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Abstract: Malware is a major threat to the cyber world and the number of unique malware samples captured 
by antivirus software venders is making an explosive growth in recent years. To improve the malware analy-
sis efficiency, researchers have developed several automated coarse-grained dynamic malware analysis sys-
tems, including Norman Sandbox, CWSandbox and TTAnalyze, etc. However, these systems' analysis capa-
bilities still cannot compare with the growth of malware, because they rely on heavy virtual machines to build 
malware execution environments. To further improve the efficiency, this paper analyzes the bottlenecks in 
these systems and proposes two mechanisms, flash revert and VM fork to reduce the found overheads. Ex-
periments on an OS-level VMM based prototype implementation (MwSandbox) show that the efficiency is 
improved at least an order of magnitude without losing analysis quality. 
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1 Introduction 

Malware, e.g. Trojan horses, bots, worms, viruses 

and so on, is one of the major threats to the whole cyber 

world. Trojan horses are used to steal users' sensitive 

information like personal identity, online bank and online 

game accounts, while botnets are used as generic attack-

ing platforms to spread spams, launch distributed de-

ny-of-service (DDoS) attack, break passwords. Driven by 

the economic benefits brought by these malicious activi-

ties, many experienced programmers are joining this un-

derground industry every day, and devoting their time to 

write more and more powerful malicious codes or even 

code generators. This in turn, makes an explosive growth 

of the malware pieces every year. According to the latest 

Symantec Internet Security Threats Report [1], in the last 

half year of 2007 the malware they detected was 2.36 

times as was detected in the first half of 2007 and 6.71 

times of last half 2006. The situation is even worse now 

as Rising has reported a nearly 12 times growth of mal-

ware samples they collected in 2008 than in 2007[2], and 

Trend Micro has reported more than a twenty-fold (2000 

percent) increase in web threats between 2005 and 

2008[3]. To combat with this growing threat, it is impor-

tant that these antivirus (AV) software venders be able to 

1) analyze the collected samples, 2) generate signatures 

for malicious samples and 3) dispatch the generated sig-

nature to their consumers as fast as possible. Among this 

process, analyzing collected samples is the most time 

consuming step. 

Generally, computer program analysis can be 

roughly divided into two categories: static analysis and 

dynamic analysis. While static analysis is fast and com-

plete - all execution paths can be covered - it is extremely 

difficult to analyze malware samples statically because 

almost every piece of malware captured nowadays is 

armored by one or more anti-analysis mechanisms [4-7], 

such as self-check, self-modify, encryption and packer. 

Dynamic analysis hereby becomes a hot topic among 

research groups and a feasible way for industry compa-

nies. 

Dynamic analysis can be further divided into 

coarse-grained and fine-grained. Coarse-grained analysis 

usually provides information at operating system (OS) 

level (e.g. file creation, registry modification). Although 

it is possible to determine whether the analyzed sample is 

malicious or not only based on these information, it lacks 

certain information like how those malicious activities is 
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achieved which is necessary to develop the re-

move/recovery routine. Fine-grained analysis, on the 

other hand, is able to provide this kind of information. 

Ideally, every sample should be analyzed fain-grained so 

as to extract as much information as possible, but this 

requires a lot of time that is not affordable. Luckily 

enough, in reality, most collected samples are mutated 

variant of known malware and classifying analyzed sam-

ples to known variant based on coarse-grained analysis is 

possible[8, 9], which means, only a few novel samples 

are necessary to analyzed fine-grained, and the rest can 

be analyzed coarse-grained. 

To overcome the drawbacks of manual analysis, 

several automated systems have been developed to han-

dle coarse-grained task [10-13] and fine-grained task [6, 

14-19] in the past few years. While these systems have 

greatly improved the analysis efficiency (CWSandbox is 

able to analyze more than 500 samples per day per in-

stance), to win the war with exponentially growing mal-

ware (about 24,000 samples per day as indicated in [2, 3] 

and is still growing), it is necessary to further improve 

their efficiency, especially the efficiency of 

coarse-grained systems, because all samples have to be 

analyzed coarse-grained. 

