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ABSTRACT 

Low-dimensional representation is a convenient 
method of obtaining a synthetic view of complex 
datasets and has been used in various domains for a 
long time. When the representation is related to words 
in a document, this kind of representation is also 
called a semantic map. The two most popular meth-
ods are self-organizing maps and generative topog-
raphic mapping. The second approach is statistically 
well-founded but far less computationally efficient 
than the first. On the other hand, a drawback of 
self-organizing maps is that they do not project all 
points, but only map nodes. This paper presents a 
method of obtaining the projections for all data points 
complementary to the self-organizing map nodes. The 
idea is to project points so that their initial distances 
to some cluster centers are as conserved as possible. 
The method is tested on an oil flow dataset and then 
applied to a large protein sequence dataset described 
by keywords. It has been integrated into an interac-
tive data browser for biological databases. 
 
Keywords: Semantic Map; Dimension Reduction; 
Biological Database; SOM 

1. INTRODUCTION 

Thanks to the availability of the human and other ge-
nomes and the rapid progress of biotechnologies and 
information technologies, numerous large biomedical 
datasets have been generated. Modern biomedical in-
formation thus corresponds to a high volume of hetero-
geneous data that doubles in size every year and that 
covers very different data types, including phenotypic 
data, genotypic data as well as standards, processes, 
protocols or treatments used to generate information 
from raw data. In this context, systemic approaches are 
now needed to store, analyze and compare the huge 
amount of relevant information. 

In addition, the knowledge provided by classical 
query services on biological data is often unsatisfactory 
(e.g. a list of proteins or sequences) and there is a need 
for user-friendly visual representations of the data. Such 
a representation exists and is called a feature or semantic 
map. It is used to visualize “land maps” in two or three 
dimensions that represent, for example, the distribution 
(similarity and neighborhood) of protein annotations in 
biological databases. When query results are represented 
on the map, the repartition of the proteins can be easily 
observed, as well as their proximity to clusters labeled 
according to their content. In addition, it is straight-for-
ward to superpose the information obtained from addi-
tional requests. Thus, a semantic map can greatly facili-
tate the interpretation of results from large scale data 
analyses. To quote a few examples, semantic maps have 
already been used in fluid mechanics [1], astronomy [2], 
internet data mining [3,4], scientific literature mining [5] 
and biology [6]. 

Many low-dimensional methods have been devised 
[5,7,8,9] and two of the most popular are the WEBSOM 
method [9] and the Generative Topographic Mapping 
(GTM) [1]. These two methods are briefly outlined be-
low.  

WEBSOM originates from self-organizing maps [10] 
which is a classification algorithm where nodes move 
towards cluster centers. In WEBSOM, the nodes are 
fixed on a two-dimensional grid and at the same time 

live in the space of the dataset, typically a  space. 
First, a point is picked at random from the dataset. 

Next, the closest node  in  is selected and then 

each node  moves towards y according to the equa-

tion 
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( )t  is the learning rate decreasing in time and  

is a neighborhood function in the two-dimensional grid. 
These steps are then iterated for all data points. The ini-
tialization of the p-dimensional space can be performed 
randomly, but a more effective method is to select points 
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along the two first principal axes of the dataset [4]. Fi-
nally, the dataset is used again by assigning each point to 
its closest node in the p-dimensional space using a 
Euclidean distance. Then, for each node, the number of 
points it has captured is taken as its density up to a given 
scaling factor (the size of the dataset). 

The generative topographic map (GTM) [1] is a statis-
tical method which is provably (locally) convergent and 
which does not require a shrinking neighborhood or a 
decreasing step size. It is a generative model: the data is 
assumed to arise by probabilistically picking points in a 
low-dimensional space and mapping them to the ob-
served high-dimensional input space. The statistical 
model can be described in the following way: 

22( , , ) ( ) exp{ . ( )
2 2

p
i ip y x W W x y

  


  }  

where ix  is a two-dimensional grid node,   is a scal-

ing parameter, . ( )iW x  a generalized regression model, 

 a W p m ( ) matrix and the elements of x  consist of 

 basic functions m ( )j x

W

 typically equal to radially 

symmetric Gaussians centered on the nodes of a 
two-dimensional grid. The parameters  and   of the 

model are estimated through the expectation-maximiz- 
ation (EM) algorithm [11]. This model can be considered 
to be the probabilistic counterpart of SOM/WEBSOM. 
However, the WEBSOM method is quicker than GTM 
when large amounts of data must be dealt with, especially 
if the winner selection is optimized so that millions of 
documents and nodes can be treated [4]. 

