

MwSandbox: On Improving the Efficiency of Automated
Coarse-grained Dynamic Malware Analysis

Chengyu Song1,2, Chao Qin3, Jianwei Zhuge1,2, Zhiyin Liang1,2, Zhiyuan Ye1,2

1. Key Laboratory of Network and Software Security Assurance(Peking University), Ministry of Education, Beijing 100871, China

2. Institute of Computer Science and Technology, Peking University, Beijing 100871, China

3. First Research Institute of Ministry of Public Security of China, Beijing 100048, China

1. {songchengyu,zhugejianwei,liangzhiyin,yezhiyuan}@icst.pku.edu.cn

3. qinc@fri.com.cn

Abstract: Malware is a major threat to the cyber world and the number of unique malware samples captured
by antivirus software venders is making an explosive growth in recent years. To improve the malware analy-
sis efficiency, researchers have developed several automated coarse-grained dynamic malware analysis sys-
tems, including Norman Sandbox, CWSandbox and TTAnalyze, etc. However, these systems' analysis capa-
bilities still cannot compare with the growth of malware, because they rely on heavy virtual machines to build
malware execution environments. To further improve the efficiency, this paper analyzes the bottlenecks in
these systems and proposes two mechanisms, flash revert and VM fork to reduce the found overheads. Ex-
periments on an OS-level VMM based prototype implementation (MwSandbox) show that the efficiency is
improved at least an order of magnitude without losing analysis quality.

Keywords: sandbox; dynamic malware analysis; virtual machine; API hooking

1 Introduction

Malware, e.g. Trojan horses, bots, worms, viruses

and so on, is one of the major threats to the whole cyber

world. Trojan horses are used to steal users' sensitive

information like personal identity, online bank and online

game accounts, while botnets are used as generic attack-

ing platforms to spread spams, launch distributed de-

ny-of-service (DDoS) attack, break passwords. Driven by

the economic benefits brought by these malicious activi-

ties, many experienced programmers are joining this un-

derground industry every day, and devoting their time to

write more and more powerful malicious codes or even

code generators. This in turn, makes an explosive growth

of the malware pieces every year. According to the latest

Symantec Internet Security Threats Report [1], in the last

half year of 2007 the malware they detected was 2.36

times as was detected in the first half of 2007 and 6.71

times of last half 2006. The situation is even worse now

as Rising has reported a nearly 12 times growth of mal-

ware samples they collected in 2008 than in 2007[2], and

Trend Micro has reported more than a twenty-fold (2000

percent) increase in web threats between 2005 and

2008[3]. To combat with this growing threat, it is impor-

tant that these antivirus (AV) software venders be able to

1) analyze the collected samples, 2) generate signatures

for malicious samples and 3) dispatch the generated sig-

nature to their consumers as fast as possible. Among this

process, analyzing collected samples is the most time

consuming step.

Generally, computer program analysis can be

roughly divided into two categories: static analysis and

dynamic analysis. While static analysis is fast and com-

plete - all execution paths can be covered - it is extremely

difficult to analyze malware samples statically because

almost every piece of malware captured nowadays is

armored by one or more anti-analysis mechanisms [4-7],

such as self-check, self-modify, encryption and packer.

Dynamic analysis hereby becomes a hot topic among

research groups and a feasible way for industry compa-

nies.

Dynamic analysis can be further divided into

coarse-grained and fine-grained. Coarse-grained analysis

usually provides information at operating system (OS)

level (e.g. file creation, registry modification). Although

it is possible to determine whether the analyzed sample is

malicious or not only based on these information, it lacks

certain information like how those malicious activities is

863 High-Tech Research and Development Program of China, under
Grant No. 2006AA01Z445.
Research Fund for the Doctoral Program of Higher Education of China,
under Grant No. 200800011019.
National Fundamental Science of First Research Institute of Ministry of
Public Security of China, under Grant No A07313.

492

Proceedings of 14th Youth Conference on Communication

978-1-935068-01-3 © 2009 SciRes.

achieved which is necessary to develop the re-

move/recovery routine. Fine-grained analysis, on the

other hand, is able to provide this kind of information.

Ideally, every sample should be analyzed fain-grained so

as to extract as much information as possible, but this

requires a lot of time that is not affordable. Luckily

enough, in reality, most collected samples are mutated

variant of known malware and classifying analyzed sam-

ples to known variant based on coarse-grained analysis is

possible[8, 9], which means, only a few novel samples

are necessary to analyzed fine-grained, and the rest can

be analyzed coarse-grained.

To overcome the drawbacks of manual analysis,

several automated systems have been developed to han-

dle coarse-grained task [10-13] and fine-grained task [6,

14-19] in the past few years. While these systems have

greatly improved the analysis efficiency (CWSandbox is

able to analyze more than 500 samples per day per in-

stance), to win the war with exponentially growing mal-

ware (about 24,000 samples per day as indicated in [2, 3]

and is still growing), it is necessary to further improve

their efficiency, especially the efficiency of

coarse-grained systems, because all samples have to be

analyzed coarse-grained.

