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1 Introduction

Let {X,} beastrictly stationary sequences defined on a
common probability spaces (W, A,P). A" denotes
s —algebra of events generated by X,,L, X, (@£b).
We shall say that {X,} satisfies the uniformly mixing
conditions in both directions of times (j ’ —mixing).
Also, recal that {X,}is uniformly mixing conditions
(j -mixing). Their definition is usual, so we omit them
here. Since j (n)£j “(n) , it means that if {X,}
isj " -mixing, thenitisalso j -mixing.

The purpose of the current note is to obtain an almost
sure limiting result for the logarithmic averages under
the above definition. Asis well known, the central limit
theorems of the products of partia sum for i.i.d. vari-
ables was initiated by some papers. This point was first
obtained by Arnold and Villaseor™, who considered the
following form of the CLT for a sequence (Yn) of i.i.d.

exponential random variables with the mean equal to one,
asn® ¥,

& 10gS, - nlog(n)+n

Y® N .
J2n
Here and in the sequel, S, =Y,+L+Y,, n=12,

L, and N is a standard normal random variable.
Their proof is heavily based on a very special property of
exponential (gamma) distributions: namely that there is
independence of ratios of subsequent partial sums and
the last sum. It uses also Resnick’s result® on weak lim-
its for records. In particular, Rempala and Wesolowski™
have proved the asymptotic behavior of a product of par-
tidl sums holds for any sequence of independent and
identically distributed positive random variables. This
result was swiftly extended by Qi'® , who has shown that
whenever (Yn) isin the domain of attraction of a stable

lav L withindex a (1, 2]then there exists a numeri-
cal sequence A, (which for a =2 can be taken as
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"-mixing; j -mixing

s\/ﬁ) such that
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where Gla +1)= ¢x*e *dx.

In the past decade, severa authors researched the
so-called almost sure central limit theorem (ASCLT) on
the basis of the results of Brosamler¥ and Schatté® for
partial sums of random variables. Recently, the following
ASCLT of product o7.;S; for i.i.d. sequence have been
obtained by K hurelbaatar and Rempald®.

Theorem A: Let (Yn) be a sequence of i.i.d. positive

random variables with EY, =m>0 and Var(Y,)=s 2

Denote g =s /m the coefficient of variation. Then for
any real X,
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£ Xy

b
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N® ¥ |ogN n=1
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where F(§ is the distribution function of the random

variable " .
Inspired by the above results, in this note we study the
almost sure limit theorem for the product of partial sums

for | *-mixing sequences. The following is our main
result.

Theorem 1. Let {X,} be a strictly stationary j
-mixing sequence of positive random variables with
EY, =m>0andVar(Y,)=s 2. Denote g =S /M the
coefficient of variation. Under the following conditions

(H,) for d>2, j “(n)=0(n2(logn)®);
Xl_ m Xj -m
-

(H,) s2:=1+2s%_,Cov( )>0.
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We have, for any real X,

| ! U
. n @S ok |
lim— all:' s £x§',:F(x),
n®¥|ognk:1k i klk" 2 P4
i b
X m Xj

-m
wheres ? =1+ 2:¥_,Cov(—2—,—L—) | ( denotes
s

indicator function and F(>) is the distribution function

of the random variable e'?".

Remark 1: It is obvious that Theorem B is a special
case of Theorem 1.

Remark 2: s?<¥ is obvious from condition (H1)
and the following lemma 2.2.

2 Proof
In the sequel we shall use the following notation.
Let bm:_i”} KEn with b, =0, k>n.Let

Si=iY, and S, =:b Y,

where Y, = (X, - m)/s , k*1. Let s 2 =Var(S, ,),

and we write << for the inequality £ up to some uni-
versal constant. The proof of Theorem 1 is chiefly based
on the following lemmas.

Lenma21® s? =2n-b,

Lemma 2.21% Let {Xn} be a strictly stationary | -
mixing sequences, X1 Lp(Alk) . YT L (A¥ ) ,

k+n
p,q>:L l+i =1, then
P q
1
)], 1,
1
where X[, = (E(X)°) .

Lemma 2.3 Let {Xn} be a strictly stationary | -
E[X,[ <¥, satisfy

|EXY - EXEY|£2{ *

mixing sequences, for 1£r <2,
1

n};ﬁ ( “))E <¥ .Then

& 8190
1a(X EX,)=0n ¢ '*% as.
ni=t g

Lemma 2.4™ Under the assumptions of Theorem 1,
we have
ﬁ ® s 2
on Y

asn® ¥.
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Lemma 25" Let {X,} be a srictly stationary j " -
mixing  sequences, E(Xl):o , Var(X1)<¥ ,
S =2 X, Assume that limj “(n)<1 , and

=Var(S,)® ¥ ,thenas n® ¥,

3%)2@ N.

n

Lemma 2.6 Under the conditions of Theorem 1, for
any real X,
lim—t 1 1|T Sci XP_F X

n®¥|ognk1k T\/_k51 %_

Now, we begin to prove Theorem 1.

Proof of Theorem 1. Let C, :i_,i3 1, wehave
m

0
gV2ks, = 7 gioks, Em
S S TNV T8

g\/ﬁsli—l ' @sll

Thus, for any real X, Lemma 2.6 isequivaent to

lim 8 —I} IogC £x1J

n®¥ |ogn k=1 k Tg\/_ks i=
=F(x). 0
By Lemma 2.3, for enough large i, for some
g<r<2, we have [C - ]j<<i%'1. We will expand the
logarithm:
Iog(1+x):x+0(x2) for |x|<%
Thus

2
i El(ci B q << El(ci - 1)2 << kr1

Hence for arbitrary small € >0, thereis N:= N(e)
such that for every k>N.

i1 & f

Il—a (C - 1) £ x- ey

\/ZkSl i=1 %

I 1 U
£l logC, £ xy
i \/_31% 0 i;

£|}#é’1k(ci -l)£x+ef’]
1gv2ks, i A
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Then (1) holds true, so we complete the proof of
Theorem 1.
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