An alternative choice is to follow Flexer's approach [12] 
which first clusters the points in the data space and then 
projects cluster centers using Sammon's multidimensional 
scaling method [13]. However this means that only a sub-
set of points are effectively projected. In this paper, we 
present a complementary method that projects all points 
using their distances to the cluster centers.  

First this new projection method is presented, then it is 
evaluated on a benchmark data set and compared to other 
methods. Finally, it is used in the results section to gener-
ate a semantic map in the context of a new integrative 
navigator for biological databases.  

2. METHODS 

The principle of the presented method is to project points 
after they have been clustered and the cluster centers have 
been projected onto a two-dimensional map. This is done 
by conserving as much as possible the original distances 
between the points and the cluster centers. Basically, for 
each point indexed by , the two- dimensional coordi-
nates are search such as to minimize the difference be-
tween the distances computed in the -dimensional data 
space with those computed on the map. 

i

n

This comes down to finding the point ix  in two di-

mensions minimizing the following function : ( )iE x
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The optimizing function is not convex as the Hessian 
is not always semi-definite positive. To show this, it is 

sufficient to find a point X  verifying ' 0X HX  . In 
particular, we show that 11H  can be negative which is 

also sufficient. First let us note that 
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Thus,     2 2 2
11 1 3,1 2 3,2 34 0H x c x c d       

Consequently, a global optimization process was per-
formed using different initial values. Each cluster center 
projection was used as an initial value and the best solu-
tion after convergence was kept. 

3. RESULTS AND DISCUSSION 

3.1. Validation Using the Oil Flow Dataset 

To validate the new points projection method, a previ- 
ously established oil flow dataset [14] was used as a 
benchmark. This training dataset is available at 
http://www.ncrg.aston.ac.uk/GTM/ and contains 1000  

http://www.ncrg.aston.ac.uk/GTM/
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First, the dataset was clustered into 15 clusters and the 
cluster centers projected according to Sammon's multi-
dimensional scaling method [13]. Then the 1000 points 
were projected in two dimensions using the method de-
scribed above. The results are shown on Figure 1, where 
it be seen that three different groups are rather well line-
arly separated. The groups obtained with the GTM and 
principal component analysis (PCA) methods are shown 
on Figures 2 and 3 respectively. In order to objectively 
measure the quality of these results, we computed the 
ratio of the between-class inertia and the total inertia for 
each method. For our method, GTM and the PCA, we 
obtained a ratio of 0.83, 0.25 and 0.23 respectively, thus 
confirming the visual impression. Nevertheless, it should 
be stated that, if only separation is desired and not spe-
cifically linear separation, GTM performs better, even 
though it has the drawback of making the underlying 
grid very visible. 

 
Figure 1. New projection of the dataset. Results of the pre-
sented projection on the oil flow dataset. Crosses, circles and 
plus-signs represent stratified, annular and homogeneous 
multi-phase configurations respectively. The three group 
separations are clearly identified. 

 

 

3.2. Semantic Map Generation for Biological  
Database 

The Laboratory of Genomics and Integrative Bioinfor-
matics (LGBI) at the IGBMC Strasbourg, has developed 
a new high-performance biomedical information system, 
called the BIRD System [15,16]. BIRD is able to inte-
grate very quickly heterogeneous data either from the 
large generalist databases (sequence, structure, function 
and evolution, etc.) or from specialized databases dedi-
cated to high throughput biology (transcriptomics, inter-
actomic, etc.) in a relational database (IBM DB2). Thus, 
it allows to organize massive sets of biomedical data 
according to real world requirements. An original bio-
logical query engine, called BIRDQL, has been designed 
to facilitate access to the heterogeneous databases and to 
allow pertinent information extraction via a web server. 
This system has been used in the Decrypthon computing 
grid [17] in order to provide data to the runtime applica-
tions. 

