I. J. Communications, Network and System Sciences, 2008, 3, 207-283
Published Online August 2008 in SciRes (http://W8®RP.org/journal/ijcns/).

AN\
({g,l\ Scientific
\\;,,!f) Research

Publishing

Hardware/Compiler Memory Protection in Sensor Nodes

Lanfranco LOPRIORE
Dipartimento di Ingegneria dell'Informazione: Elaghica, Informatica, Telecomunicazioni
Universita di Pisa, via G. Caruso 16, 56122 Pidalyl
E-mail: l.lopriore@iet.unipi.it
Received on June 9, 2008; revised and acceptedugnsA 25, 2008

Abstract

With reference to sensor node architectures, wesiden the problem of supporting forms of memory
protection through a hardware/compiler approacl thkes advantage of a low-cost protection cirguitr
inside the microcontroller, interposed between phecessor and the storage devices. Our designt effor
complies with the stringent limitations existing these architectures in terms of hardware compglexit
available storage and energy consumption. Rathetr ghecluding deliberately harmful programs from
producing their effects, our solution is aimed iatiting the spread of programming errors outside th
memory scope of the running program. The discussuatuates the resulting protection environmennfeo
number of salient viewpoints that include the impéaitation of common protection paradigms, efficienc
in the distribution and revocation of access pegds, and the lack of a privileged (kernel) mode.
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1. Introduction

In sensor node architectures, stringent limitations
terms of hardware complexity and energy consumgtibn
prevent utilization an intrinsically complex devisech

as a memory management unit for virtual to physical

address translation [2]. This situation is not lijkéo
change in the near future. Rather than incremerntieg

a variety of different sensors. Even worse, prognans
may usually rely on very limited support for debimyg
[2]. These considerations suggest that the presefce
protection mechanisms between processes, which is a
common feature in general-purpose systems, is yhighl
desirable even in sensor node environments.

By taking the salient characteristics of an envinent
of this type into considerations, we shall propas®rm
of fine-grained memory protection [6] as a solutiorthe

hardware power of the single sensor node, systenprotection problem, outlined above. Our solutioket

designers are likely to take advantage of progiess
integration technologies to reduce the node siziecasst,
S0 as to support new applications using sensoranksw
connecting an always increasing number of nodés.[3,

advantage of a form of synergy between the hardware
and the compiler. The interface of the protection
hardware consists of a set of primitives, fhretection
operations The compiler inserts the calls to these

In the absence of a memory mapping device, a singleoperations at appropriate points of the object ctmle

address space is shared by all processes, andrtheof
protection enforced by address space separatiovebet

enforce separation of memory privileges betweekstas

while preventing the application programmer from

processes is lacking. The code and data areasl of atalling these operations explicitly. These are easy

applications are exposed to the risk of corruptignan

compiler tasks, which can be made largely transpace

erroneous process that can even crash the systeral ke the programmer. Placing new burdens on the comjgiler

[5]. This problem is exacerbated by the fact thad t
writing of application software for sensor nodesais
especially challenging activity, owing to the liatibns in
terms of available memory and processing powemteve
driven concurrency, requirements of real-time resgo
dynamic application update, and the need to comgily
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a tendency now exploited in the solution of several
architectural problems, e.g., data prefetching, heac
control, translation lookaside buffer managememg a
instruction scheduling at compile time.

The rest of this paper is organized as followstiSec
2 introduces a simple, low-cost addition to thedare
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Figure 1. Hardware configuration featuring a memory protection unit interposed between the processor and the memory
devices.

inside the microcontroller, and the software priveis to successfully only if the active domain includes essc
control this hardware and enforce memory protection permission for the block storing that informatioenn.
Section 3 evaluates the resultifgardware/compiler

memory protection scheme from a number of salient2 1, Hardware Support for Memory Protection
viewpoints that include the implementation of connmo

protection paradigms, efficiency in the distributiand At the hardware level, protection is supported by a
revocation of access permissions, and the lack of &ijrcuitry inside the microcontroller, thememory
privileged (kernel) mode. For each protection peahl  protection unit(MPU), interposed between the processor
we devise a solution that demonstrates the flebyhdf and the memory devices (Figure 1) For each given

the proposed approach to memory protection. memory blockB;, i = 0, 1, ...,n — 1, MPU contains a
block protection registeBPR associated with this block.
2. TheProtection System The size of BPRis d bits, whered is the number of the

basicdomainsig, 4, ..., Aq1 Which are supported by the

We shall refer to a classical sensor node conftquran ~ Protection system (as will be made clear later, emor
which a microcontroller includes a processor that domains can be defined in terms of unions of theicha

