

Research on the Query Performance Optimization
Based on the DB2 UDB

Di LIU, Guihua LI

School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China

Email: liudi@uestc.edu.cn, lgh6918@163.com

Abstract: Database tuning includes system optimization and query optimization, both are important to im-
prove the performance of Database. This paper will present the query optimization based on DB2 UDB. There
are multiple access paths for any given SQL statement because SQL is a declarative language. The database
estimates the costs of each path and chooses what it thinks is the fastest. This paper will describe the basic
methods of query tuning and how to tune a bad query to achieve the optimal performance.

Keywords: query optimization; access method; join method; filter factor; predicate

1 Introduction

There are many ways to Rome, but there are some ways
that are faster, and some ways that are cheaper, or some
ways that are both. Which one will you take?

Given a query, there are many plans that a database
management system (DBMS) can follow to process it
and produce its answer. All plans are equivalent in terms
of their final output, but vary in their cost, i.e., the
amount of time that they need to run. What is the plan
that needs the least amount of time?

Such query optimization is absolutely necessary in a
DBMS. The cost difference between two alternatives can
be enormous. For example, consider the following data-
base schema, which will be used throughout this chapter.

Execution Plans for a Given Query

SELECT name,floor
FROM emp,dept
WHERE EMP.DNO = DEPT.DNOAND SAL > 100K

Figure 1. I/O costs comparison of 3 ways

Suppose we have a simple query on those tables, and

DB2 has several options to execute it. Consider the fol-
lowing three different ways:

1) Through the B+-tree find all tuples of EMP that sat-

isfy the selection on EMP.SAL. For each one, use the
hashing index to find the corresponding DEPT tuples.
(Nested loops, using the index on both relations.)

2) For each dept page, scan the entire EMP relation. If
an EMP tuple agrees on the DNO attribute with a tuple
on the dept page and satisfies the selection on EMP.SAL,
then the EMP-DEPT tuple pair appears in the result.
(Page-level nested loops, using no index.)

3) For each DEPT tuple, scan the entire EMP relation
and store all EMP-DEPT tuple pairs. Then, scan this set
of pairs and, for each one, check if it has the same values
in the two DNO attributes and satisfies the selection on
EMP.SAL. (Tuple-level formation of the cross product,
with subsequent scan to test the join and the selection.)

Choosing the best access path for an SQL statement
depends on a number of factors. These factors include
the content of any tables that the SQL statement queries
and the indexes on those tables.

In the Figure 1, calculating the expected I/O costs of
these three ways shows the tremendous difference in
efficiency. W1 needs 0.32 seconds, W2 needs a bit more
than an hour, and W3 needs more than a whole day.
Without query optimization, a system may choose plan
W2 or W3 to execute this query with devastating results.
Query optimizers examine all alternatives, so they should
have no trouble choosing W1 to process the query.

Query optimization is of great importance for the per-
formance of a relational database, especially for the exe-
cution of complex SQL statements. A query optimizer
determines the best strategy for performing each query.
Without a proper tuning of the queries, your database
will never perform well, and lead to performance or
availability problems, regardless of how fast your hard-
ware is.

To a large extent, the success of a DBMS lies in the
quality, functionality and sophistication of its query
optimizer, since it determines much of the system’s per-
formance.

185

International Conference on Network and Finance Development，NFD 2010

978-1-935068-12-9 © 2010 SciRes.

2 Query Optimization in Db2

2.1 Access Paths

Access to DB2 data is achieved by telling DB2 what to
retrieve, not how to retrieve it. Regardless of how the
data is physically stored and manipulated, DB2 and SQL
can still access that data. This separation of access crite-
ria from physical storage characteristics is called physical
data independence.

Access paths are a significant factor of DB2 perform-
ance. An access path is the path that DB2 uses to locate
data that is specified in SQL statements. The access path
that DB2 chooses determines how long the SQL state-
ment takes to run.

In any given SELECT statement, there are often many
different access paths to consider. The following Figure 2
shows some factors that can lead to multiple access
paths:

Figure 2. Access Path Strategies

Choosing the best access path for an SQL statement

depends on a number of factors. Those factors include
the content of any tables that the SQL statement queries
and the indexes on those tables. DB2 also uses extensive
statistical information about the database and resource
use to make the best access choices.

2.2 Table Access Methods

Three table access methods, which are table space scan,
index access and list prefetch.

Generally, the fastest way to access DB2 data is with
an index. Indexes are structured in such a way as to in-
crease the efficiency of finding a particular piece of data.
However, the manner in which DB2 uses an index varies
from statement to statement. DB2 uses many different
internal algorithms to traverse an index structure. These
algorithms are designed to elicit optimum performance in
a wide variety of data access scenarios.