Roughly speaking, the procedure of automated 

coarse-grained analysis systems is: each instance main-

tains an execution environment, automatically takes a 

malware sample, executes the sample in the execution 

environment, records the sample's run-time behaviors 

and then generates a report. Since a potential malicious 

sample may compromise the underlying execution envi-

ronment during the analysis, the execution environment 

can neither be reused nor be shared, otherwise either 

false negatives or false positives are likely to be intro-

duced. Although most of these systems leverage the vir-

tual machine technologies to provide and recover isolated 

execution environments far better than physical machine, 

since the virtual machine monitors (VMM, such as VM-

ware[20], QEMU[21], Xen[22]) used in these systems 

are not designed for malware analysis, they are always 

too heavy and import several overheads that reduce these 

systems' efficiency. 

Firstly the virtual machines (VM) they use are 

highly resource consuming thus cannot support many 

samples analyzed in parallel on one physical machine. 

Secondly, these dynamic analysis systems frequently 

need to restore the execution environment to an initial 

state. However, the recovery time is relatively long when 

compared with the whole analysis time. Thirdly, the 

maintenance and updating of the execution environment 

would cause a long off-line time because every execution 

environment is so isolated that they need to be handled 

separately, and there is likely to be tens, or even hun-

dreds VMs when such systems are used practically to 

support daily malware analysis tasks. 

Based on these facts, to further improve the effi-

ciency of the coarse-grained analysis, we proposed two 

mechanisms: flash revert and VM fork. Flash revert re-

duces the recovery time by keeping a copy of the 'clean' 

volatile states in memory instead of only saving them on 

disk. VM fork reduces the memory consumption and 

maintenance overhead by letting the large amount iden-

tical volatile and non-volatile states be shared among 

execution environments. 

We have implemented these two mechanisms on the 

basis of an OS-level virtual machine, Feather-weight 

Virtual Machine (FVM) [23]. By integrating the tradi-

tional dynamic behavior capture and analysis mecha-

nisms into the improved VMM, we create a light-weight 

sandbox for dynamic malware analysis, MwSandbox. 

The evaluation result of this prototype implementation 

shows that these two mechanisms can improve the effi-

ciency by about an order of magnitude without losing 

analysis quality. 

In summary, this paper targets at improving the ef-

ficiency of automated coarse-grained dynamic malware 

analysis so the newly arrived samples can be analysis as 

soon as possible in a good enough manner. And it makes 

following contributions: 

 We systemically analyzed the bottlenecks in cur-

rent dynamic malware analysis systems that pre-

vent them from scaling and how these bottlenecks 

can be eliminated. 

 We proposed two mechanisms, flash revert and 

VM fork to reduce the overheads in the malware 

execution environment. 

 We implemented a new automated dynamic mal-

ware analyzer MwSandbox based on Feath-
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er-weight Virtual Machine which increases the 

number of parallel analysis on a single physical 

machine by about 10 times and decreases the 

sandbox recovery time by about 10 times. 

2 Related Work 

2.1 Dynamic Malware Analysis 

Because most malware today leverage obfuscation 

technology to avoid AV detection and/or resist static 

analysis, dynamic malware analysis has made a huge 

progress in recent years. The first trend is to automate 

coarse-grained analysis. CWSandbox [12], the new 

emerged competitor to Norman Sandbox [10, 11], is a 

coarse-grained malware analysis tool based on user space 

API-Hooking and uses VMware Server to build its exe-

cution environment. TTAnalyze [13] is another 

coarse-grained malware analyzer, and is the first tool that 

realizes out-of-box system call monitoring by using a 

modified version of QEMU. The efficiency of these tools, 

though much better than manual analysis, is still con-

strained by the underlying execution environment (CPU 

emulator or VMware Server). Our work is to reduce 

these overheads and improve the overall performance. 