Roughly speaking, the procedure of automated

coarse-grained analysis systems is: each instance main-

tains an execution environment, automatically takes a

malware sample, executes the sample in the execution

environment, records the sample's run-time behaviors

and then generates a report. Since a potential malicious

sample may compromise the underlying execution envi-

ronment during the analysis, the execution environment

can neither be reused nor be shared, otherwise either

false negatives or false positives are likely to be intro-

duced. Although most of these systems leverage the vir-

tual machine technologies to provide and recover isolated

execution environments far better than physical machine,

since the virtual machine monitors (VMM, such as VM-

ware[20], QEMU[21], Xen[22]) used in these systems

are not designed for malware analysis, they are always

too heavy and import several overheads that reduce these

systems' efficiency.

Firstly the virtual machines (VM) they use are

highly resource consuming thus cannot support many

samples analyzed in parallel on one physical machine.

Secondly, these dynamic analysis systems frequently

need to restore the execution environment to an initial

state. However, the recovery time is relatively long when

compared with the whole analysis time. Thirdly, the

maintenance and updating of the execution environment

would cause a long off-line time because every execution

environment is so isolated that they need to be handled

separately, and there is likely to be tens, or even hun-

dreds VMs when such systems are used practically to

support daily malware analysis tasks.

Based on these facts, to further improve the effi-

ciency of the coarse-grained analysis, we proposed two

mechanisms: flash revert and VM fork. Flash revert re-

duces the recovery time by keeping a copy of the 'clean'

volatile states in memory instead of only saving them on

disk. VM fork reduces the memory consumption and

maintenance overhead by letting the large amount iden-

tical volatile and non-volatile states be shared among

execution environments.

We have implemented these two mechanisms on the

basis of an OS-level virtual machine, Feather-weight

Virtual Machine (FVM) [23]. By integrating the tradi-

tional dynamic behavior capture and analysis mecha-

nisms into the improved VMM, we create a light-weight

sandbox for dynamic malware analysis, MwSandbox.

The evaluation result of this prototype implementation

shows that these two mechanisms can improve the effi-

ciency by about an order of magnitude without losing

analysis quality.

In summary, this paper targets at improving the ef-

ficiency of automated coarse-grained dynamic malware

analysis so the newly arrived samples can be analysis as

soon as possible in a good enough manner. And it makes

following contributions:

 We systemically analyzed the bottlenecks in cur-

rent dynamic malware analysis systems that pre-

vent them from scaling and how these bottlenecks

can be eliminated.

 We proposed two mechanisms, flash revert and

VM fork to reduce the overheads in the malware

execution environment.

 We implemented a new automated dynamic mal-

ware analyzer MwSandbox based on Feath-

493

Proceedings of 14th Youth Conference on Communication

978-1-935068-01-3 © 2009 SciRes.

er-weight Virtual Machine which increases the

number of parallel analysis on a single physical

machine by about 10 times and decreases the

sandbox recovery time by about 10 times.

2 Related Work

2.1 Dynamic Malware Analysis

Because most malware today leverage obfuscation

technology to avoid AV detection and/or resist static

analysis, dynamic malware analysis has made a huge

progress in recent years. The first trend is to automate

coarse-grained analysis. CWSandbox [12], the new

emerged competitor to Norman Sandbox [10, 11], is a

coarse-grained malware analysis tool based on user space

API-Hooking and uses VMware Server to build its exe-

cution environment. TTAnalyze [13] is another

coarse-grained malware analyzer, and is the first tool that

realizes out-of-box system call monitoring by using a

modified version of QEMU. The efficiency of these tools,

though much better than manual analysis, is still con-

strained by the underlying execution environment (CPU

emulator or VMware Server). Our work is to reduce

these overheads and improve the overall performance.

The second trend is to automate the fine-grained

analysis. Cobra [6] is a fine-grained malware analysis

framework facilitated by stealth localized-execution and

supports automated code tracing. Panorama [14] is a tool

uses dynamic taint technology [24] to automatically de-

tect and analyzing private information leaking. Hook-

finder [15] is another tool powered with this technology

to detect and analyze malware which has hooking be-

haviors. K-Tracer [16] and its preceding [17] uses a dif-

ferent approach to analyze kernel level malware.

BitScope [18] and Moser et al's tool [19] are able to de-

tect trigger-based behaviors in malware and perform

multiple execution path analysis. These tools, while can

provide better understand of the malware behavior, are

much less efficiency than coarse-grained tools. Our sys-

tem differs from these tool in we are only going to pro-

vide an analysis good enough to determine whether the

sample is malicious or not and classify the sample. Some

potential malicious behaviors (e.g. load kernel drivers)

are not permitted in our system, but we will record these

behaviors hence samples having these behaviors can be

analyzed fine-grained latter. And though performance is

not a primary requirement of these works, we believe

their efficiency can be improved by our flash revert and

VM fork technology.

2.2 Light-weight Virtual Machines

Feather-weight Virtual Machine [23], as indicated

by its name, is a light-weighted OS-level VMM build

upon Microsoft Windows, and has been used in area like

vulnerability assessment [25], scalable web site testing;

shared binary service for application deployment and

distributed Display-Only File Server (DOFS) [26]. Due

to several reasons (shown in Section 5), it is chosen as

the base VMM of our sandbox.