Figure 2. Oil flow dataset after GTM. After projection of the 
oil flow dataset using the Generative Topographic Mapping, 
the three group separations are clearly separated, but in a com-
plex way that is far from linear. 
 

 

To complete the visualization and analyze functional-
ities of the BIRD System, the new method described 
above to build semantic maps was integrated in the 
BIRD query engine (BIRDQL). The maps can be used to 
explore the data using a combination of high level que-
ries and area selections (Figure 4). The method was 
tested by building a semantic map of the Uniprot data-
base [18] using the keyword descriptions for each pro-
tein. After removal of redundant vectors, we obtained 
60,000 vectors  in a 914-dimensional space 

corresponding to the 914 keywords extracted from about 
6 million proteins. In the following lines, to avoid fo-
cusing on the numerical details, we will consider  
proteins described by  keywords where  and  

1 6000,...z z

p

0

n
pn

Figure 3. Oil flow dataset after PCA projection. After projec-
tion of the oil flow dataset using principal component analysis, 
the separation of the three groups is not clearly identified. In 
particular, the crosses are very scattered. 

 
points in 12 dimensions corresponding to 12 measure-
ments on the mixture of oil, water and gas passing 
through a pipeline. The three phases in the pipe can be-
long to three different configurations corresponding to 
laminar, homogeneous and annular flows. 

stand for 60000 and 914 respectively. 
Before projecting the points, some preliminary steps 

were necessary: 

JBiSE 
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Figure 4. Semantic map with density colours and most frequent keyword labels. 

 
Step 1: dimension reduction 
The  proteins were described by  keywords and 

were thus represented by  points  in  

dimensions. As in the preprocessing step of WEBSOM 
[3,4], an initial dimension reduction was performed to 

reduce  coordinates to  using random projection 

directions. More specifically, random vectors 

n

p

p

n

*p

1,..., nz z p

jv  were 

generated on the -dimensional unit-sphere and then 

new coordinates were obtained by computing the scalar 
product 

*p

, iij jy v z   on each document i . Thus, the 

 proteins were described by  points . n n 1... ny y

Step 2: mixture models clustering 
In a second step, these points were clustered using 

mixture models. Mixture models are a powerful method 
to cluster datasets of points described by coordinates. 
The points are assumed to be independent realizations 
from a mixture of several distributions. Here the mix- 
ture is only briefly described for  components 

1

G
,...,

G
f f   with parameters 1..., G 

G

. A general pres-

entation of this method and its applications can be found 
in [19,20,21,22]. If 1,...,   indicate the different 

weights of the components, the likelihood of the model 

for points  is expressed as:  n 1,..., ny y
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The estimation of the different coefficients of the mix-
ture model is commonly performed via the EM (Expec-
tation-Maximization) algorithm of Dempster [11]. Here, 
in order to simplify the estimation, a variant of the EM 
algorithm called CEM was used [22]. In this application 

 was chosen to be equal to 30. G
Step 3: cluster centers projection 
Once  clusters were obtained, the centers of grav-

ity  were computed in the p-dimensional space. 

Then, multidimensional scaling (MDS) [23] was applied 
on the cluster centers to produce two-dimensional coor-

dinates . MDS was used because Sammon's 

method [13] failed on this dataset, since it produced 

G
* .., G

1 ,c

1 ,.c c

...,

many points with the same coordinates.  
After these three preliminary steps, the points were 

projected on the map using the new projection method. 
The density  for each point x  of the map is 

given using a kernel method [24]: 



H. N. Nguyen et al. / J. Biomedical Science and Engineering 3 (2010) 13-19 

SciRes Copyright © 2010                                                                   JBiSE 

17

 

Figure 5. The global architecture of the Semantic Map Discovery prototype coupled with the BIRD System using  
the BirdQL query engine. 