The second trend is to automate the fine-grained 

analysis. Cobra [6] is a fine-grained malware analysis 

framework facilitated by stealth localized-execution and 

supports automated code tracing. Panorama [14] is a tool 

uses dynamic taint technology [24] to automatically de-

tect and analyzing private information leaking. Hook-

finder [15] is another tool powered with this technology 

to detect and analyze malware which has hooking be-

haviors. K-Tracer [16] and its preceding [17] uses a dif-

ferent approach to analyze kernel level malware. 

BitScope [18] and Moser et al's tool [19] are able to de-

tect trigger-based behaviors in malware and perform 

multiple execution path analysis. These tools, while can 

provide better understand of the malware behavior, are 

much less efficiency than coarse-grained tools. Our sys-

tem differs from these tool in we are only going to pro-

vide an analysis good enough to determine whether the 

sample is malicious or not and classify the sample. Some 

potential malicious behaviors (e.g. load kernel drivers) 

are not permitted in our system, but we will record these 

behaviors hence samples having these behaviors can be 

analyzed fine-grained latter. And though performance is 

not a primary requirement of these works, we believe 

their efficiency can be improved by our flash revert and 

VM fork technology. 

2.2 Light-weight Virtual Machines 

Feather-weight Virtual Machine [23], as indicated 

by its name, is a light-weighted OS-level VMM build 

upon Microsoft Windows, and has been used in area like 

vulnerability assessment [25], scalable web site testing; 

shared binary service for application deployment and 

distributed Display-Only File Server (DOFS) [26]. Due 

to several reasons (shown in Section 5), it is chosen as 

the base VMM of our sandbox. 

Vrable et  al. [27] proposed two techniques flash 

cloning and delta virtualization which are very similar to 

our solution. However, Potemkin is a honeyfarm, its 

VMM only emulate the execution behavior of dedicated 

honeypot hosts for a short periods of time. It requires 

modification to the guest OS and supports Linux only. 

More important, it lacks reliable clone and protection of 

disk device, which, however, is critical for malware 

analysis. 

3 Problem Analysis 

In this section, we systematically analyze the proc-

ess of coarse-grained dynamic malware analysis to figure 

out the bottlenecks in current systems. Then we discuss 

possible ways to resolve these bottlenecks. 

3.1 Coarse-grained Analysis 

Given a malware sample, coarse-grained analysis 

means, executing the binary in an execution environment 

for a specific time (usually several minutes) and record 

its behavior during the execution. An execution envi-

ronment, from the perspective of a running program (i.e. 

the process), is a memory space to store its code and data, 

and an application binary interface (ABI) to execute its 

code. For malware analysis, besides providing the target 

ABI, the execution environment must satisfy more re-

quirements: 

First, the environment should never let recorded 

behaviors be polluted with behaviors that do not inhabit 

in the sample binary. Otherwise a sample would be miss 

classified as malicious which in turn, will result in a false 
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positive in the detection system, and false positives are 

highly unacceptable in practice. It is also possible that a 

compromised execution environment prevents some ma-

licious behaviors of a sample from appearing or being 

monitored, therefore causes false negatives. Since most 

ABI of the operating systems widely-used now is not 

strong enough to stop a malware from impacting other 

processes on the OS, to eliminate false positives and 

false negatives requires: (R1) an execution environment 

should never be reused before it is recovered to a clean 

state; (R2) no more than one sample can be analyzed in 

one execution environment. 

Second, the environment should provide some in-

teraction conditions to trigger certain behaviors of a sam-

ple. For example, a virus would require some certain 

types of file to trigger its infection behavior. This re-

quirement implies: (R3) the environment should be up-

dated from time to time so as to provide the interaction 

conditions required by the new emerged malware. 

To satisfy these requirements, it is unavoidable that 

the efficiency of the analysis system suffers. However, 

some of the costs in present dynamic malware analysis 

systems are not necessary and the performance of such 

systems will be improved when these overheads are re-

duced. 