Vrable et al. [27] proposed two techniques flash

cloning and delta virtualization which are very similar to

our solution. However, Potemkin is a honeyfarm, its

VMM only emulate the execution behavior of dedicated

honeypot hosts for a short periods of time. It requires

modification to the guest OS and supports Linux only.

More important, it lacks reliable clone and protection of

disk device, which, however, is critical for malware

analysis.

3 Problem Analysis

In this section, we systematically analyze the proc-

ess of coarse-grained dynamic malware analysis to figure

out the bottlenecks in current systems. Then we discuss

possible ways to resolve these bottlenecks.

3.1 Coarse-grained Analysis

Given a malware sample, coarse-grained analysis

means, executing the binary in an execution environment

for a specific time (usually several minutes) and record

its behavior during the execution. An execution envi-

ronment, from the perspective of a running program (i.e.

the process), is a memory space to store its code and data,

and an application binary interface (ABI) to execute its

code. For malware analysis, besides providing the target

ABI, the execution environment must satisfy more re-

quirements:

First, the environment should never let recorded

behaviors be polluted with behaviors that do not inhabit

in the sample binary. Otherwise a sample would be miss

classified as malicious which in turn, will result in a false

494

Proceedings of 14th Youth Conference on Communication

978-1-935068-01-3 © 2009 SciRes.

positive in the detection system, and false positives are

highly unacceptable in practice. It is also possible that a

compromised execution environment prevents some ma-

licious behaviors of a sample from appearing or being

monitored, therefore causes false negatives. Since most

ABI of the operating systems widely-used now is not

strong enough to stop a malware from impacting other

processes on the OS, to eliminate false positives and

false negatives requires: (R1) an execution environment

should never be reused before it is recovered to a clean

state; (R2) no more than one sample can be analyzed in

one execution environment.

Second, the environment should provide some in-

teraction conditions to trigger certain behaviors of a sam-

ple. For example, a virus would require some certain

types of file to trigger its infection behavior. This re-

quirement implies: (R3) the environment should be up-

dated from time to time so as to provide the interaction

conditions required by the new emerged malware.

To satisfy these requirements, it is unavoidable that

the efficiency of the analysis system suffers. However,

some of the costs in present dynamic malware analysis

systems are not necessary and the performance of such

systems will be improved when these overheads are re-

duced.

3.2 System Recovery

To satisfy R1, besides the specific execution time,

the whole analysis time of a sample must plus a recovery

time. Since the execution time cannot be reduced, other-

wise some malicious behavior may not be observed, one

way to improve the analysis efficiency is to reduce the

recovery time.

By replacing physical machine which requires

dd[28] or Norton Ghost[29] to recover the disk with VM

and leveraging the snapshot function provided by VMM,

the recovery time can be reduced from several minutes to

several tens of seconds (see Section 6.1 for detail).

However, since the specific execution time is only 2-3

minutes, this recovery time still takes a relatively big

portion of the whole analysis process, and this portion

grows with the memory preserved for the VM and the

load of the host machine.

The reason why reverting a VM is much faster is

because the very slow disk operation is heavily reduced

by protecting the disk image under an accumulation

mode (i.e. old disk image is not overwritten after a snap-

shot is created). Therefore, recovering the disk image

only requires deleting the new image. In fact, this disk

recovery time is so short that most of the reverting time

of a VM is used to recover the volatile states (memory,

register, etc.) from disk. So if we could avoid loading the

volatile state image from disk, we can further shorten the

reverting time and make analysis system more efficiency.

3.3 Parallel Analysis

Although it is hard to reduce the whole analysis of a

single sample, the average analysis time can be reduced

by analyzing samples in parallel. And to satisfy R2, iso-

lated execution environment is required. Since modern

hardware is too powerful for single analysis, most analy-

sis systems use virtual machines to improve the analysis

capability. However, facing the exponentially growing

malware, is it possible to run more VMs on one physical

machine?

Intuitively, the answer is yes. In a dynamic malware

analysis system, every VM is almost identical. Therefore,

by decreasing the granularity VMM used to protect

memory resources, the number of concurrently running

VM can be increased.

3.4 Environment Update

Another limitation we found in present dynamic

malware analysis systems is that, when the execution

environment needs an update (R3), it will cause a long

off-line time of the system. Because there could be tens

or even hundreds of VMs in the system, and these VMs

need to be updated separately because they are so iso-

lated from each other.

But, similar to memory, most of the disk image

content of different VMs, not only before the update but

also after, is identical. Therefore, if only one disk image

needs to be updated, the off-line time of the analysis sys-

tem is reduced.

4 Solution

To overcome the bottlenecks discussed, we propose

two mechanisms: flash revert and VM fork. In this sec-

tion we describe these two mechanisms.

495

Proceedings of 14th Youth Conference on Communication

978-1-935068-01-3 © 2009 SciRes.

4.1 Flash Revert

To reduce the system recovery overhead, we pro-

pose a new snapshot and recovery mechanism called

flash revert. Under this mechanism, besides the

non-volatile states, the volatile states of the execution

environment are also protected under an accumulation

mode: 1) when a snapshot is made, the volatile states are

saved both in memory (old image) and on disk (for cold

recovery); 2) a new image is allocated and links the old

image; 3) further changes to the volatile states are stored

in the new image; 4) when read operation is issued, the

VMM first tries to read from the new image, if fails, it

then reads the content from the old image; and 5) after

the analysis, the new image is discarded (freed) and the

old image becomes the default image.

