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ABSTRACT 
Clarke’s matrix has been applied as a phase-mode transformation matrix to three-phase transmission lines substituting 
the eigenvector matrices. Considering symmetrical untransposed three-phase lines, an actual symmetrical three-phase 
line on untransposed conditions is associated with Clarke’s matrix for error and frequency scan analyses in this paper. 
Error analyses are calculated for the eigenvalue diagonal elements obtained from Clarke’s matrix. The eigenvalue 
off-diagonal elements from the Clarke’s matrix application are compared to the correspondent exact eigenvalues. 
Based on the characteristic impedance and propagation function values, the frequency scan analyses show that there 
are great differences between the Clarke’s matrix results and the exact ones, considering frequency values from 10 kHz 
to 1 MHz. A correction procedure is applied obtaining two new transformation matrices. These matrices lead to good 
approximated results when compared to the exact ones. With the correction procedure applied to Clarke’s matrix, the 
relative values of the eigenvalue matrix off-diagonal element obtained from Clarke’s matrix are decreased while the 
frequency scan results are improved. The steps of correction procedure application are detailed, investigating the in-
fluence of each step on the obtained two new phase-mode transformation matrices. 
 
Keywords: Clarke’s Matrix, Eigenvector, Eigenvalue, Phase-Mode Transformation, Error Analysis, Non-Symmetrical 

Lines, Frequency Dependent Parameters 

 
1. Introduction 
Modal transformations are applied to transmission line 
analyses because, in mode domain, it is easier to repre-
sent the frequency influence on the line parameters. Us-
ing phase-mode transformation matrices, all electrical 
parameters and all line representative matrices are ob-
tained in mode domain [1–4]. The line represent- 
tative matrices become diagonal and the frequency in-
fluence can independently be introduced for every mode 
because the mutual phase couplings are independently 
included at every mode. Applying frequency dependent 
line parameters also leads to frequency dependent phase- 
mode transformation matrices. Because of this, to obtain 
voltages and currents in phase domain after signal mode 
propagation, it is necessary to use a convolution proce-
dure [5–10]. 

An alternative is to change the exact transformation 
matrices into single real ones. With these single real 
transformation matrices, any values can be determined in 

phase or mode domain using only a matricial multiplica-
tion [3,11]. The single real transformation matrices can 
obtain exact modes and diagonal line representative ma-
trices for ideally transposed lines [12–14]. For untrans-
posed lines, the results are not exact. The errors related to 
the eigenvalues (λ) can be considered negligible for 
some untransposed three-phase line analyses when 
Clarke’s matrix is applied as the transformation matrix. 
The data obtained with Clarke’s matrix are called 
quasi-modes. Increasing the asymmetrical geometrical 
line characteristics, even though the errors of quasi-mode 
matrix diagonal elements are negligible, the relative val-
ues of the quasi-mode matrix off-diagonal elements can 
be significant when compared to the correspondent ei-
genvalues (λ). 

Based on these hypotheses, Clarke’s matrix applica-
tion is analyzed considering a symmetrical three-phase 
line and a frequency range from 10 Hz to 1 MHz. The 
quasi-mode errors related to the eigenvalues (λ) are 
studied as well as the off-diagonal elements of the λ 
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quasi-mode matrix. Improving the analyses, frequency 
scans are also made using the characteristic impedance 
(ZC) and the propagation function (γ) calculated from the 
exact mode values and the quasi-mode ones. Searching 
for the off-diagonal element relative value minimization, 
a perturbation approach corrector matrix is applied to 
Clarke’s matrix. The errors and frequency scan analyses 
are carried out again and the new results are compared to 
the previous error values. So, with a first-order approxi-
mation procedure, the λ quasi-mode off-diagonal element 
relative values are highly decreased and the frequency 
spectrum of the processed signals is closer to that of the 
exact transformation. Neglecting the imaginary part of 
the new transformation matrix, frequency scan results 
similar to those from the first order matrix correction are 
obtained. 

