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Abstract: This paper discusses the second-order matrix eigenvalue problem by means of the nonlinearization 
of the Lax pairs，then the relation between the potential and the eigenfunctions is set up based on the 
neumann constraint which a new finite-dimensional Hamilton system and the involutive solutions of the 
evolution equations are abstained. 
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1 Introduction 

To seek a new completely integrable system which is 

associated with the development of non-linear equations 

is an interesting issue in the international mathematical 

physics Union. In this paper, we obtain a new finite- 

dimensional completely integrable system by using the 

nonlinear eigenvalue problem. 

2 Lax Representation and the Evolution 
Equation Hierarchy Related to Eigenvalue 
Problem 

We consider the second order matrix eigenvalue pro- 

blem: 
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Definition:  
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We have: …,  
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Note: Operators K, J are double Hamilton  operator[1], 

it is that K, J have the Properties of antisymmetry, 

bilinear, non-degeneracy, and satisfy the Jacobi equa- 

tion.  

The definition of second-order matrix as follows: 
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We have the following proposition: 

Proposition 2.1: The Evolution Equation Hierarchy 

related to eigenvalue problem is ( ): ( , )Tu r q=
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It is equivalent to Lax Equation:  

( )
tm m x m m

M Mw w= + - Mw      (2.5) 

In other words, Equation (2.4) is consistency condition 
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of spectrum-preserving for the following two linear e- 
quations: 
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Then we have the evolution equation: 
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Proposition 2.2: Let  if the trace of the 

second-order matrices M over the reals is 0, so  
1 2 ,( , )T  
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The Functional derivation is denoted by Symbol. 
Proposition 2.3: If  is the characteristic function 

that the eigenvalue problem (2.1) relates to 
1,  

 , so the 
functional gradient as follows: 
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and  JgradKgrad  . 

3 The Hamilton Equation and Its Complete  
Integrability under the Neumann  
Constraint 

We suppose that …  is N different 

eigenvalues of Equation (2.5).  are charac- 

teristic function of (
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Let 
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11 1 2 21 2
,..., )T

N j N

T, =( ,... )      

Let Kgrad Jgrad    , we can get the result: 
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From (2.7) and (3.2), we have  
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At the same time, we have 
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Neumann constraint condition is: 
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The Poisson bracket of Smooth Function H and F [4,6] 

in symplectic space is defined as 

followed: 
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Proposition 3.1: (3.1) and (3.2) can be written as a 

finite-dimensional system: 
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H and Hm are Hamilton functions here. 
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Let 212111 ,,4,  ff , then we have follow 

solutions on  : 
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The generator is as followed: kE
is the completely integrable system in the Liouville sense. 
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 Proposition 3.4: If 

1
,    are involutive solution of 

the Hamilton regular system [5,7], so  
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is the solution of evolution equation hierarchy (2.4). 
Proposition3.2:  

(1)  is involutive system, so 

that 

{ , 1,2,...
k

E k N= }
{ } , 0, ,

k j
E E k j= = 1,2,...,N , and  

has nothing relation with the gradient; 
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