4.2 VM Fork

To reduce the memory resources consumption

overhead caused by large granularity memory isolation

mechanism, we propose a new isolation mechanism

called VM fork, which is inspired by the memory isola-

tion mechanism in modern operating systems. Under this

isolation mechanism, the identical volatile states will be

share between different VMs: 1) on a host machine, only

one VM is booted normally from the disk image; 2)

every other VM is forked from this VM and shares all the

memory content with it in the beginning; 3) the farther

VM and the forked VMs can read the shared memory,

but if any of them tries to write the memory, the VMM

performs a COW operation, and marks the new allocated

space as private, the original memory content is still

shared between the rest VMs; 4) no VM can read or write

other VM's private space.

To reduce the system maintenance overhead, we

extend the VM fork mechanism to not only protect the

volatile but also protect the non-volatile states. To satisfy

the prerequisite to share non-volatile states, the VMM

stores the per-VM configuration in its configuration file

and configures the VM properly when it is forked.

5 MwSandbox

In this section we describe the design and imple-

mentation of our automated dynamic malware analyzer,

MwSandbox, which implements flash revert and VM

fork.

5.1 System Overview

Our parallel dynamic malware analysis system is

composed of three main components that collaborated

with each other to accomplish the goals (Figure 1):

Figure 1 System Overview

Execution Environment . A light-weight execution

environment for analyzing Windows based malware

samples that implements the flash revert and VM fork.

Dynamic B ehavior Monitor. For capturing the

system calls samples made during their execution and

recording them into log files.

Dynamic B ehavior Analyzer. For extracting sam-

ples' system behaviors from the recorded system call logs

and generating analysis reports.

5.2 Execution Environment

The execution environment of our sandbox is built

upon the OS-level VMM, FVM [23]. The basic idea be-

hind FVM is to use namespace isolation to isolate both

volatile and non-volatile resources between host OS and

guest VMs, and to use the COW strategy to share re-

sources so as to make the VM feather weight. We choose

it as the foundation of our sandbox based on three rea-

sons:

Firstly, FVM is implemented as a kernel driver of

the Microsoft Windows OS, which is also the target ABI

of our execution environment.

Secondly, FVM has partially implemented the VM

fork mechanism. Under FVM, the non-volatile states (file

system and registry system) are shared and protected

under the COW strategy between host OS and guest VMs.

496

Proceedings of 14th Youth Conference on Communication

978-1-935068-01-3 © 2009 SciRes.

But it lacks protection between guest VMs. For the vola-

tile states, FVM satisfies most policies required by VM

fork (listed in Table 1), except the protection of private

spaces (both user and kernel) between VMs and the pro-

tection of kernel space memory.
Table 1 Memory Protection Policies Required by VM fork

User Space

Memory

Shares all the content with the host OS when created;

When is about to be modified, private physical mem-

ory page is allocated for this operation;

All user space private pages cannot be accessed by

processes in other virtual machines.

Kernel

Space

Memory

Shares all the content with the host OS when created;

When is about to be modified, this operation is done

inside the VM's own namespace;

No process in virtual machines is able to modify kernel

space memory or read private kernel space memory.

Thirdly, FVM shares a large common base with the

Dynamic Behavior Monitor. Both of them use the API

hooking technology and most of the hooked functions are

identical. So it is easier to integrate the Monitor into the

FVM VMM than into other popular system-level VMMs,

such as VMware and QEMU. And integrating the be-

havior monitor component into the VMM layer has sev-

eral advantages: it is harder to be detected, tampered or

bypassed [30].

Therefore, to use FVM to build the required execu-

tion environment, we need to: 1) complete the imple-

mentation of VM fork mechanism; 2) implement the

flash revert mechanism; and 3) strengthen the

self-protection mechanisms in FVM.

5.2.1 Complete VM fork
To completely implement the VM fork mechanism,

we need to protect the private resources (both

non-volatile and volatile) from being accessed by proc-

esses in other guest VMs.

To protect files and registry keys in one VM's pri-

vate namespace, we make the root of each VM's file and

registry namespace the child of a certain directory, for

example C:\Sandbox and HKLM\SOFTWARE\Sandbox.

This directory is then hidden from processes in the VMs,

and any attempt to access either the directory itself or

items rooted from it would fail.

For memory resources, they are protected by four

more policies listed in Table 2:

Table 2 Memory Protection Policies to Complete VM fork

Process Enu-

meration

Processes in other virtual machines are removed

from the result of process enumeration

User Space

Memory

Process cannot manipulate virtual memory of

another process besides processes in the same

virtual machine

Kernel Space

Memory

Private namespace for kernel object are rooted at

the same directory and hidden from access;

Processes in virtual machines are not allowed to

load kernel module.

5.2.2 Implement Flash Revert
In our sandbox, the flash revert is done by 1) forcing

all the running processes in that VM to terminate, which

will then makes the resources management functions in

Windows to free all the user space memory allocated for

these processes and all the kernel objects in the VM pri-

vate; 2) deleting all the files and registry keys in the

VM's private namespace.