From the comparisons carried out using the 10 kHz 
frequency value, mode voltage and mode current vectors, 
it is suggested to extend the analyses shown in this paper 
considering one of the both modes that is not the ho-
mopolar reference of the system as the correction proce-
dure application base. Another suggestion is to apply 
twice the correction procedure where the both modes 
related to the modal coupling for symmetrical three- 
phase transmission lines are subsequently used. 

2. Mathematical Bases 
Searching for more simplicity for phase-mode transfor-
mation applied to transposed three-phase lines, single 
real transformation can be used. One sample of these 
matrices is Clarke’s matrix [3,11]. The exact differential 
equations that relate the transversal voltages and the lon-
gitudinal currents are described below. In this case, the 
phase-mode transformations (TV and TI), the per unit 
length longitudinal impedance (Z) and the per unit length 
transversal admittance (Y) matrices are included [1, 5, 7, 
10, 12–14]. 
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uMD and iMD are the voltages and the currents in mode 
domain, respectively. For transposed three-phase lines, 
the TV and TI matrices are changed into Clarke’s matrix 
represented by TCL. So, the uMD and iMD values are: 

MD CL F MD CL Fu T u and i T i= ⋅ = ⋅          (2) 

For exact eigenvectors (TV and TI), the phase-mode 
relations of Equation (2) are described by: 

MD V F MD I MDu T u and i T i= ⋅ = ⋅        (3) 

Using Equations (2) and (3) for transposed three-phase 

lines, the following relations are obtained: 

V I CLT T T= =                 (4) 

The inverse Clarke’s matrix is equal to its transposed 
one and the initial differential equations are changed 
into: 
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The Z and Y matrices in mode domain are: 
T T

CL CL CL CL CL CLZ T Z T and Y T Y T= ⋅ ⋅ = ⋅ ⋅    (6) 

The Clarke’s matrix structure is [3, 11]: 
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Based on Equations (4–7), the eigenvalues of a trans-
posed three-phase line are determined by: 

0

0 0

0 0

0 0

CL CL CL CL CLZ Y Y Z

α

β

λ

λ λ

λ

 
 
 
 = ⋅ = ⋅ =
 
 
  

    (8) 

In this case, the modes are called α, β and 0 (homopo-
lar). The λCL is described by: 

T T
CL CL CL CL CLT Z Y T T Y Z Tλ = ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅       (9) 

The impedance characteristic (ZC) is described by: 
1 1 T

C CL CL CL CL CLZ Z Y T Z Y T− −
− = ⋅ = ⋅ ⋅ ⋅     (10) 

The propagation function is described by: 
2

CL CL CL CL CL CLZ Y orγ λ γ λ= ⋅ = =    (11) 

Considering a symmetrical untransposed three-phase 
line, λCL is not diagonal. The results are called quasi- 
modes. There is a modal coupling between α and 0 
modes and the λCL matrix becomes the following [3]: 
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For the exact λ matrix, the exact eigenvectors (TV and 
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TI) are applied, obtaining the following: 
1 1

V V I IT Z Y T T Y Z Tλ − −= ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅        (13) 

The exact Z and Y matrices in mode domain are: 
1 1

MD V I MD I VZ T Z T and Y T Y T− −= ⋅ ⋅ = ⋅ ⋅   (14) 

The exact modal ZC matrix is: 
1

C MD MD MDZ Z Y −
− = ⋅           (15) 

The exact modal γ matrix is: 
2

MD MD MD MDZ Y orγ λ γ λ= ⋅ = =    (16) 

Applying Clarke’s matrix to an actual symmetrical un-
transposed three-phase line, the quasi-mode results are 
compared to the exact values through the following 
equations: 

(%) 100QUASI MODE EXACT

EXACT

x x
error

x
− −

= ⋅    (17) 

The relative values of the λCL off-diagonal elements 
are obtained with the following: 

( )(%) 100CL KJ
KJ RELATIVE

K Jor
λ

λ
λ λ− = ⋅      (18) 

Regarding the frequency scan, the modal couplings 
among the quasi-modes are neglected. Every mode or 
quasi-mode is analyzed as in Figure 1 [7]. 

