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Abstract 
 
In this paper, we exploit the concept of data fusion in hybrid localization systems by combining different 
TOA (Time of Arrival) observables coming from different RATs (Radio Access Technology) and character-
ized by different precisions in order to enhance the positioning accuracy. A new Maximum Likelihood esti-
mator is developed to fuse different measured ranges with different variances. In order to evaluate this esti-
mator, Monte Carlo simulations are carried out in a generic environment and Cramer Rao Lower Bounds 
(CRLB) are investigated. This algorithm shows enhanced positioning accuracy at reasonable noise levels 
comparing to the typical Weighted Least Square estimator. The CRLB reveals that the choice of the number, 
and the configuration of Anchor nodes, and the type of RAT may enhance positioning accuracy. 
 
Keywords: Localization, TOA, Ranging, Weighted least square, Maximum Likelihood, Hybrid Data Fusion, 
UWB, WLAN, Cramer Rao Lower Bound 

1. Introduction 

The integration of heterogeneous technologies (2G, 3G, 
WLAN, UWB, etc.) is the key idea that springs from 
the B3G vision. Next generations of telecommunica-
tion networks will give the mobile user the capability 
to be connected to the network every time and every-
where. This objective supposes that the mobile station 
(MS) should be able to support different kinds of Radio 
Access Technologies (RAT). In this heterogeneous 
web of networks, the location information may be of 
interest to enhance the performances of the network 
and to give new valuable services to the user. 

In such heterogeneous networks, the problem of the 
lack of necessary data for positioning is reduced. In 
fact, in 2D scenarios, at least 3 observables are neces-
sary to get position using Least Square approximation 
[1]. These observables can be Time of Arrival (ToA), 
Time Difference of Arrival (TDOA), or Received Sig-
nal Strength (RSS). In a single RAT based network, 
this amount of observables may not be available in all 
cases. Thus, the use of heterogeneous observables com-
ing from different RATs is a good alternative to estimate 
position. Nevertheless, the fusion of these heterogene-
ous observables (called Hybrid Data Fusion) should be 
done smartly since the nature and the precision of these 
observables are quite different. 

As the Ultra Wide Band (UWB) technology is more and 
more used nowadays and the Wireless LAN (WLAN) net-
works are implemented world wide, TOA observables can 
be easily obtained via ranging techniques. Proposed ranging 
techniques are able to achieve good precision on TOA esti-
mation especially in Impulse Radio UWB technology 
(IR-UWB) [2–5]. Thus, in this paper a new Maximum 
Likelihood (ML) estimator is developed in order to estimate 
the position using hybrid TOAs with different precisions. 
This proposed estimator shows better performances than 
typical Weighted Least Square (WLS) estimator usually 
used in previous works [1]. Moreover, based on the mathe-
matical formulation of this estimator, the Cramer Rao 
Lower Bound (CRLB) of TOA-based estimation of position 
is reviewed and new formulation is given and investigated. 

The rest of the paper is organized as follow. A short 
review about TOA ranging techniques is presented in 
Section 2. The new proposed TOA based estimator of 
position is developed in Section 3. The formulation of 
the Cramer Rao Lower Bound is investigated in Sec-
tion 4. The performances of the proposed estimator are 
shown in Section 5. Finally, our concluding remarks 
are given in Section 6. 

2. TOA Based Ranging Techniques 

ToA-based ranging techniques are usually based on the 
estimate of the distance between transmitter and re-
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ceiver from the TOA under the radio Line of Sight 
(LOS) assumption. To obtain this distance, several 
techniques are proposed such as One Way Ranging 
(OWR) and Two Way Ranging (TWR). In [6], Power 
Delay Profile (PDF) is also used in order to estimate 
TOA in Line of Sight (LoS) conditions. Nevertheless, 
TOA ranging is affected by relative clock drift between 
link sides, clock accuracy, the path loss, and radio 
propagation phenomena such as shadowing, multipath 
and Non LoS propagation conditions [3]. 

In WLAN networks, many previous works define TOA 
based ranging techniques. In [4] and [7], authors define and 
implement a TOA-based ranging technique over IEEE 
802.11 networks. This approach is based on Round Trip 
Time (RTT) measurements using standard IEEE 802.11 
link layer frames and a statistical post-processing to miti-
gate the noise of the measurements. In [5], another method, 
also based on RTT, estimates TOA between WLAN nodes 
without using extra hardware. 
 