4.2.3 Strengthen Security
FVM has some self-protection mechanisms, but

they are not strong enough for malware analysis. So we

add more mechanisms to strengthen the security of the

virtualization layer.

 We hook system shutdown function to handle the

system shutdown and restart requirement needs

properly.

 We hook the system time related functions to

prevent the system wide time from being modified

maliciously. And the adjustment will be stored

and applied when processes in that VM query

system time afterward.

 We hook the token privilege adjust functions to

avoid processes in the VM getting some critical

privileges.

 We hook the kernel driver unload function NtUn-

loadDriver to avoid the VMM module being un-

loaded.

5.3 Dynamic Behavior Monitor

We use API hooking technology to accomplish the

goal of gathering sample's coarse-grained dynamic be-

haviors (i.e. system activities). The Dynamic Behavior

Monitor intercepts important system calls of Windows,

and captures the related information when these func-

tions are called within the sandbox. The captured infor-

497

Proceedings of 14th Youth Conference on Communication

978-1-935068-01-3 © 2009 SciRes.

mation is written to log _les, one for each sandbox. After

the dynamic execution finishes, the corresponding log

file is uploaded to the Behavior Analyzer to extract the

behavior information. We decouple the logging and

analysis so the Analyzer can be updated without modify-

ing the sandbox, and different off-line analysis can be

performed separately.

5.4 Dynamic Behavior Analyzer

The Dynamic Behavior Analyzer is in charge of ex-

tracting dynamic behaviors from the log _le. In our sys-

tem, it has three components: one low level parser to

recover semantic information of logged system call and

provides a more convenient interface for high level ana-

lyzer; two high level analyzer, one generates a human

friendly analysis report to help malware analysis experts

classify the sample, and the other one generates XML

based reports for other machine procedures.

5.5 System Implementation

The execution environment with the integrated Dy-

namic Behavior Monitor is implemented as two parts:

one kernel driver which consists of about 22,000 lines of

C code for the kernel level virtualization layer and kernel

level of the Dynamic Behavior Monitor, and one DLL

consisted of about 1,000 lines of Delphi (with the help of

madCodeHook[31]) for the user level virtualization layer

and the user level of Dynamic Behavior Monitor. (Al-

though the FVM VMM is open-sourced earlier this year,

we did not have the access to that code when we began

the development of our system, so the entire sandbox is

developed from scratch all by ourselves.) The three

components of Dynamic Behavior Analyzer are imple-

mented in about 1,000 lines of Python code. A sandbox

controller is implemented in about 3,000 lines of Delphi

codes.

6 Evaluation
In this section we present the evaluation result of

our MwSandbox. The first part is the performance

evaluation of our light-weighted sandbox; the second part

is an effectiveness evaluation of sandbox; in part three,

we demonstrate that our sandbox is able to evade some

anti-VM detection; in the last part we present an over-

view of the result of a large-scale analysis we conducted

on our prototype system.

Figure 2 Time consumption for analyzing 200 samples concurrently
(timed out when concurrency reaches 60).

6.1 Performance

Since our primary goal is to reduce the overheads in

present automatic dynamic malware analysis systems

thus improve the overall performance, we first conduct a

performance evaluation of our light-weighted sandbox.

The test-bed we use is a Core Duo 2 E6750 2.66G Dell

Optiplex 755 PC with 2GB memory running Windows

XP SP3.

6.1.1 Concurrent Analysis
We design this experiment as described below to

find out how many sandboxes can run concurrently in

our prototype system:

 We select 200 samples captured by our distributed

honeynet[32] in December 2008 as the sample

pool;

 To ensure every sample gains enough CPU cycles,

we define a rough constraint: every operation

(start, fetch sample, stop) must finish in 60 sec-

onds;

 From 10, we increase the concurrent running

analysis tasks once by 10 and record the overall

time used to analyze the 200 samples. At every

concurrency level, we perform the analysis three

times then use the mean time (rounded to min-

utes).

The analyzing time is shown in Figure 2. From it we

can imply that 50 (timed out when concurrency reaches

60) is the most suitable number of concurrent running

tasks, which is about one order of magnitude higher

compared with the number of VMs that VMware and

QEMU can start without serious performance delegation.

498

Proceedings of 14th Youth Conference on Communication

978-1-935068-01-3 © 2009 SciRes.

This also implies that on our test bed we are able to ana-

lyze about 28,800 samples per day.

Theoretically, the memory requirement of a sandbox

only consists of the memory used by processes in the

sandbox and an additional 2MB used by the VMM[23],

in our test bed, we should be able to start hundreds of

sandboxes concurrently. However, in practice, since most

of the malware samples are CPU-bounded programs, if

we analyze too many samples concurrently, some sample

may not get enough CPU cycles to finish its execution

path. As a result, the quality of the analysis report will

delegate. Besides, the synchronization and mutex over-

head grows as the concurrent degree increases, this will

decrease the overall throughput of the system. So we

believe 50 is a reasonable concurrency number for our

test-bed.