The propagation wave in Figure 1 is solved by the fol-
lowing system of equations where d is the line length [7]. 

cosh( ) sinh( )

cosh( ) sinh( )

A B B C

B
A B

C

E E d I Z d
EI I d d
Z

γ γ

γ γ

= ⋅ ⋅ − ⋅ ⋅ ⋅

 = − ⋅ ⋅ + ⋅ ⋅


   (19) 

The system of Equations (19) is applied for every 
mode considering three situations in the line receiving 
terminal (the B terminal): opened line, short-circuit and 
infinite line. The infinite line is calculated using an im-
pedance with the ZC value connected to the line receiving 
terminal. For the frequency scan, the line sending termi-
nal is connected to a unitary step voltage source, consid- 
ering the frequency domain. This voltage source is 
described by the next equation. The unitary step voltage  

 

 
Figure 1. Frequency scan analyses 

is chosen because it includes all frequency values. In the 
case of this paper, the frequency scan analyses are per-
formed with a frequency range from 10 Hz to 1 MHz. 

1 1( )
2

E f j
fω π

= − = −
⋅ ⋅

          (20) 

3. The Actual Symmetrical Three-Phase Line 
The interactions between any transposed three-phase line 
and Clarke’s matrix produce exact mode results and the 
modal representative matrices are diagonal. In case of 
untransposed three-phase lines, the TCL results are not 
exact. These results are compared to the correspondent 
exact values using Equations (17) and (18) as well as the 
frequency scan. 

The actual three-phase line analyzed in this paper has a 
vertical symmetry and shown in Figure 2. 

The central phase conductor height is 27.67 m on the 
tower. The height of adjacent phase conductors is 24.07 
m. Every phase is composed of four conductors distrib-
uted in a square shape with 0.4 m side length. Every 
conductor is an ACSR type one (ACSR-26/7-636 MCM). 
The phase conductor resistivity is 0.089899 Ω/m and the 
sag at the midspan is 13.43 m. The earth resistivity is 
considered constant (1000 Ω.m). The ground wires are 
EHS 3/8 with the resistivity of 4.188042 Ω/m. The height 
of these cables on the tower is 36.00 m. The sag of the 
ground wires at the midspan is 6.40 m. 

4. The Error Analyses of the Clarke’s  
Matrix Application 

From the Equations (8), (9), (12) and (13), the λNCL 
quasi-modes are compared to the eigenvalues using Equa- 
tion (17). In this case, firstly, the eigenvectors are calcu-
lated applying the iterative Newton-Raphson’s method. 
The initial values for this method are frequency of 10 Hz 
and the Clarke’s matrix elements. For this first frequency 
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Figure 2. The actual symmetrical three-phase line of Brazil’s 
utilities 
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value, the iterative processing is started considering the 
eigenvectors equal to the Clarke’s elements. When the 
iterative processing converges to the exact values, it is 
restarted with the next frequency value and uses the exact 
values of the previous frequency value for the reinitiali-
zation of the new eigenvectors. After the determination 
of eigenvectors, the eigenvalues and the comparisons to 
the quasi-modes are performed for every frequency value 
[4]. 

The results of the comparisons between quasi-modes 
and the eigenvalues are shown in Figure 3. The β quasi- 
mode presents null errors because this is an exact mode. 
Also confirming the results of Equation (12), α and 0 
quasi-modes are not exact. The α quasi-mode presents 
the highest error peak among the three shown curves and 
this peak is about 10 kHz. The range of errors is from 
-0.3% to 0.2 %. There are inverse signals between the α 
and 0 quasi-mode error curves. The errors between the 
quasi-modes and eigenvalues can be considered negligi-
ble. These errors are determined using the modulus of the 
related values. Because of this, it is important to analyze 
the off-diagonal quasi-mode elements. 