3.2 System Recovery 

To satisfy R1, besides the specific execution time, 

the whole analysis time of a sample must plus a recovery 

time. Since the execution time cannot be reduced, other-

wise some malicious behavior may not be observed, one 

way to improve the analysis efficiency is to reduce the 

recovery time. 

By replacing physical machine which requires 

dd[28] or Norton Ghost[29] to recover the disk with VM 

and leveraging the snapshot function provided by VMM, 

the recovery time can be reduced from several minutes to 

several tens of seconds (see Section 6.1 for detail). 

However, since the specific execution time is only 2-3 

minutes, this recovery time still takes a relatively big 

portion of the whole analysis process, and this portion 

grows with the memory preserved for the VM and the 

load of the host machine. 

The reason why reverting a VM is much faster is 

because the very slow disk operation is heavily reduced 

by protecting the disk image under an accumulation 

mode (i.e. old disk image is not overwritten after a snap-

shot is created). Therefore, recovering the disk image 

only requires deleting the new image. In fact, this disk 

recovery time is so short that most of the reverting time 

of a VM is used to recover the volatile states (memory, 

register, etc.) from disk. So if we could avoid loading the 

volatile state image from disk, we can further shorten the 

reverting time and make analysis system more efficiency. 

3.3 Parallel Analysis 

Although it is hard to reduce the whole analysis of a 

single sample, the average analysis time can be reduced 

by analyzing samples in parallel. And to satisfy R2, iso-

lated execution environment is required. Since modern 

hardware is too powerful for single analysis, most analy-

sis systems use virtual machines to improve the analysis 

capability. However, facing the exponentially growing 

malware, is it possible to run more VMs on one physical 

machine?  

Intuitively, the answer is yes. In a dynamic malware 

analysis system, every VM is almost identical. Therefore, 

by decreasing the granularity VMM used to protect 

memory resources, the number of concurrently running 

VM can be increased. 

3.4 Environment Update 

Another limitation we found in present dynamic 

malware analysis systems is that, when the execution 

environment needs an update (R3), it will cause a long 

off-line time of the system. Because there could be tens 

or even hundreds of VMs in the system, and these VMs 

need to be updated separately because they are so iso-

lated from each other. 

But, similar to memory, most of the disk image 

content of different VMs, not only before the update but 

also after, is identical. Therefore, if only one disk image 

needs to be updated, the off-line time of the analysis sys-

tem is reduced. 

4 Solution 

To overcome the bottlenecks discussed, we propose 

two mechanisms: flash revert and VM fork. In this sec-

tion we describe these two mechanisms. 
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4.1 Flash Revert 

To reduce the system recovery overhead, we pro-

pose a new snapshot and recovery mechanism called 

flash revert. Under this mechanism, besides the 

non-volatile states, the volatile states of the execution 

environment are also protected under an accumulation 

mode: 1) when a snapshot is made, the volatile states are 

saved both in memory (old image) and on disk (for cold 

recovery); 2) a new image is allocated and links the old 

image; 3) further changes to the volatile states are stored 

in the new image; 4) when read operation is issued, the 

VMM first tries to read from the new image, if fails, it 

then reads the content from the old image; and 5) after 

the analysis, the new image is discarded (freed) and the 

old image becomes the default image. 

4.2 VM Fork 

To reduce the memory resources consumption 

overhead caused by large granularity memory isolation 

mechanism, we propose a new isolation mechanism 

called VM fork, which is inspired by the memory isola-

tion mechanism in modern operating systems. Under this 

isolation mechanism, the identical volatile states will be 

share between different VMs: 1) on a host machine, only 

one VM is booted normally from the disk image; 2) 

every other VM is forked from this VM and shares all the 

memory content with it in the beginning; 3) the farther 

VM and the forked VMs can read the shared memory, 

but if any of them tries to write the memory, the VMM 

performs a COW operation, and marks the new allocated 

space as private, the original memory content is still 

shared between the rest VMs; 4) no VM can read or write 

other VM's private space. 

