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Abstract: Relax control is to relieve the control of the plants while CPS compliances are ensured. This paper 
describes an application of the Q-learning algorithm in Automatic Generation Control (AGC) to achieve relax 
control. As the Q-learning algorithm always pursuits the maximum reward in long term, the number of pulse 
reversals, the value of CPS, and the change of the power outputs are introduced as the control variables in the 
reward function of the Q-learning controller. To get the maximum long-term reward, Q-learning controller 
will try to reduce the number of pulse reversals, to ensure the CPS compliances, and to decrease the change of 
the power outputs. When the coefficients of the control variables are suitable, the CPS compliances are en-
sured, the number of pulse reversals are reduced , and the power outputs are kept changing smoothly. Cases 
show that the proposed controllers can obviously enhance the performance of relax control of AGC systems 
while the CPS compliances are ensured. 
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I. Introduction 

AGC is an indispensable mean of technology, which can 
maintain power system frequency and tie-line power 
flow in requested range. In order to evaluate the control 
performance of AGC, the North American Electric Reli-
ability Council (NERC) released control performance 
standards (CPS) for AGC in 1997. After this, how to 
design the AGC system's optimum control policy under 
the CPS standard becomes a brand-new research subject. 

To ensure CPS compliances, the general idea is to im-
prove the AGC control strategy under the old CPC stan-
dard [1]. The NARI Group in China has done a series of 
practical work [2-3]. And the CPS1 and CPS2 controller 
that based the PI structure are designed. Fuzzy control is 
also used to research the CPS control strategy [4]. 
“Wedge-Shaped” control law and model predictive con-
trol (MPC) method are combined in paper [5]. 

A new CPS based AGC concept called Relax Control 
methodology is proposed by the authors in [6], in which 
both the relax and tighten control directions for AGC 
system is study by using a simple supervised learning 
method. Q-learning based dynamic optimal CPS control 
is introduced in paper [7]. Q-learning method is one of 
the most important methods in reinforcement learning 
based on the Markov Decision Process (MDP) theory 
which further enhances the on-line learning and dynamic 
optimized ability of the control strategy. The paper [7] 

compared Q-learning controller with PI controller, and 
the simulation results show that Q-learning controller can 
obviously enhance the robustness and adaptability of 
AGC systems while the CPS compliances are ensured. In 
this paper, the relax control methodology is further stud-
ied by using Q-learning method. And the number of 
pulse reversals is taken as a control variable of the re-
ward function in Q-learning. By adjusting the coefficient 
of the number of pulse reversals and the value of λ/μ in 
the reward function, the effect of relax AGC can be 
achieved. 

The paper is organized as follows: Section II formu-
lates a brief introduction of NERC's control performance 
standards; Section III describes the Q-learning approach 
and its relax controller design; Section IV discusses the 
simulation of the two-area power system model; Section 
V concludes this paper. 

II.Q-learning Method for Relax Control 

The relaxed control performance is reflected in the 
amount of control pulses for total power regulation 
command from the dispatching terminal. The number of 
pulses is defined as the average number of pulses that are 
sent to each regulating unit per hour. Similarly, the 
number of pulse reversals is defined as the average 
number of direction changes in pulses sent to each regu-
lating unit per hour. 

In order to achieve relax AGC, Q-learning controller 
has to control two variables. One is the number of pulse 
reversals, the other is the CPS1. The two variables are 
expected to have a good long-term performance. The 
Q-learning controller’s goal is to maximize the long-term 
return. So the on-line optimization Q-learning approach 
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is very applicable for the relax AGC. 
The relax AGC structure is illustrated in Fig.1. It 

shows input signals of the Q-learning controller. The 
ACE/∆F/CPS Real-time Monitor Values Database is 
responsible for real-time supervision and data acquisition 
for interconnected power grids, such as the instantaneous 
and average value of ACE, ∆F, CPS1. And the 
Long-termed Historical Database records and deposits 
the statistical CPS compliance data. 
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Figure 1. Q-learning based relax control structure. 

 

To design a Q-learning controller, the state-action 
pairs information should be quantized and the immediate 
reward function R(s,s',a) should be defined properly for 
the learning system. It is suitable to choose the CPS1 and 
the ACE as state information to constitute the state space 
S (the state space of our Markov chain). Then the state 
space S should be discretized. The first state variable 
CPS1 can be discretized as the following 23 levels, (-∞, 
0), [0, 100), [100, 105), [105, 110), [110, 115) … [185, 
190), [190, 195), [195, 200), [200, +∞). The second state 
variable ACE is to distinguish the cause for the change of 
CPS1 value. It can be discretized as negative and positive. 
Then, state space S can be discretized as 46 states. The 
action space A is discrete power regulation introductions 
of the AGC. How to quantify the action space A depends 
on the capacity and the type of the generator. 