It is shown in Equation (12) that there is a modal cou-
pling between the α and 0 quasi-modes. Because the line 
representative matrices are symmetrical independently of 
whether the line is symmetrical, or not, the off-diagonal 
element in the intersection between the matrix first line 
and the matrix third row is equal to the off-diagonal in 
the third line and the first row intersection. In Figure 4, 
this off-diagonal element is compared to the correspon-
dent eigenvalues (the α and 0 modes). If the Clarke’s 
matrix application does not obtain diagonal matrices, the 
modal coupling can interfere in the signal processing. It 
depends on the signal spectrum. 

In Figure 4, the λNα0 off-diagonal element is compared 
to the correspondent eigenvalues from Equation (13). 
When it is compared to the λα eigenvalue, the λNα0 rela-
tive curve gets higher values than the curve obtained 
from the λ0 eigenvalue. The highest peak of the curve 
related to the λα eigenvalue is close to 18 % and it is as-
sociated to the initial frequency values of the considered-
frequency range. The curve related to the λ0 eigenvalue 
has softer variations than the other curve. Considering 
both curves presented in Figure 4, the λNα0 relative values 
decrease when the frequency increases. For low fre-
quency values, the λNα0 modal coupling is more signifi-
cant then for high frequency values. Based on these re-
sults, signal phase-mode transformation comparisons are 
carried out for analyzed frequency range using Clarke’s 
matrix and the eigenvectors (TV and TI). From phase 
vectors and with the Clarke’s matrix application, it is 
obtained mode vectors where only one mode has 
non-null value. It is shown in the following Equation: 

 
Figure 3. The λ error curves for an actual symmetrical three- 
phase line 
 

 
Figure 4. The quasi-mode off-diagonal element for the actual 
symmetrical three-phase line 
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(21)

 
The non-null values are compared to the results ob-

tained from the application of the eigenvectors: 
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The results of comparisons between the non-null volt-

age values of Equation (21) and its correspondent values 
of Equation (22) are shown in Figure 5. The non-null 
current values of Equation (21) are compared to their cor- 
respondent eigenvector values in Figure 6. In these cases, 
the non-null values of the Clarke’s matrix application are 
compared to the results of the eigenvector application. 
The shown results are comparisons among modulus val-
ues. In Figure 7, it is shown the deviation angles related 
to the modal transformations using Clarke’s matrix and 
the TV eigenvector matrix. These are voltage vector trans- 
formations detailed in Equations (21) and (22). In case of 
Figure 8, the transformations are related to the current 
comparisons and also based on Equations (21) and (22). 

For modal transformations of Z and Y matrices as well 
as for obtaining of eigenvalues, a transformation matrix 
and an inverse transformation one are used. Applying the 
modal transformations to the voltage and current vectors, 
only one transformation matrix, or its inverse matrix, is 
necessary. In this case, the transformation could increase 
the errors related to the quasi-modes. On the other hand, 
based on mentioned results, the use of quasi mode Z and 
Y matrices for determining other variables in mode do-
main could increase the errors observed in Figure 3. In-
vestigating this supposition, the impedance characteristic 
and the propagation function are calculated from ZCL and 
YCL matrices and compared to the correspondent values 
obtained from ZMD and YMD matrices. The comparisons 
are made through Equation (17). 

Figure 9 is associated to the ZC modulus. The ZC angle 
is null because this variable is real. Figures 10 and 11 are  

 
Figure 5. Non-null modulus comparisons among mode volt-
ages (VCL/V) for the TCL matrix application 
 

 
Figure 6. Non-null modulus comparisons among mode cur-
rents (ICL/I) for the TCL matrix application 
 

 
Figure 7. Non-null angle comparisons among mode voltages 
(VCL/V) for the TCL matrix application 
 

 
Figure 8. Non-null angle comparisons among mode currents 
(ICL/I) for the TCL matrix application 
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Figure 9. The ZC modulus errors for the actual symmetrical line 

 

 
Figure 10. The γ modulus errors for the actual symmetrical line 

 

 
Figure 11. The γ angle errors for the actual symmetrical line 

 
associated to the γ modulus and the γ angle errors, re-
spectively. 

Considering the ZC modulus and the γ angle errors, 
there are curves with inverse signals (the α and 0 quasi- 
modes). This characteristic can also be observed in Fig-
ure 3. 