When an index is not used to satisfy a query, the re-
sulting access path is called a table space scan, as op-

posed to an Index Scan. A table space scan performs
page-by-page processing, reading every page of a table
space (or table).

Sequential prefetch is a read-ahead mechanism in-
voked to prefill DB2's buffers so that data is already in
memory before it is requested. The optimizer requests
sequential prefetch when it determines that sequential
processing is required. The sequential page processing of
a table space scan is a good example of a process that can
benefit from sequential prefetch.

2.3 Join Methods

When more than one DB2 table is referenced in the
FROM clause of a single SQL SELECT statement, a req-
uest is being made to join tables. The optimizer has a
series of methods to enable DB2 to join tables.

Multi-table queries are broken down into several ac-
cess paths. The DB2 optimizer selects two of the tables
and creates an optimized access path for accomplishing
that join. When that join is satisfied, the results are joined
to another table. This process continues until all specified
tables have been joined.

When joining tables, the access path defines how each
single table will be accessed and also how it will be joi-
ned with the next table. Thus, each access path chooses
not only an access path strategy (for example, a tables
pace scan versus indexed access) but also a join algo-
rithm. The join algorithm, or join method, defines the
basic procedure for combining the tables. DB2 has three
basic methods for joining tables:

• Nested loop join
• Sort merge join
• Hybrid join
The most common type of join method is the nested

loop join. A qualifying row is identified in the outer table,
and then the inner table is scanned searching for a match.
When the inner table scan is complete, another qualifying
row in the outer table is identified. The inner table is
scanned for a match again, and so on.

In the sort merge join, the tables to be joined are or-
dered by the keys. This ordering can be the result of ei-
ther a sort or indexed access. After ensuring that both the
outer and inner tables are properly sequenced, each table
is read sequentially, and the join columns are matched.
Neither table is read more than once during a merge scan
join.

Hybrid join can be a good join choice when the inner
table has an index defined on the join column, and there
are duplicates on the outer table on the join column.

NOTE: Hybrid joins apply to inner joins only. Either
of the other two join methods can be used for both inner
and outer joins.

2.4 Predicate Application

Predicate is found in the WHERE, HAVING or ON

186

International Conference on Network and Finance Development，NFD 2010

978-1-935068-12-9 © 2010 SciRes.

2.5 Filter Factor clauses of SQL statements, it describe the attributes of
the data. Only WHERE and ON predicates impact access
path selection. Figure 3 shows the predicate architecture. Filter factor is a ratio (a number between 0 and 1) that is

used to estimate CPU and I/O costs. It is an estimate of
the proportion of table rows for which a predicate is true.
If you remember nothing else about filter factors, reme-
mber this: The lower the filter factor, the lower the cost
and, in general, the more efficient your query will be.

Classification of predicate “type” includes categories
such as =, <, >, <=, >=, Null, Between, Like, In List, Not
and Arithmetic predicates, as well as Subquery form In,
Any, All, Some, Exists, in both the correlated and non-
correlated varieties.

Three factors that affect Filter Factor Estimation: Predicate “attributes” dictate when they are processed
(either at Stage1 (DM) or Stage2 (RDS) time), whether
they are indexable or nonindexable (the ability to match
against values in the index key), if they are Boolean
Terms (which can qualify or reject rows standalone), and
whether they are local predicates or join predicates.

a) Cardinality
It is the number of distinct values for a column. We

can use RUNSTATS command to collect column cardi-
nality in a table:

RUNSTATS TABLESPACE (DBNAME.TSNAME)
TABLE (ALL or PAT_TABLE) Indexable predicates can match index entries and not

indexable predicates cannot match index entries. Stage1
predicates, or Sargable, can be processed by the Data
Manager (DM), the 1st stage of predicate processing. All
indexable predicates are also stage1, but not all stage1
predicates are indexable. Stage2 predicates, or Residudal,
can be done by RDS (Relational Data System). The cost
of processing for stage2 is greater than stage1.

COLUMN(ALL or <list of columns>)
b) HIGH2KEY/LOW2KEY
They are the second highest/lowest values in this col-

umn. They are Interpolations used to estimate range
predicates, like ‘between, <, <=, >, >=’.

c) Frequency
The frequency describes the frequency of a certain

value in a column. It describes the skew of data by pro-
viding non-uniform data distribution information.

3 The Implementation of Query
Optimization

Until now, we have seen that for any given SQL state-
ment, there are many access paths to consider. The data-
base estimates the costs of each path and chooses what it
thinks is the fastest.