To reduce the system maintenance overhead, we 

extend the VM fork mechanism to not only protect the 

volatile but also protect the non-volatile states. To satisfy 

the prerequisite to share non-volatile states, the VMM 

stores the per-VM configuration in its configuration file 

and configures the VM properly when it is forked. 

5 MwSandbox 

In this section we describe the design and imple-

mentation of our automated dynamic malware analyzer, 

MwSandbox, which implements flash revert and VM 

fork. 

5.1 System Overview 

Our parallel dynamic malware analysis system is 

composed of three main components that collaborated 

with each other to accomplish the goals (Figure 1): 

Figure 1 System Overview 

 

 

Execution Environment . A light-weight execution 

environment for analyzing Windows based malware 

samples that implements the flash revert and VM fork. 

Dynamic B ehavior Monitor. For capturing the 

system calls samples made during their execution and 

recording them into log files. 

Dynamic B ehavior Analyzer. For extracting sam-

ples' system behaviors from the recorded system call logs 

and generating analysis reports.  

5.2 Execution Environment 

The execution environment of our sandbox is built 

upon the OS-level VMM, FVM [23]. The basic idea be-

hind FVM is to use namespace isolation to isolate both 

volatile and non-volatile resources between host OS and 

guest VMs, and to use the COW strategy to share re-

sources so as to make the VM feather weight. We choose 

it as the foundation of our sandbox based on three rea-

sons: 

Firstly, FVM is implemented as a kernel driver of 

the Microsoft Windows OS, which is also the target ABI 

of our execution environment. 

Secondly, FVM has partially implemented the VM 

fork mechanism. Under FVM, the non-volatile states (file 

system and registry system) are shared and protected 

under the COW strategy between host OS and guest VMs. 
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But it lacks protection between guest VMs. For the vola-

tile states, FVM satisfies most policies required by VM 

fork (listed in Table 1), except the protection of private 

spaces (both user and kernel) between VMs and the pro-

tection of kernel space memory. 
Table 1 Memory Protection Policies Required by VM fork 

User Space 

Memory 

Shares all the content with the host OS when created; 

When is about to be modified, private physical mem-

ory page is allocated for this operation; 

All user space private pages cannot be accessed by 

processes in other virtual machines. 

Kernel 

Space 

Memory 

Shares all the content with the host OS when created; 

When is about to be modified, this operation is done 

inside the VM's own namespace; 

No process in virtual machines is able to modify kernel 

space memory or read private kernel space memory. 

 

Thirdly, FVM shares a large common base with the 

Dynamic Behavior Monitor. Both of them use the API 

hooking technology and most of the hooked functions are 

identical. So it is easier to integrate the Monitor into the 

FVM VMM than into other popular system-level VMMs, 

such as VMware and QEMU. And integrating the be-

havior monitor component into the VMM layer has sev-

eral advantages: it is harder to be detected, tampered or 

bypassed [30]. 

Therefore, to use FVM to build the required execu-

tion environment, we need to: 1) complete the imple-

mentation of VM fork mechanism; 2) implement the 

flash revert mechanism; and 3) strengthen the 

self-protection mechanisms in FVM. 

5.2.1 Complete VM fork 
To completely implement the VM fork mechanism, 

we need to protect the private resources (both 

non-volatile and volatile) from being accessed by proc-

esses in other guest VMs. 

To protect files and registry keys in one VM's pri-

vate namespace, we make the root of each VM's file and 

registry namespace the child of a certain directory, for 

example C:\Sandbox and HKLM\SOFTWARE\Sandbox. 

This directory is then hidden from processes in the VMs, 

and any attempt to access either the directory itself or 

items rooted from it would fail. 