The range error for the ZC modulus (from -2 % to 2 %) 
is about 10 times higher than the γ modulus error range 
(from -0.05 % to 0.25 %) and it is about 100 times higher 
than the γ angle error range (from -0.015 % to 0.03 %). 
So, the ZC modulus is more sensitive to the errors intro-
duced by Clarke’s matrix. The relative values of the 
off-diagonal element (the Nα0 modal coupling) for ZC 
modulus are shown in Figure 12. Based on these results, 
the ZC-Nα0 off-diagonal element influence is significant on 
the correspondent ZC quasi-modes. 

In Figure 13 as much as in Figure 12, the curves have a 
crescent tendency from 10 kHz. In Figure 13, the relative 

values are in a much lower range than that of Figure 12. 
In Figure 14, the γNα0 angle relative values are in a simi-
lar range to the γNα0 modulus relative values. In this case, 
the values do not tend to be crescent ones. 

5. Frequency Scan Analyses 
Frequency scan analyses are based on Figure 1 and Equa- 
tions (19) and (20) are used [7]. The EA voltage is de-
scribed by Equation (20). Three situations of the line 
receiving terminal (the B terminal) are checked: open 
line (IB=0), short-circuit (EB=0) and infinite line. The 
infinite line is obtained with an impedance equal to the 
ZC value connected in the B terminal of Figure 1. For all 
these three situations, considering both line terminals, the 
modulus values of the voltages and the currents obtained 

 

 
Figure 12. The ZC-Nα0 modulus off-diagonal element relative values 

 

 
Figure 13. The γNα0 modulus off-diagonal element relative values 

 

 
Figure 14. The γNα0 angle off-diagonal element relative values 
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from quasi-modes are equal or very close to the exact 
values obtained from eigenvectors. The main differences 
are related to the angle values and the α mode. Showing 
the results related to the modulus values, Figure 15 pre-
sents the B terminal currents for the α mode when this 
terminal is open. Similar values are presented in Figure 
16 considering the 0 mode and the infinite line. 

Considering the short-circuit analyses in Figure 17, it 
is shown that the α quasi-mode and exact angle values 
are superimposed for frequency values up to 10 kHz. 
From 10 kHz to 1 MHz, there are great differences be-
tween quasi-mode and exact angle values. In this case, 
the differences are great because the curves present in-
verse signals related to the horizontal axis. 

When the infinite line is analyzed (Figure 18), the ob-
tained results are similar to those present in Figure 17. 
The quasi-mode and the exact angle values are superim-
posed for frequency values up to 10 kHz. Above 10 kHz, 
the differences are great and for some parts of the range, 
the curves are opposite and present inverse signals. Fig-
ure 18 shows results from 10 kHz to 1 MHz. 

Based on frequency scan analyses, Clarke’s matrix 
could be applied to transient simulations considering sym- 
metrical untransposed three-phase lines and phenomena 
with a frequency spectrum concentrated below 10 kHz. 
For general phenomena, there are classical solutions for  

 

 
Figure 15. The B terminal currents for the α mode and the 
opened line 
 

 
Figure 16. The B terminal currents for the 0 mode and the 
infinite line 

this problem based on eigenvector applications. An alter- 
native is to apply a perturbation approach corrector ma-
trix, improving the results of the Clarke’s matrix applica-
tion above 10 kHz. This alternative is described in the 
next item and based on the homopolar mode. 

6. The Perturbation Approach Corrector 
Matrix 

The procedure shown in this section is based on a 
first-order perturbation theory approach [3]. This proce-
dure is used to improve the quasi-mode results and obtain 
a better approximation to the exact values. Initializing 
this development, a normalization matrix is defined as: 
 

 
Figure 17. The current angle values for the B terminal with 
short-circuit (the α mode) 
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Figure 18. The current angle values for the B terminal with 
infinite line (the α mode) 
 

22 0

0 1

N
N

 
 =  
  

               (36) 

The N22 matrix is defined as: 

12

22

21

1

1

n
N

n

 
 =  
  

              (37) 