 

 

Figure 6. Semantic map with selected proteins. The labels represent the most frequent keywords present inside the 
cluster points which are not shared between different clusters. 
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Then, a color scale ranging from purple to white, with 
intermediary colors red, orange and yellow was assigned 
to each point according to its density. The map is repre-
sented in Figure 4. 

Then, a color scale ranging from purple to white, with 
intermediary colors red, orange and yellow was assigned 
to each point according to its density. The map is repre-
sented in Figure 4. 

This visual representation allows a global comprehen-
sion of the whole database, which is easier to understand 
than numerical or textual data. Some important key-
words shared by many proteins are visible on this map, 
such as kinase, ligase and protease. At the same time, 
frequent keywords, such as “complete proteome”, that 
are non-informative, are avoided because they are shared 
by several clusters. Another observation is that the den-
sity is far from being homogeneous, the map being more 
crowded in the bottom-left corner than elsewhere. 

This visual representation allows a global comprehen-
sion of the whole database, which is easier to understand 
than numerical or textual data. Some important key-
words shared by many proteins are visible on this map, 
such as kinase, ligase and protease. At the same time, 
frequent keywords, such as “complete proteome”, that 
are non-informative, are avoided because they are shared 
by several clusters. Another observation is that the den-
sity is far from being homogeneous, the map being more 
crowded in the bottom-left corner than elsewhere. 

When using the integrated biological query engine 
BIRD-QL of the BIRD System via a web service or http 
protocol, as shown in Figure 5, the selected proteins are 
represented on the maps by a plus sign of a given color. 
If different selections have been performed, different 
colors are used. An example is shown in Figure 6, where 
proteins selected by a query with the keyword “apop-
tosis” are shown by blue plus signs. Some of these pro-
teins were selected by the user and are surrounded by a 
white square. One of the proteins, DNJA3, belongs to 
the small cluster labeled “disease mutation” but does not 
possess the “disease mutation” keyword. Interestingly its 
deficiency implies dilated cardiomyopathy [25] (MIM- 
608382).  

When using the integrated biological query engine 
BIRD-QL of the BIRD System via a web service or http 
protocol, as shown in Figure 5, the selected proteins are 
represented on the maps by a plus sign of a given color. 
If different selections have been performed, different 
colors are used. An example is shown in Figure 6, where 
proteins selected by a query with the keyword “apop-
tosis” are shown by blue plus signs. Some of these pro-
teins were selected by the user and are surrounded by a 
white square. One of the proteins, DNJA3, belongs to 
the small cluster labeled “disease mutation” but does not 
possess the “disease mutation” keyword. Interestingly its 
deficiency implies dilated cardiomyopathy [25] (MIM- 
608382).  

There is still room for improvement in the construc-
tion of semantic maps both at the algorithmic level and 
at the software functionality level. The point’s projection 
is formalized as a global optimization problem and cur-
rently, it is resolved simply using different starting points 
with the Newton-Raphson method. However global op-
timization methods could also be tested [26,27]. From a 
practical point of view it would also be useful to deter-
mine how many clusters or nodes are necessary to 
achieve a good projection of the data points. 

There is still room for improvement in the construc-
tion of semantic maps both at the algorithmic level and 
at the software functionality level. The point’s projection 
is formalized as a global optimization problem and cur-
rently, it is resolved simply using different starting points 
with the Newton-Raphson method. However global op-
timization methods could also be tested [26,27]. From a 
practical point of view it would also be useful to deter-
mine how many clusters or nodes are necessary to 
achieve a good projection of the data points. 

4. CONCLUSIONS 4. CONCLUSIONS 

The main contribution of this work is a new computa-
tional solution to the construction of semantic maps. The 
idea is to project points by locating them according to 
cluster centers. This method can thus be coupled with 
other methods such as self-organizing maps or Flexer's 
approach. 

The main contribution of this work is a new computa-
tional solution to the construction of semantic maps. The 
idea is to project points by locating them according to 
cluster centers. This method can thus be coupled with 
other methods such as self-organizing maps or Flexer's 
approach. 
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