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Abstract: The limit theorem for countable non-homogeneous Markov chain was discussed in no few refer-
ences, where various restrictions were imposed on the Markov chain. In this paper, an extension of limit 
theorem which holds for arbitrary countable non-homogeneous Markov chain is given. 
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1 Introduction 

Let {Xn,n≥0} be a Markov chain with state space 
 ,2,1S , initial distribution 

),2(),1( qq                (1) 

and transition matrices 

,2,1,0,,)),,((  nSjijipP nn    
 (2) 

where    iXjXPjip nnn  1,  The strong limit theo- 

rem for countable non-homogeneous Markov chains 

were discussed in no few references [1,2], where various 

restrictions were imposed on the Markov chains. The 

purpose of this paper is to present a new strong limit 

theorem which hold for arbitrary countable non- homo-

geneous Markov chains by using professor Liu Wen’s 

analytical method [3]. Throughout this paper, we shall 
deal with the underlying probability space  
where F is the class of Borel sets in the interval [0,1)and 

P is the Lebesgue measure. We first give, in the above 

probability space, a realization of  the Markov chain 

with the initial distribution (1) and the transition matrices 
(2).Let  be the positive terms of (1), 

where  Divide the interval 

),,),1,0([ pF

  ,3,2,1, inq i

.321  nnn  1,0  into 

countable many (including the finite case) right-semio-
pen intervals:  that is  ,,, 32 nn, 100

nxdx 

        ),,[),,0[ 2111 21
nqnqnqdnqd nn 

 

these intervals will be called interval oforder0.Ingeneral, 
suppose is an interval of order n, and the positive 
elements of the -th row of the transition matrix , 

in their given order are 

nxxd 0

nx nP

  ,3,2,1,, imxp inn

 ,3,2,1,1  imi

 By di-

viding  into countable many right-semiopen 
intervals:   at the ratio 

nxxd 0

0 nxxd  1nx xn

      :,:,:, 321 mxpmxpmxp nnnnnn

    

,the intervals of 

order n+1 are created. Proceeding inductively, the inter-

vals of all orders can be obtained. By the above con-

struction, it is easy to see that 

.,
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For  define a random variable  

as follow: 

SXn )1,0[:

 
nxxnn dwifxwX 0

, 

     

 Hence we have 
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Theorem 1: Let { } be a Markov chain with the 

initial distribution (1) and The transition matrices (2), 

let be an integer, 1 2, , mg x x x
mS

is a bounded 

function defined on and  

 1 2, , 1mg x x x  , )(j
 

is the Kronecker function, then 
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a.e. w 1,0  (3) Proof. Let the collection of interval 

 1,0  and all intervals of order  

be denoted by A, and 

 ,2,1,01  nmn

0 be a constant. Assume 
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 (5) 

where denote the sum taken over all values of index 

.It is easy to prove that 


ix

ix   is an additive set function 

on A. Hence there exists an increasing function  

defined on 
f

 1,0  such that for any , 
10 mnxxd 
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where  and 
 
denote respectively 

the left and right end points of . 
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Let  A  be the set of points differentiability of , 

then by the existence theorem of derivative of monotone 

function 

f

   1Ap . Let  Aw  and  
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then in view of a property of derivative [4], we get 
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Thus  is finite,  wtn
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By (8) and (9), 
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By (10) and (11), 
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Letting 

 (

,1  dividing the two sides of (20) by 
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By (13), the property of superior lim
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Similarly assume 

)

             (16)

0 1( 1, 2, ) 1(i ii as i       
and Then 

*
1

( )i
i

w A A 




 
, 

Letting 

nd (16) we get 
** AAA  , 

by (15) a

    
0

0

11

1 1
0

1
lim , , ,

mn

m i l l k k k
i S k

g X X X p i i


  
 


 


  

                   (17)
Since P (A) = 1, by (17) holds.Thus the theorem 1 

proved. The result of this paper is to present a new strong 
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homogeneous Markov 
wen’s analytical method, it is a extension of the theorem
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