The normalization matrix is applied to the λNCL matrix: 

0

1
0

0 0 0

0

0T
V CL CL

a a

A A N T Z Y T N a a

a a a

α α

β β

α β

−

 
 
 
 = = ⋅ ⋅ ⋅ ⋅ ⋅ =
 
 
 
 

 (38) 

The described procedure is applied to the TV and the TI 
matrices. For the TI matrix, the procedure is similar to 
the TV one with a change in the position of the Z and Y 
matrices in Equation (38): 

0

1
0

0 0 0

0

0T
I CL CL

a a

A A N T Y Z T N a a

a a a

α α

β β

α β

−

 
 
 
 = = ⋅ ⋅ ⋅ ⋅ ⋅ =
 
 
 
 

 (39) 

The structure of the A matrix is determined from: 
( )CL CLA Q Qλ λ λ= + ⋅ − ⋅           (40) 

The last Equation leads to: 

0 ( ) ,
K KK

JK CL J CL K JK

a
a q J K

λ
λ λ− −

=
 = + − ⋅ ≠

  (41) 

The λCL-α element is equal to the λCL-β. Because of this, 
the a12, a21, q12 and q21 elements are null. Dividing the 
λNCL matrix into blocks, the portioned structure can be 
described by: 

0

22

0

0 0 0

P

P

PP

P P P

α

β

α β

λ

λ
λλ

λ λ λ

 
 
 
 =
 
 
 
 

          (42) 

The λP22 is: 

22

P P

P

P P

α αβ

βα β

λ λ

λ
λ λ

 
 =  
  

             (43) 

In this case, despite the symmetry of the line represen-
tative matrices, small numeric differences are considered 
between symmetrical elements of the λP matrix. The small 
numeric values of the λPαβ and λPβα are also considered. 
Using Equations (42) and (43), the aα and aβ elements are 
determined by: 

2
22 22 22)

2
22 22 22)

( ) ( ) 4 det(

2
( ) ( ) 4 det(

2

P P P

P P P

tr tr
a

tr tr
a

α

β

λ λ λ

λ λ λ

 + − ⋅
 =



− − ⋅
=



  (44) 

The N22 matrix elements are determined by: 

21 12
PP

P P

aan and n β βα α

αβ βα

λλ
λ λ

−−
= =      (45) 

In this case, only the Q matrix elements of the third 
line and the third row can not be null. These elements 
correspond to the 0 mode and are calculated by: 

0 0
0 0

0 0

K J
K J

CL K CL CL CL J

a aq and q
λ λ λ λ− − − −

= =
− −

(46) 

The perturbation approach corrector matrix is de-
scribed by: 

1 1 1( ) ( )W N I Q and W I Q N− − −= ⋅ + = + ⋅  (47) 

The corrected transformation matrix is described by: 
1 1 T

NV CL NV CLT W T and T T Wπ π
− −

− −= ⋅ = ⋅     (48) 
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7. Obtained Results 
Checking the changes into the Clarke’s matrix results 
carried out applying only the N matrix, it is used the 
flowchart shown in Figure 19. 

The changes obtained from the N matrix application 
are mainly related to the mode coupling relative values. 
The peak value is decreased from 18 % to 2 %. It is 
about a 10 time reduction. The off-diagonal relative ob-
tained after applying the N matrix are shown in Figure 20. 
On the other hand, there are no expressive changes for 
the λ relative errors. These values are shown in Figure 21. 

Completing the analysis of the influence of N matrix, 
the results of Figures 22–25 show that the application of 
this matrix balances equally the phase-mode transforma-
tion results obtained from Equation (26) where the TCL 
matrix is changed into the AV and AI matrices. 

Another analysis about the correction procedure ap- 
 

 
Figure 19. Flowchart for checking of AN and AI applications 

 

 
Figure 20. The quasi-mode off-diagonal relative values after 
the N matrix application 

plication to Clarke’s matrix is about the Q matrix appli-
cation. In this case, Figure 26 shows the flowchart related 
to this matrix application. Figure 27 shows the off-diagonal 
relative values after the Q matrix application and Figure 
28 shows the λ errors for the same case. 