For memory resources, they are protected by four 

more policies listed in Table 2: 

 
Table 2 Memory Protection Policies to Complete VM fork 

Process Enu-

meration 

Processes in other virtual machines are removed 

from the result of process enumeration 

User Space 

Memory 

Process cannot manipulate virtual memory of 

another process besides processes in the same 

virtual machine 

Kernel Space 

Memory 

Private namespace for kernel object are rooted at 

the same directory and hidden from access; 

Processes in virtual machines are not allowed to 

load kernel module. 

 

5.2.2 Implement Flash Revert 
In our sandbox, the flash revert is done by 1) forcing 

all the running processes in that VM to terminate, which 

will then makes the resources management functions in 

Windows to free all the user space memory allocated for 

these processes and all the kernel objects in the VM pri-

vate; 2) deleting all the files and registry keys in the 

VM's private namespace. 

4.2.3 Strengthen Security 
FVM has some self-protection mechanisms, but 

they are not strong enough for malware analysis. So we 

add more mechanisms to strengthen the security of the 

virtualization layer. 

 We hook system shutdown function to handle the 

system shutdown and restart requirement needs 

properly. 

 We hook the system time related functions to 

prevent the system wide time from being modified 

maliciously. And the adjustment will be stored 

and applied when processes in that VM query 

system time afterward. 

 We hook the token privilege adjust functions to 

avoid processes in the VM getting some critical 

privileges. 

 We hook the kernel driver unload function NtUn-

loadDriver to avoid the VMM module being un-

loaded. 

5.3 Dynamic Behavior Monitor 

We use API hooking technology to accomplish the 

goal of gathering sample's coarse-grained dynamic be-

haviors (i.e. system activities). The Dynamic Behavior 

Monitor intercepts important system calls of Windows, 

and captures the related information when these func-

tions are called within the sandbox. The captured infor-
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mation is written to log _les, one for each sandbox. After 

the dynamic execution finishes, the corresponding log 

file is uploaded to the Behavior Analyzer to extract the 

behavior information. We decouple the logging and 

analysis so the Analyzer can be updated without modify-

ing the sandbox, and different off-line analysis can be 

performed separately. 

5.4 Dynamic Behavior Analyzer 

The Dynamic Behavior Analyzer is in charge of ex-

tracting dynamic behaviors from the log _le. In our sys-

tem, it has three components: one low level parser to 

recover semantic information of logged system call and 

provides a more convenient interface for high level ana-

lyzer; two high level analyzer, one generates a human 

friendly analysis report to help malware analysis experts 

classify the sample, and the other one generates XML 

based reports for other machine procedures. 

5.5 System Implementation 

The execution environment with the integrated Dy-

namic Behavior Monitor is implemented as two parts: 

one kernel driver which consists of about 22,000 lines of 

C code for the kernel level virtualization layer and kernel 

level of the Dynamic Behavior Monitor, and one DLL 

consisted of about 1,000 lines of Delphi (with the help of 

madCodeHook[31]) for the user level virtualization layer 

and the user level of Dynamic Behavior Monitor. (Al-

though the FVM VMM is open-sourced earlier this year, 

we did not have the access to that code when we began 

the development of our system, so the entire sandbox is 

developed from scratch all by ourselves.) The three 

components of Dynamic Behavior Analyzer are imple-

mented in about 1,000 lines of Python code. A sandbox 

controller is implemented in about 3,000 lines of Delphi 

codes. 

6 Evaluation 
In this section we present the evaluation result of 

our MwSandbox. The first part is the performance 

evaluation of our light-weighted sandbox; the second part 

is an effectiveness evaluation of sandbox; in part three, 

we demonstrate that our sandbox is able to evade some 

anti-VM detection; in the last part we present an over-

view of the result of a large-scale analysis we conducted 

on our prototype system. 

Figure 2 Time consumption for analyzing 200 samples concurrently 
(timed out when concurrency reaches 60). 