6.1.2 System Revert Time
In this experiment we test how fast one sandbox can

revert to a clean state under different situation, and com-

pare this result with the average revert time of VMware

Workstation (v6.5) and QEMU (v0.9.1 without kqemu).

The result is shown in Figure 3. For VMware Work-

station and QEMU, the evaluation is done under Ubuntu

Linux 8.04 32-bit version, each VM with 224MB mem-

ory and 8GB disk. All there systems run Windows XP.

The reverting time of one sandbox of our system is the

time elapses between the STOP command is send and the

OK result is received. The reverting time of one VM of

VMware Workstation is the time elapses between the

stop command is issued and the start command is fin-

ished. The reverting time of one VM of QEMU is the

time elapses between the start command is issued and

Windows is logged in.

This evaluation shows 1) the revert time grows with the
concurrency number (the average revert time of VMware
Workstation grows from 6.2 seconds to 22.3 seconds); 2)
revert time of VMM that support non-volatile states
snapshot (VMware Workstation, MwSandbox) is much
faster than that does not (QEMU); 3) our system has
greatly shorten the system revert time, even when 50
sandboxes are analyzing samples in parallel, the average
revert time is only about 1/5 of reverting one VM of
VMware Workstation, which does not analyze any sam-
ple.

6.2 Effectiveness

In this part we measure the effectiveness of our sys-
tem, that is, whether the quality of the analysis report is
damaged as a result of the performance improvement.
The measurement is done by comparing the analysis re-
ports generated by our system with the analysis reports
we get from Norman Sandbox [33] and CWSandbox [34],
two most famous dynamic malware analysis systems in
the world, for the same sample. These samples are cho-
sen randomly from our sample pool. The result is listed
in Table 3, = means the report generated by our system is
similar to that system, i.e. besides some random parts
like file name, the analysis report from our system is
identical to the report from the comparison system; +
means our report is better, i.e. our system captures more
dynamic behaviors than the comparison system, take
Trojan.Win32.VB.heo as an example, our system cap-
tures two temporary file creation, two registry auto-start
extensibility points (ASEP) creation and one HTTP con-
nection, all of them are not captured by Norman Sandbox
(no behavior is reported) nor CWSandbox; - means our
report is not as good as that system, i.e. our system cap-
tures less dynamic behaviors than the comparison system;
`No Report' means the report from that system is blank.

Table 3 Analysis reports compares to Norman Sandbox and

CWSandbox

Sample Name Norman Sandbox CWSandbox

Backdoor.Win32.Nepoe.ej = No Report

Trojan.Win32.VB.heo + +

Net-Worm.Win32.Allaple.e = =

Virus.Win32.Virut.n = =

Backdoor.Win32.Rbot.aus = No Report

Virus.Win32.Virut.av = =

Net-Worm.Win32.Allaple.b = No Report

Virus.Win32.Virut.n = No Report

Backdoor.Win32.Rbot.gen = =

Virus.Win32.Parite.b + =

Backdoor.Win32.VanBot.ax + =
Figure 3 Average revert time of MwSandbox compares to VMware

Workstation and QEMU.

499

Proceedings of 14th Youth Conference on Communication

978-1-935068-01-3 © 2009 SciRes.

As the result indicated, the performance improve-

ment is not a detriment to the effectiveness. Moreover, in

some cases, the quality of our system is even better than

those two systems, the reasons might be: a)the malware

sample does not detects our system as an analysis envi-

ronment; b)the Behavior Monitor is integrated into the

virtualization layer (kernel space in our case), therefore it

is harder to be bypassed or tampered.

6.3 Anti VM Detection

As most dynamic malware analysis are now per-

formed in VM, more and more malware writers have

added VM detection code in their malware or packers

[35-39] to detect widely used VMM like VMware and

QEMU. In this experiment, we present two samples cap-

tured in the wild by our distributed honeynet that detect

VMware. We are curious about whether our system is

able to pass these detection mechanisms.

One sample is a simple VMware detection program

(we do not find any malicious behavior). If it is executed

inside VMware Workstation, the result is shown in Fig-

ure 4 but if it is executed in our sandbox, it does not re-

port such detection information, which means our sand-

box can bypass this kind of detection.

Another sample (Virus.Win32.Virut.a) detects the

presenting of virtual machine environment or debugger.

If runs inside VMware Workstation, it only create a ex-

ecutable file under C:\WINDOWS\system32. But if runs

inside our sandbox, besides this file creation, it also cre-

ates two auto-start values under

HKCU\Software\Microsoft\Windows\CurrentVersion\Ru

n and

HKLM\Software\Microsoft\Windows\CurrentVersion\R

u\Services, deletes the original sample and opens a

backdoor at port 113.

6.4 Large-scale Long-term Analysis

We conducted a large-scale long-term test to further

evaluate our system's efficiency and report quality. This

test begins at April, 2008, every day we import samples

captured by Matrix distributed honeynet[32] (each node

is consisted of both low-interaction honeypot Nepenthese

[40] and high-interaction honeypot HoneyBow [41] to

capture self-propagation malwares) into our sample pool

and let our prototype system analyze them. During the

last nine months, we have analyzed about 44,000 mal-

ware samples.