In Figures 27 and 28, the shown values decrease when 
compared to the values presented in Figures 20 and 21. 
The peak value shown in Figure 27 is about 150 times 
lower than the correspondent values shown in Figure 4. 
Comparing Figures 27 and 20, the reduction is about 15 
times for the peak values. 
 

 
Figure 21. The λ error curves after the N matrix application 

 

 
Figure 22. Non-null modulus comparisons among mode vol- 
tages (VCL/V) for the N matrix application 
 

 
Figure 23. Non-null angle comparisons among mode volt-
ages (VCL/V) for the N matrix application 
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Figure 24. Non-null modulus comparisons among mode 
currents (ICL/I) for the N matrix application 
 

 
Figure 25. Non-null angle comparisons among mode cur-
rents (ICL/I) for the N matrix application 
 

For the λ errors, comparing Figures 3, 21 and 28, the 
reduction is about 150 times considering the negative 
peak values shown in these cases. 

Applying the Q matrix, the off-relative and the λ er-
rors become negligible. Analyzing the results of both 
matrices applications, N and Q, it can be concluded that 
the N matrix mainly acts on the off-diagonal relative 
values, decreasing them. On the other hand, the Q matrix 
acts on the λ error and the off-diagonal relative value 
decreasing. 

Analyzing the results shown in Figures 27 and 28, 
these values can be considered negligible because they 
are in a very low range of relative values. The peak val-
ues reach 0.12 % and -0.002 % in mentioned figures. The 
shown curves also present some oscillations which, 
probably, are introduced by the used numeric method.  
Based, on the results of Figure 29, where it is shown the 
B terminal α mode current angles for with the short-cir-
cuit in the line end, the influence of these numeric oscil-
lations on the propagation wave results is not significant. 
On the other hand, for future development, if it is possi-
ble, these oscillations could be minimized, avoiding the 
numeric oscillation influence on the determination of ZC, 
γ and other electrical variables. 

 
Figure 26. Flowchart for checking of Q matrix applications 

 

 
Figure 27. The quasi-mode off-diagonal relative values after 
the Q matrix application 
 

 
Figure 28. The λ error curves after the Q matrix application 
 

8. Conclusions 
Changing eigenvector matrices into Clarke’s matrix for 
untransposed symmetrical three-phase lines leads to 
small errors related to the exact modulus eigenvalues.  



Voltage and Current Mode Vector Analyses of Correction Procedure Application to Clarke’s Matrix—Symmetrical Three-Phase Cases 

Copyright © 2010 SciRes                                                                               JEMAA 

17 

 
Figure 29. The current angle values for the B terminal with 
short-circuit (the α mode), considering the TNV and TNI 
transformation matrices 
 
The off-diagonal element of the matrix obtained from the 
Clarke’s matrix application, the quasi-mode eigenvalue  
matrix, has high relative values when compared to the 
correspondent exact eigenvalues. Based on these element 
results, the frequency scan analyses are carried out, show- 
ing that there are great differences between the quasi- 
mode current angles and the exact ones for frequency 
values above 10 kHz. In this casse, three situations of the 
line receiving terminal are checked: open line, short-cir- 
cuit and infinite line. 

A correction procedure is applied and new phase-mode 
transformation matrices are determined: one matrix for 
voltages and another one for currents. 

It is detailed the steps of the correction procedure ap-
plication, describing the influence of each step on the de- 
creasing of the off-diagonal quasi-mode relative value 
elements and the quasi-mode matrix ones. One of these 
steps is the normalization matrix application that carries 
out balanced voltage and current vectors, obtaining a 150 
time reduction of the off-diagonal quasi-mode eigenvalue 
matrix relative values when compared to the Clarke’s 
matrix application. After this step, the final one reduces 
about 150 times the λ errors when compared to the 
Clarke’s matrix results. Using the new phase-mode 
transformation matrices, obtained from the applied cor-
rection procedure, the off-diagonal element relative val-
ues and the λ errors are highly decreased and could be 
considered negligible. 
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