Then the reward function Ri(s,s',a) of control area i 
can be given as blow: 
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where σi can be an arbitrary positive number, here we 
choose 1000 in the case study. CPS1i(k) and ACEi(k) 

represent the instantaneous value of CPS1 and ACE at 
the kth learning time respectively, CPSi

*  and ACEi
* 

express the set target value for the controlled variable 
CPS1 and ACE respectively. As for the CPS1i

*, our ex-
perience shows that a value of 200 works well if higher 
CPS1 compliance is required, and we can also select the 
daily or monthly mean of CPS1 to carry out the relaxed 
control in area i. The value of the ACE*

i, in our applica-
tion, is chosen the threshold value of dead-zone in order 
to improve the CPS2 compliance, reduce inadvertent 
exchange electric quantity and prevent ACE from cross-
ing zero frequently. aord-i(k) is the pointer of the selected 
action from the action sets A at the kth learning step, not 
the real power control action value, a*

ord-i is the pointer of 
which the control action is equal to 0, supplementation 
with the quadratic term of action variation is to avoid 
mechanical wear-and-tear of AGC generators and a se-
ries of economic cost resulting from large fluctuation in 
the power control signal. λ1i, λ2i and μ1i, μ2i are the opti-
mum weight factors for reward function Ri(s, s’, a) in 
control area i, which are equivalent to the parameters of 
matrix Q and R in linear quadratic regulator (LQR) algo-
rithm. Nper-cylce is the number of pulse reversals in a cycle. 
And ν is the weight of the number of pulse reversals in 
the reward function. 

The relax control can be achieved in the following 
two ways. 

The first way is to change the weight of ν related to 
the number of pulse reversals. If ν is given a big weigh, 
the value of the Ri(k) will become small. In order to get a 
large value of Ri(k), the Q-learning controller will try to 
reduce the Nper-cylce. Then, the number of pulse reversals 
will be reduced and the relax control can be achieved. 
However, if the value of ν is too big, the number of pulse 
reversals will be too small. Then we may not get 
qualified value of CPS1. So it is important to choose a 
suitable value of ν. 

The other way is to change the value of λ/μ. The 
power control outputs will slow down along with the 
decrease of weight ratio λ/μ, so that the regulating 
pressure of AGC plants will also be release to achieve 
the relax control based on NERC's CPS, conversely, 
Q-learning controller tends toward the tightened control. 
The proposed controller is an intelligent controller 
capable of online self-learning and dynamic optimization, 
power dispatchers can modify the weight ratio λ/μ online 
to implement relaxed or tightened control for AGC 
system 

III. Performance Results 

The performance of the proposed Q-learning method has 
been assessed through simulation studies. The test 
system used for studying the performance of the 
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algorithm is the generally Two-area Power System 
Load-frequency Control (LFC) Model. The parameters of 
this system are taken from [8]. AGC decision cycle time 
is 4s and the three-dimensional variables (CPS1, ACE, 
Nper-cylce) are state input signals to Q-learning controller. 
As the AGC decision cycle time is 4s, the number of 
pulse reversals is calculated every cycle. So the value of 
Nper-cylce is an integer between zero and one. The output 
control vector is discretized in eleven values equal to A = 
{ -300, -200, -100, -50, -20, -5, 0, 5, 20, 50, 100, 200, 
300 } MW. 

Then, the performance of the controller can be tested 
on the model. As the process of Q-learning can be di-
vided into two processes, the pre-learning process and 
the normal regulation process, the controller can be 
tested in the two processes respectively. In the 
pre-learning process, sine wave is used to simulate the 
load disturbance. The amplitude of the sine wave is 
1000MW and the cycle of the sine wave is 1200s. Fig.2 
shows the response of the system in the pre-learning 
process of one area. 
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(a) The outputs of the Q-learning controller 
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(b) The value of CPS1 for every 10 minutes. 
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(c)The value of ACE for every 10 minutes 

Figure 2. Response of the system during the pre-learning process 

 

From Fig.2, it can be seen that after a period of ex-
ploring, the outputs of the Q-learning can trace the fluc-
tuation of the load disturbance. And the CPS1 and CPS2 

can be kept constants. Then, the pre-learning process 
ends. 