6.1 Performance 

Since our primary goal is to reduce the overheads in 

present automatic dynamic malware analysis systems 

thus improve the overall performance, we first conduct a 

performance evaluation of our light-weighted sandbox. 

The test-bed we use is a Core Duo 2 E6750 2.66G Dell 

Optiplex 755 PC with 2GB memory running Windows 

XP SP3. 

6.1.1 Concurrent Analysis 
We design this experiment as described below to 

find out how many sandboxes can run concurrently in 

our prototype system: 

 We select 200 samples captured by our distributed 

honeynet[32] in December 2008 as the sample 

pool; 

 To ensure every sample gains enough CPU cycles, 

we define a rough constraint: every operation 

(start, fetch sample, stop) must finish in 60 sec-

onds; 

 From 10, we increase the concurrent running 

analysis tasks once by 10 and record the overall 

time used to analyze the 200 samples. At every 

concurrency level, we perform the analysis three 

times then use the mean time (rounded to min-

utes). 

The analyzing time is shown in Figure 2. From it we 

can imply that 50 (timed out when concurrency reaches 

60) is the most suitable number of concurrent running 

tasks, which is about one order of magnitude higher 

compared with the number of VMs that VMware and 

QEMU can start without serious performance delegation. 
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This also implies that on our test bed we are able to ana-

lyze about 28,800 samples per day. 

 

Theoretically, the memory requirement of a sandbox 

only consists of the memory used by processes in the 

sandbox and an additional 2MB used by the VMM[23], 

in our test bed, we should be able to start hundreds of 

sandboxes concurrently. However, in practice, since most 

of the malware samples are CPU-bounded programs, if 

we analyze too many samples concurrently, some sample 

may not get enough CPU cycles to finish its execution 

path. As a result, the quality of the analysis report will 

delegate. Besides, the synchronization and mutex over-

head grows as the concurrent degree increases, this will 

decrease the overall throughput of the system. So we 

believe 50 is a reasonable concurrency number for our 

test-bed. 

6.1.2 System Revert Time 
In this experiment we test how fast one sandbox can 

revert to a clean state under different situation, and com-

pare this result with the average revert time of VMware 

Workstation (v6.5) and QEMU (v0.9.1 without kqemu). 

The result is shown in Figure 3. For VMware Work-

station and QEMU, the evaluation is done under Ubuntu 

Linux 8.04 32-bit version, each VM with 224MB mem-

ory and 8GB disk. All there systems run Windows XP. 

The reverting time of one sandbox of our system is the 

time elapses between the STOP command is send and the 

OK result is received. The reverting time of one VM of 

VMware Workstation is the time elapses between the 

stop command is issued and the start command is fin-

ished. The reverting time of one VM of QEMU is the 

time elapses between the start command is issued and 

Windows is logged in. 

 

This evaluation shows 1) the revert time grows with the 
concurrency number (the average revert time of VMware 
Workstation grows from 6.2 seconds to 22.3 seconds); 2) 
revert time of VMM that support non-volatile states 
snapshot (VMware Workstation, MwSandbox) is much 
faster than that does not (QEMU); 3) our system has 
greatly shorten the system revert time, even when 50 
sandboxes are analyzing samples in parallel, the average 
revert time is only about 1/5 of reverting one VM of 
VMware Workstation, which does not analyze any sam-
ple. 

6.2 Effectiveness 

In this part we measure the effectiveness of our sys-
tem, that is, whether the quality of the analysis report is 
damaged as a result of the performance improvement. 
The measurement is done by comparing the analysis re-
ports generated by our system with the analysis reports 
we get from Norman Sandbox [33] and CWSandbox [34], 
two most famous dynamic malware analysis systems in 
the world, for the same sample. These samples are cho-
sen randomly from our sample pool. The result is listed 
in Table 3, = means the report generated by our system is 
similar to that system, i.e. besides some random parts 
like file name, the analysis report from our system is 
identical to the report from the comparison system; + 
means our report is better, i.e. our system captures more 
dynamic behaviors than the comparison system, take 
Trojan.Win32.VB.heo as an example, our system cap-
tures two temporary file creation, two registry auto-start 
extensibility points (ASEP) creation and one HTTP con-
nection, all of them are not captured by Norman Sandbox 
(no behavior is reported) nor CWSandbox; - means our 
report is not as good as that system, i.e. our system cap-
tures less dynamic behaviors than the comparison system; 
`No Report' means the report from that system is blank. 