7 Conclusion

We analyzed the performance bottleneck of current

automated coarse-grained dynamic malware analysis

systems, found out three main overheads imported by the

underlying virtual execution environment. We proposed

two mechanisms flash revert and VM fork, to reduce

these overheads. We developed a new parallel dynamic

malware analysis system MwSandbox to demonstrate our

approach. The evaluation with malware samples we cap-

tured in the wild proves our system has improved the

analysis throughput about 10 times than present systems

without losing analysis quality, and has better ability to

avoid current VM detection strategies used by the

in-the-wild malware.

Acknowledgments

We acknowledge the VMware Academic Program

for providing the VMware Workstation license.

References Figure 4 Sample captured in wild that det ects VMware

[1] Turner, D., Fossi, M., Johnson, E., Mack, T., Blackbird, J., En-
twisle, S., Low, M.K., McKinney, D., Wueest, C.: Symantec
global internet security threat report. http://www.symantec.co
m/business/theme.jsp?themeid=threatreport (April 2008).

[2] Beijing Rising International Software Co., L.: Computer virus
epidemic situation and internet security report for china mainland.
http://it.rising.com.cn/new2008/News/NewsInfo/2008-11-18/122
6970618d50435.shtml (November 2008).

[3] Inc., T.M.: Trend micro 2008 annual threat roundup and 2009
forecast.
http://us.trendmicro.com/imperia/md/content/us/pdf/threats/secur
secursecur/ (2009).

[4] Linn, C., Debray, S.: Obfuscation of executable code to improve
resistance to static disassembly. In: CCS '03: Proceedings of the
10th ACM conference on Computer and communications secu-
rity, New York, NY, USA, ACM (2003) 290-299.

[5] Vasudevan, A., Yerraballi, R.: Spike: engineering malware anal-

500

Proceedings of 14th Youth Conference on Communication

978-1-935068-01-3 © 2009 SciRes.

ysis tools using unobtrusive binary-instrumentation. In: ACSC
'06: Proceedings of the 29th Australasian Computer Science
Conference, Darlinghurst, Australia, Australia, Australian Com-
puter Society, Inc. (2006) 311-320.

[6] Vasudevan, A., Yerraballi, R.: Cobra: Fine-grained malware
analysis using stealth localized-executions. In: SP '06: Proceed-
ings of the 2006 IEEE Symposium on Security and Privacy,
Washington, DC, USA, IEEE Computer Society (2006) 264-279.

[7] Alsagoff, S.: Malware self protection mechanism. Information
Technology, 2008. ITSim 2008. International Symposium on 3
(Aug. 2008) 1-8.

[8] Rieck, K., Holz, T., Willems, C., Dessel, P., Laskov, P.: Learn-
ing and classiffcation of malware behavior. In: Detection of In-
trusions and Malware, and Vulnerability Assessment. Lecture
Notes in Computer Science, Springer Berlin / Heidelberg (2008)
108-125.

[9] Bayer, U., Comparetti, P.M., Hlauschek, C., Kirda, E., Kruegel,
C.: Scalable, behavior-based malware clustering. In: NDSS '09:
Proceedings of the 16th Annual Network and Distributed System
Security Symposium. (February 2009).

[10] Natvig, K.: Sandbox technology inside av scanners. In: In Pro-
ceedings of the 2001 Virus Bulletin Conference. (September
2001) 475C487.

[11] Natvig, K.: Sandbox ii: Internet. In: In Proceedings of the 2002
Virus Bulletin Conference. (2002) 1-18

[12] Willems, C., Holz, T., Freiling, F.: Toward automated dynamic
malware analysis using cwsandbox. IEEE Security and Privacy
(2007) 32-39.

[13] Bayer, U., Moser, A., Kruegel, C., Kirda, E.: Dynamic analysis
of malicious code. Journal in Computer Virology (August 2006).

[14] Yin, H., Song, D., Manuel, E., Kruegel, C., Kirda, E.: Panorama:
Capturing system-wide information
ow for malware detection and analysis. In: CCS'07: Proceedings
of the 14th ACM Conferences on Computer and Communication
Security. (October 2007).

[15] Yin, H., Liang, Z., Song, D.: HookFinder: Identifying and under-
standing malware hooking behaviors. In: NDSS '08: Proceedings
of the 15th Annual Network and Distributed System Security
Symposium. (February 2008).

[16] Lanzi, A., Sharif, M., Lee, W.: K-tracer: A system for extracting
kernel malware behavior. In: NDSS '09: Proceedings of the 16th
Annual Network and Distributed System Security Symposium.
(February 2009).

[17] Wang, Z., Jiang, X., Cui, W., Wang, X.: Countering persistent
kernel rootkits through systematic hook discovery. In: Recent
Advances in Intrusion Detection. Volume 5230 of Lecture Notes
in Computer Science, Springer Berlin / Heidelberg (2008) 21-38.

[18] Brumley, D., Hartwig, C., Kang, M.G., Liang, Z., Newsome, J.,
Poosankam, P., Song, D., Yin, H.: Bitscope: Automatically dis-
secting malicious binaries. In: Technical Report
CMU-CS-07-133. (2007)

[19] Moser, A., Kruegel, C., Kirda, E.: Exploring multiple execution
paths for malware analysis. SP '07: Proceedings of the 2007
IEEE Symposium on Security and Privacy (2007) 231-245.