3. The Proposed New TOA Based Location 

Estimator 

The proposed localization scenario is defined by a set of 
wireless nodes and one targeted MS to be positioned. 
The K wireless nodes (ANk)k=1..K are assumed to be ei-
ther indoor access points (AP) or cellular Base Stations 
(BS) with known positions. The targeted MS for which 
the position estimation will be performed is assumed to 
be connected to all K nodes. We consider the problem of 
estimating the unknown position x of the MS, exploiting 
the ranges obtained through TOA-based ranging tech-
niques thanks to a set of K anchor nodes xk. The output 
of ranging procedures is a set of ranges with their associ-
ated variances. We distinguish the following notations: 
 true distance: dk = |x - xk| 
 Gaussian distributed estimated range centered on dk: 

rk ~ N (dk,σrk
2) 

 variance of estimated range: σrk
2 

The ranges rk are supposed to be independent. If the 
true positions (x1,…,xK) of anchor nodes are perfectly 
known, we have the classical result that ML estimator is 
equivalent to the following minimization problem: 
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It can be readily shown that the ML estimator follows 
then the following implicit relation: 

   2
1

ˆ
ˆ

ˆ

K
k k

k
k rk k

r



 
   


x x

F x
x x

where F is the gradient of F. 
In [8], the author presents a semi-definite program-

ming approach to resolve this minimization problem. In 
this paper, an iterative approach based on the downhill 
simplex algorithm is used. The ML estimate is then 
obtained via this classical iterative optimization algo-
rithm giving an initial guess which can be taken ran-
domly or equal to the WLS solution. 

x̂

 
4. Cramer Rao Bound of the Proposed 

Estimator 
 
In this section, the mathematical formulation of the 
Cramer Rao Bound is presented. To proceed, let J(x) 
defines the Fisher Information Matrix (FIM) for x. J(x) 
is defined by: 

 ( ) TE  J x F F               (4) 

where F is given by the Equation (3). 
Thus, assuming independence between the estimated 

ranges, J(x) becomes: 
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The CRLB of x is defined by cov(x) ≥ J(x)-1. Hence, 
the CRLB on the variance of the TOA based location 
estimation is: 

2 1min( (cov( ))) ( ( ) )CRLB tr tr  x J x       (7) 

Developing (7) leads to this expression of the CRLB: 
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This expression reveals that the CRLB depends on at 
least three factors: 
 The number (K) of measured TOA observables.  
 The precision of these ranges given by 2

ri . 

 The configuration of the anchor nodes involved in 
the localization process. 

 
5. Simulation Results and Discussions 
 

x 0        (3) 

In this section, we evaluate the performances of the pro-
posed TOA based estimator described in Section 3 
through Monte Carlo simulations. Two criteria are chosen 
to perform the evaluation: Positioning error and CRLB. 
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Figure 1. Compared cumulative density function 
of proposed estimator and WLS estimator for L 
= 15 meters and K=4. 

 

 
Figure 2. Evolution of positioning error with re-
spect to the standard deviation of introduced er-
ror on ranges for L = 15 meters and K=4. 

 
5.1. Positioning Error 
 
The different steps of the simulation are the following: 
 K random ANs and one targeted MS are uniformly 

drawn in an area of L by L m2. 
 A Gaussian random range is drawn centered on the 

true distance between the MS and each AN. the 
used standard deviation of ranging σr is token equal 
to 1 meter. 

 All simulations have been done with a number of 
trials NTrial equal to 1000. 

In Figure 1, the cumulative density function (CDF) of 
the proposed estimator is plotted and compared to the 
CDF of the WLS estimator. In this figure, we assume 
that only K TOA observables are available. Ranges are 
then obtained by multiplying the TOA by the speed of 
light c. The proposed estimator (3) is then applied on 
these ranges in order to estimate position. In Figure 2, we 
plot the evolution of the positioning error with respect to 
the standard deviation σr of the introduced ranging error 

for a fixed length of area L chosen equal to 15 meters. 
The positioning error at each value of σr is calculated as 
the average of errors given after NTrial=1000 random it-
erations of the targeted MS. 