In the normal regulation process, the following three 
typical Q-learning controllers with different parameters 
are adopted to test the performance of relax control. 
 Q-learning controller I: λ1=1, λ2=50, μ1=μ2=1, 

ν1=ν2=0 
 Q-learning controller II: λ1=1, λ2=50, μ1=μ2=20, 

ν1=ν2=0 
 Q-learning controller III: λ1=1, λ2=50, μ1=μ2=20, 

ν1=ν2=60 
The square-wave load is used to simulate the load 

disturbance and the response of the system is showed in 
the figure blow: 
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(a) The outputs of the different Q-learning controllers of A area. 
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(b) The outputs of the different Q-learning controllers of B area. 
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(c)The value of CPS1of  A area at different values of ν and λ/μ 
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(d) The value of ACE of the A area at different values of ν and λ/μ 

Figure 3. Response of the system during normal regulation 

process. 
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From the figure above, it can be seen that different 
parameters in Eq. (1) influence the performance of relax 
control. When the weight of the ν is big, to get more 
reward, the Q-learning controller will try to decrease the 
number of pulse reversals and the performance of the 
relax control is enhanced. It can be seen from comparing 
the outputs of Q-learning controller II and III Similarly, 
to get more reward, the power control outputs will slow 
down along with the decrease of weight ratio λ/μ. It can 
be also seen by comparing the outputs of Q-learning 
controller I and II. However, Fig. 3(c) and (d) show that 
the value of the CPS1 and ACE is not so good when the 
performance of the relax control is enhanced. 

In the normal regulation process, the the number of 
pulse and pulse reversals is also calculated as they reflect 
the performance of the relax control. When they are 
small, the generators don’t regulate frequently, and the 
performance of the relax control is obvious.  

The white noise load disturbance is adopted. The 
amplitude of  the load is less than 1500MW, and the 
sampling time of the load is 15 minutes. Parameter 
disturbance is white noise with limited bandwidth of ten 
percents. In area A, the number of pulse and pulse 
reversals during 24 hours are calculated at different 
values of ν and λ/μ to show the performance of relax 
control. They are showed in the following Tab. I and II. 

From the tables, it can be seen that the number of 
pulse and pulse reversals becomes smaller when ν 
becomes bigger and λ/μ becomes smaller. However, the 
CPS compliances are decreasing at the same time. So it is 
important to get banlance between the performance of 
relax control and the CPS compliance. 

 
Table I. The results of the simulation at different value of μ when 

λ1=1 λ2=50, ν1=ν2=0, μ1=μ2 

Index μ=0 μ=10 μ =20 μ=30 μ=40 μ=50

CPS1 (％) 
CPS2 (％) 
CPS (％) 
Pulse No. 

Pulse 
Rev.No. 

175.3 
96.7 
95.1 
335 
95.9 

176.7 
96.1 
95.8 
320 
85.4 

172.6 
95.5 
94.3 
287 
67.9 

169.5 
94.7 
93.9 
267 
60.2 

167.8
94.1
93.3
263 
56.5

162.9
93.4 
91.5 
273 
51.1 

 

Table II. The results of the simulation at different value of ν when 

λ1=1 λ2=50, μ1=μ2=30, ν1=ν2 

Index ν=10 ν=20 ν=30 ν=40 ν=50 ν=60

CPS1 (％) 
CPS2 (％) 
CPS (％) 
Pulse No. 

Pulse 
Rev.No. 

168.
5 

94.6 
93.7 
260 
58.5 

163.
2 

94.0 
93.3 
255 
56.2 

162.
993.

2 
92.5 
251 
54.7 

153.
7 

91.6 
90.1 
267 
60.2 

146.
8 

89.4
87.1
280 
42.5

137.
5 

85.7
84.2
302 
38.9

 

IV. Conclusion 

Relax AGC is significant for conserve energy in grid 
dispatch on NERC's new CPS. It can reduce the loss and 
the regulated pressure of generators. In this paper, we use 
Q-learning controller to implement the relax control and 
cases show that the proposed controllers can obviously 
enhance the performance of relax control while the CPS 
compliances are ensured. The conclusions are showed as 
blow: 

Firstly, by adjusting the parameters ν and λ/μ in the 
reward function of the Q-learning controller, the relax 
AGC can be achieved. The number of pulse reversals can 
be reduced and the pressure of the generators can be re-
lieved.  

Secondly, though the generators do not regulate fre-
quently as the relax control, the CPS compliances can be 
ensured. So the Q-learning controller based relax control 
can be applied in practice. 
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