The two main steps in query optimization:
-Enumerate the possible evaluation plans for the

query.
-Estimate the cost of each plan, choose the fastest.
We need to keep a balance between bind time per-

formance (Time to figure out the access path) and run-
time performance (Time to execute the access path).

When improving predicate application, we often try
promoting predicates to an earlier stage for performance.
Indexable is more efficient than sargable, and sargable is
more efficient than residual. In the following, table 1
shows some examples: Figure 3. Predicate Architecture

Table 1. promoting predicates to an earlier stage

Residual Sargable Indexable

DEC_COL = :inthost DEC_COL = DECIMAL(:inthost)

QTY * 2 = :dechost QTY = :dechost/2

YEAR(DATECOL) = 2003 DATECOL BETWEEN ‘2003-01-01’ AND ‘2003-12-31’

:host BETWEEN C1 AND C2 :host >= C1 AND :host<=C2

DATECOL + 10 YEARS < CURRENT DATE DATECOL < CURRENT DATE-10 YEARS

LOCATE(‘P’,FIRSTNAME) >0 FIRSTNAME LIKE ‘%P%’

 DATECOL <> ‘9999-21-31’ DATECOL < ‘9999-21-31’

 GENDER <> ’F’ GENDER = ‘M’

187

International Conference on Network and Finance Development，NFD 2010

978-1-935068-12-9 © 2010 SciRes.

4 Other Influence Factors

4.1 Parallelism

Figure 4. Serial VS Parallel

Another technique that can be applied by the optimizer

is query parallelism. When query parallelism is invoked,
DB2 activates multiple parallel tasks to access the data.
A separate subtask MVS SRB is initiated for each paral-
lel task. Both partitioned and non-partitioned table spaces
can take advantage of query parallelism. From Figure 4,
we can see it clearly, query serial spend mort time than
query parallelism in the same condiction.

Based on the different processing power to be exe-
cuted concurrently, there are three types of query paral-
lelism that DB2 can perform: Query I/O parallelism,
Query CP parallelism, Query Sysplex parallelism.

4.2 Optimize for N Rows

The OPTIMIZE FOR n ROWS clause minimizes over-
head for retrieving few rows and lets an application de-
clare its intent to do either of these things:

- Retrieve only a subset of the result set
- Give priority to the retrieval of the first few rows
DB2 uses the OPTIMIZE FOR n ROWS clause to

choose access paths that minimize the response time for
retrieving the first few rows. For distributed queries, the

value of n determines the number of rows that DB2 sends
to the client on each DRDA network transmission.

OPTIMIZE FOR 1 ROW tells DB2 to select an access
path that returns the first qualifying row quickly. This
means that whenever possible, DB2 avoids any access
path that involves a sort. If you specify a value for n that
is anything but 1, DB2 chooses an access path based on
cost, and you won’t necessarily avoid sorts.

5 Conclusions

In this paper, we have discussed the importance of DB2
query optimizer, the many methods for query optimiza-
tion and implementation. We all know DB2 is an impor-
tant database product of IBM, and IBM has invested
heavily in Optimizer technology, such as Optimization
Service Center and OMEGAMON DB2 Performance and
so on, which are very powered performance analysis
tools that IBM developed to improve SQL performance.
So we’ve barely scratched the surface here, the overall
mechanism is extremely complex for query optimization.

References
[1] Frank J. Ingrassia, “Emerging DB2 Optimizer Technology”, Co-

mputer Measurement Group’s 1995 International Conference.
[2] IBM Corp, “DB2 Version 9.1 for zOS Performance Monitoring

and Tuning Guide”, SC18-9851-04.
[3] N. Kabra and D. DeWitt, “Efficient Mid-Query Re-Optimization

of Sub-Optimal Query Execution Plan”, SIGMOD, 1998.
[4] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie,

T. G. Price, “Access Path Selection in a Relational Database
Mana- gement System”, SIGMOD 1979, pp. 23-34.

[5] N. Swami, K. B. Schiefer, “On the Estimation of Join Result Siz-
es”, EDBT 1994, pp. 287-300.

[6] IBM Crop, “Application Programming and SQL Guide_V9 for
zOS”, SES1-2937-04.

[7] P. Gassner, G. M. Lohman, and Y Schiefer, B. Wang, “Query
Optimization in the IBM DB2 Family”, Data Engineering Bulle-
tin, 16(4), 1993.

188

International Conference on Network and Finance Development，NFD 2010

978-1-935068-12-9 © 2010 SciRes.