These two figures show that the new proposed esti-
mator outperforms than the typical WLS estimator based 
on trilateration and the linearization of at least three cir-
cle equations in 2D space [9]. Compared to the typical 
WLS position estimator, the proposed new estimator 
merges smartly the different observables with different 
associated variances, and overcomes positioning error 
caused by the stage of linearization [10]. Furthermore, 
Figure 2 reveals that the proposed estimator is more ro-
bust to ranging error. Indeed, the gap between average 
errors for WLS and ML estimators respectively is as 
greater as σr is higher. We believe that it is more inter-
esting, in situations where the information is poor, to use 
this kind of iterative scheme instead of using more 
straightforward and cheaper linear implementation of the 
estimator. 
 

 
Figure 3. Cramer Rao Lower Bound for 4 TOAs 
for L = 15 meters and K=4. 

 

 
Figure 4. Cramer Rao Lower Bound for 3 TOAs 
in (0.0,0.0), (0.0,15.0) and (15.0,0.0). 
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5.2. Cramer Rao Lower Bound 
 
Simulations are done assuming these rules: 
 Four anchor nodes are first placed in the four cor-

ners of an L by L area. 
 For each point in the L by L area, we compute the 

CRLB for 4 TOAs. 
 The standard deviation of ranging σr is token equal 

to 1 meter. 
Giving these assumptions, Figure 3 plots the CRLB 

over the L by L area. This figure shows the values of 
calculated CRLB in each point of the area. As expected, 
the figure is symmetric since the reference ANs are put 
on the four corners. The figure reveals that the position-
ing is as accurate as the MS is equidistant from the ref-
erence anchor nodes. The positioning becomes more 
difficult when the MS approaches an anchor node. This 
difficulty of positioning may be overcome by hybrid data 
fusion techniques of TOA and RSS observables [11]. 

In Figure 4, we supposed that the MS has no range es-
timate from the AN placed on the corner (15.0,15.0). 
Comparison between this figure and Figure 3 shows that 
performances are as better as the number of TOAs in-
creases. Moreover, these figures reveal that the configu-
ration of anchor nodes affects the performances of posi-
tioning algorithm and may enhance or deteriorate the 
positioning accuracy. Thus, the choice of the best and the 
sufficient anchor nodes is a decisive factor to enhance 
positioning accuracy especially when we aim to perform 
the positioning service without causing too much over-
head on the network. 

Figure 5 shows the average CRLB for 4 TOAs placed 
in the four corners over the entire area for varying sizes 
of the area and for different values of σr. This figure re-
veals that the average CRLB does not depend on the size 
of area and that the accuracy of TOA based ranging af-
fects the accuracy of positioning. This second remark is 
confirmed by Figure 6 where the average CRLB is plot-
ted with respect to the precision of TOA ranges. This 
precision may depends on the used technique of ranging, 
the Radio Access Technology RAT (UWB, WLAN,...), 
and others factors as the clock offset and the multipath. 
Nevertheless, the proposed estimator is still able to per-
form localization even with different RATs. We believe 
that the proposed estimator defines a good tool to merge 
different ranges from different RATs. 

In conclusion, the Cramer Rao Lower Bound presents 
a good criterion to choose the best number, type, and 
associated positions of observables in order to perform a 
service with the required accuracy. We suggest that this 
criterion should be involved in tracking system giving, 
hence, the capability of choosing the best configurations 
of anchor nodes and observables. Thus, the system may 
enhance the performed services, reduce the cost of im-
plementation, and preserve the resources. 

 
Figure 5. Mean Cramer Rao Lower Bound with 
respect to the size of area for different values of 
ranging error variances for K=4. 

 

 
Figure 6. Mean Cramer Rao Lower Bound with re-
spect to the ranging error for L = 15 meters and K=4. 

 
6. Conclusions 
 
In this paper, we proposed an hybrid TOA localization 
scheme based on a new Maximum Likelihood estimator. 
We believe that this proposed ML estimator is able to 
merge smartly different TOA observables while consid-
ering associated variances. This estimator performs bet-
ter than typical weighted least square estimator. The ef-
fect of additional TOAs on the performances is studied 
using positioning error and Cramer Rao Lower Bound. 
We believe that the number and the position of anchor 
nodes implied in TOA-based ranges and their associated 
precisions should be smartly chosen in order to perform 
the requested positioning accuracy. We suggest that the 
CRLB may be a good criterion to choose the best con-
figuration and number of anchor nodes implied on the 
positioning scheme. Next step will be to evaluate per-
formance in more realistic scenarios and to combine 
TOA observables with other observables such as TDOA 
and RSS. 
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