when the pointing error is 2º. 

When the pointing error is near the mainlobe edge, the 

output SINR of the RGEIB suffers from a very little loss 

only in high input SNR, while those of the other two al-

gorithms drop sharply. 
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(a) The pointing error is 2º 
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(b) The pointing error is 12º 

Figure 4.  Ou tput SINR  versus t he input  SN R for  d ifferent beam-
formers 
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5 Conclusion 

To overcome the drawback of the GEIB beamformer to 

large pointing errors near the mainlobe edge, the paper 

presents a modified GEIB beamformer based on the vec-

tor-rotating algorithm. It firstly obtains two rotated vec-

tors in two opposite directions and by utilizing the aver-

age of them calibrates the proposed steering vector. The 

calibrated steering vector is then be used for GEIB 

beamforming to obtain the weight vector. Several com-

puter simulations demonstrated the proposed algorithm 

provides much more robust capabilities than the former 

algorithms and it can perform very well even in very 

large pointing errors.  
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