[20] VMware, I.: Vmware: Virtualization via hypervisor, virtual
machine & server consolidation. http://www.vmware.com/.

[21] Bellard, F.: Qemu, a fast and portable dynamic translator. In:
ATEC '05: Proceedings of the Annual Conference on USENIX
Annual Technical Conference, Berkeley, CA, USA, USENIX
Association (2005) 41-41.

[22] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A.,
Neugebauer, R., Pratt, I., Warfield, A.: Xen and the art of virtu-
alization. SIGOPS Oper. Syst. Rev. (2003) 164-177.

[23] Yu, Y., Guo, F., Nanda, S., chung Lam, L., cker Chiueh, T.: A
feather-weight virtual machine for windows applications. In:
VEE '06: Proceedings of the 2nd International Conference on

Virtual Execution Environments, New York, NY, USA, ACM
(2006) 24-34.

[24] Newsome, J., Song, D.X.: Dynamic taint analysis for automatic
detection, analysis and signature generation of exploits on com-
modity software. In: NDSS '05: Proceedings of the 12th Annual
Network and Distributed System Security Symposium, The In-
ternet Society (2005).

[25] Guo, F., Yu, Y., Chiueh, T.c.: Automated and safe vulnerability
assessment. In: ACSAC '05: Proceedings of the 21st Annual
Computer Security Applications Conference, Washington, DC,
USA, IEEE Computer Society (2005) 150-159.

[26] Yu, Y., Kolam, H., Lam, L.C., Chiueh, T.c.: Applications of a
feather-weight virtual machine. In: VEE '08: Proceedings of the
fourth ACM SIGPLAN/SIGOPS international conference on
Virtual execution environments, New York, NY, USA, ACM
(2008) 171-180.

[27] Vrable, M., Ma, J., Chen, J., Moore, D., Vandekieft, E., Snoeren,
A.C., Voelker, G.M., Savage, S.: Scalability, fidelity, and con-
tainment in the potemkin virtual honeyfarm. SIGOPS Oper. Syst.
Rev. 39(5) (2005) 148-162.

[28] Unix: dd - convert and copy a file.
http://www.opengroup.org/onlinepubs/009695399/utilities/dd.ht
ml.

[29] Symantec: Norton ghost. http://www.symantec.com/norton/ghost
[30] Jiang, X.,Wang, X.: "out-of-the-box" monitoring of VM-Based

high-interaction honeypots. In: Recent Advances in Intrusion
Detection. Lecture Notes in Computer Science, Springer Berlin /
Heidelberg (2007) 198-218.

[31] Rauen, M.: madcodehook.
http://www.madshi.net/madCodeHookDescription.htm

[32] Zhou, Y., Zhuge, J., Xu, N., et al.: Matrix, a distributed honeynet
and its applications. In: FIRST08: Proceedings of the 20th An-
nual FIRST Conference, British Columbia, Canada (2008).

[33] Inc, N.D.D.S.: Norman sandbox malware analyzer.
http://www.norman.com/microsites/nsic/Submit/en

[34] �Lehrstuhl f ur Praktische Informatik, U.o.M.: Cwsandbox -
automated malware analysis.
http://www.cwsandbox.org/?page=submit

[35] Liston, T., Skoudis, E.: On the cutting edge: Thwarting virtual
machine detection.
http://handlers.sans.org/tliston/ThwartingVMDetection Liston
Skoudis.pdf (July 2006).

[36] Raffetseder, T., Kruegel, C., Kirda, E.: Detecting system emula-
tors. In: Information Security. Lecture Notes in Computer Sci-
ence, Springer Berlin / Heidelberg (2007) 1-18.

[37] Zeltser, L.: Virtual machine detection in malware via commercial
tools. http://isc.sans.org/diary.html?storyid=1871 (November
2006).

[38] Holz, T., Raynal, F.: Detecting honeypots and other suspicious
environments. Information Assurance Workshop, 2005. IAW '05.
Proceedings from the Sixth Annual IEEE SMC (June 2005)
29-36.

[39] Chen, X., Andersen, J., Mao, Z.M., Bailey, M., Nazario, J.: To-
wards an understanding of anti-virtualization and anti-debugging
behavior in modern malware. In: DSN '08: The 38th Annual
IEEE/IFIP International Conference on Dependable Systems and
Networks. (June 2008).

[40] Baecher, P., Koetter, M., Holz, T., Dornseif, M., Freiling, F.: The
nepenthes platform: An efficient approach to collect malware. In:
Recent Advances in Intrusion Detection. Lecture Notes in Com-
puter Science, Springer Berlin / Heidelberg (2006) 165-184.

[41] Zhuge, J., Holz, T., Han, X., Song, C., Zou, W.: Collecting au-
tonomous spreading malware using high-interaction honeypots.
In: Information and Communications Security. Lecture Notes in
Computer Science, Springer Berlin / Heidelberg (2008) 438-451.

501

Proceedings of 14th Youth Conference on Communication

978-1-935068-01-3 © 2009 SciRes.