 
Table 3 Analysis reports compares to Norman Sandbox and 

CWSandbox 

Sample Name Norman Sandbox CWSandbox 

Backdoor.Win32.Nepoe.ej = No Report 

Trojan.Win32.VB.heo + + 

Net-Worm.Win32.Allaple.e = = 

Virus.Win32.Virut.n = = 

Backdoor.Win32.Rbot.aus = No Report 

Virus.Win32.Virut.av = = 

Net-Worm.Win32.Allaple.b = No Report 

Virus.Win32.Virut.n = No Report 

Backdoor.Win32.Rbot.gen = = 

Virus.Win32.Parite.b + = 

Backdoor.Win32.VanBot.ax + = 
Figure 3 Average revert time of MwSandbox compares to VMware 

Workstation and QEMU. 
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As the result indicated, the performance improve-

ment is not a detriment to the effectiveness. Moreover, in 

some cases, the quality of our system is even better than 

those two systems, the reasons might be: a)the malware 

sample does not detects our system as an analysis envi-

ronment; b)the Behavior Monitor is integrated into the 

virtualization layer (kernel space in our case), therefore it 

is harder to be bypassed or tampered. 

6.3 Anti VM Detection 

As most dynamic malware analysis are now per-

formed in VM, more and more malware writers have 

added VM detection code in their malware or packers 

[35-39] to detect widely used VMM like VMware and 

QEMU. In this experiment, we present two samples cap-

tured in the wild by our distributed honeynet that detect 

VMware. We are curious about whether our system is 

able to pass these detection mechanisms. 

One sample is a simple VMware detection program 

(we do not find any malicious behavior). If it is executed 

inside VMware Workstation, the result is shown in Fig-

ure 4 but if it is executed in our sandbox, it does not re-

port such detection information, which means our sand-

box can bypass this kind of detection. 

 

 

Another sample (Virus.Win32.Virut.a) detects the 

presenting of virtual machine environment or debugger. 

If runs inside VMware Workstation, it only create a ex-

ecutable file under C:\WINDOWS\system32. But if runs 

inside our sandbox, besides this file creation, it also cre-

ates two auto-start values under 

HKCU\Software\Microsoft\Windows\CurrentVersion\Ru

n and 

HKLM\Software\Microsoft\Windows\CurrentVersion\R

u\Services, deletes the original sample and opens a 

backdoor at port 113. 

6.4 Large-scale Long-term Analysis 

We conducted a large-scale long-term test to further 

evaluate our system's efficiency and report quality. This 

test begins at April, 2008, every day we import samples 

captured by Matrix distributed honeynet[32] (each node 

is consisted of both low-interaction honeypot Nepenthese 

[40] and high-interaction honeypot HoneyBow [41] to 

capture self-propagation malwares) into our sample pool 

and let our prototype system analyze them. During the 

last nine months, we have analyzed about 44,000 mal-

ware samples. 

7 Conclusion 

We analyzed the performance bottleneck of current 

automated coarse-grained dynamic malware analysis 

systems, found out three main overheads imported by the 

underlying virtual execution environment. We proposed 

two mechanisms flash revert and VM fork, to reduce 

these overheads. We developed a new parallel dynamic 

malware analysis system MwSandbox to demonstrate our 

approach. The evaluation with malware samples we cap-

tured in the wild proves our system has improved the 

analysis throughput about 10 times than present systems 

without losing analysis quality, and has better ability to 

avoid current VM detection strategies used by the 

in-the-wild malware. 
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