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Abstract: When the examples are too little, it is difficult to get good effect for machine learning if you use
traditional statistics method. So the Statistics Learning Theory developed by Vapnik. is concerned mainly on
limited examples. SLT provides us a perfect theory framework for the machine learning problem, at the same
time a new general learning algorithm, Support Vector Machines, is developed. Now SVM become a hot area
in the machine learning filed. In this article, we mainly introduce the design thought of SVM based on the

SLT with the latest research results.
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