interfaces  both volatle (RAM) and non-volatile domains). Let BPRR denotes thg-th bit of BPR If set,
reprogrammable (Flash/ROM) storage devices. Thethis bit specifies that domaify holds access permission
memory space is logically partitioned intdflocksof a  for block Bi. This means that a task running 4ncan
fixed size. Blocks are the passive entities to tmeuted ~ successfully access the memory locationgjirfor both
from tasks. By the terntask we mean any active entity read and write.
capable of generating memory accesses; thus, artagk At any given time, al-bit register of MPU, thective
be a scheduled computation [5], or, in an eventedri ~ domain registe(ADR), contains a quantity with a single
paradigm, the activity produced by a function eattad bit set, thej-th bit corresponding to the nardg of the
by a hardware interrupt [3,4]. domain that is active at that time. An address gead
A protection domairis a collection of access by the processor is partitioned into the indef a block
permissionsfor memory blocks which can be randomly [3; and an offset within this block. Quantitys sent to the
scattered throughout the whole memory. When aitask array of block protection registers to select thgister
running, it is associated with a domain, called dbéve BPR associated witf3;. If the result of the bitwise AND
domain. When the task performs an access attemat to of the contents of ADR and BPR 0, then domain; has
given information item in memory, the access teatén no access permission foB;, and an exception of
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protection violation is raised to the processorthif is protection operations into application programsexeias
not the case, the memory address is delivered @¢o ththese calls will be inserted by the compiler atrappate
storage devices and the access to memory igoints of the program code. Of course, it wouldebsy
accomplished successfully. for the programmer to circumvent a loose protectibn
When a given task is running, ADR contains the bit this type. Rather that precluding deliberately Hatm
configuration corresponding to the nafjeof the domain ~ programs from producing their effects, our protacti
of this task. As a result, the task can freely asg@nd  environment is aimed at confining the consequemdes
even corrupt) all the blocks in this domain; wheréta  programming errors within the memory scope of the
cannot read or modify the contents of the othecldoln running program.
this way, we implement a form of error confinement.
Corrupting the memory areas in the task's own dam&i 3 Djscussion
less serious than corrupting information items idetshe
boundaries of this domain. .
Of course, more bits of BRRan be set at the same 3.1. TheProtection Model
given time, to indicate block sharing between dommalif

both bits BPR and BPR, are set, then blodg; is shared Ibn a tr:?\ditional paradigm, a prc_)t:ction systerr; tzdmedh
by domaing, anda for instance. y using anaccess matrixwith one row for eac

protected objecfy, B, ---, Pne @and one column for each

Table 1. Protection operations. protection domaimy, 4, ..., Agq (Figure 2). The matrix
element corresponding to a given object and a given
Operation Effect domain specifies the access rights held by thisaiiomn

the object. In a representation by rows, the acoegsx

setDomailh) Activates domai. takes the form of a set atcess control listsone list for

grantARP, A)  Grants access permission for bldtto each protected object; the access control list givan
domainA. Fails if the active domain object specifies the access rights held by eactaidoom
does not include this access permission.  this gpject. In a representation by columns, theess
revokeARB, A)  Revokes access permission for bl@ick matrix takes the form of a set oépability lists one list
from domainA. Fails if the active for each domain; the capability list of a given dom
domain does not include this access specifies the access rights held by this domaireach
permission. protected object [7].
Access control lists make it easy to manage thesacc
2.2. Protection Operations rights held by all domains for a given object. Hoer

determining the access rights that form a givenaloris

A set of primitives, theprotection operationsmakes it @ €ostly action that implies inspection of all a&xe
possible to access the active domain register hed t control lists. Capability lists allow straightforvea
block protection registers and modify their consent adr_rrlnlstratlo_n of the access rrghts in a given doraad
(Table 1). Letbi, dj and dk denote bit configurations facrlrta_1te actions of access rrg_ht transmissionwieen
featuring a single bit set, i.e. theh, thej-th and thek-tn ~ domains. However, access rights tend to propagate
bit, respectively. OperationsetDomaifdj) writes  throughout the system. This makes it hard if not
quantity dj into ADR, thereby activating domaif. |rnpossrble to deterr_nrne the_ domarns that hold acces
Operation grantARbi, dk) sets bit BPR, thereby rrghts_ fo_r a given object, as is required to revakeess
granting access permission for blopkto domainA. permissions, for instance [8]. _ .
Execution terminates successfully only if the aetiy [N OUr protection environment, by reserving a bit f
domainy;, as specified by the contents of ADR, includes each domain, register BPRplements the concept of an
the access privilege to be granted, i.e. bit BPR access c_ontrol -|I.St for blocR; (Figure 3). Furthermore,
asserted. Finally, operatioevokeARbi, dk) clears bit  the t_)rts in positionj of all block protection registers,
BPR,, thereby revoking the access permission for blockconsidered as a whole, form the capability listiofain

B from domainA,. Execution terminates successfully 4j- In facts, the array of block protection registsrur
only if the active domai, includes the access privilege Nhardware implementation of the access matrix, which
to be revoked, i.e. hit BRRis asserted. The protection 2allows us to take advantage of both methods ofsacce
operations are idempotent; each of these operation§ght representation, access control lists and hitiha
yields the same result after applying it multipheds. lists.

It should be clear that a harmful task could wes u For instance, in the capability list approach, asce
the protection operations unfairly, to change thtve right transmission between domains corresponds to
domain and gain control of the blocks in a difféaren execution of thegrantAR() operation that copies an
domain, for instance. We rely on the compiler tevent access permission from the active domain into @rgiv
the programmer from inserting explicit calls to the domain. This can be useful to pass ownership affteib
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Figure 2. Configuration of the access matrix. The ¢ symbol of domain 4y
in a given element of the matrix indicatesthat the domain of
the corresponding column holds access permission for the
object of the corresponding row. Figure 3. Har dwar e implementation of the access matrix.

between tasks, for instance. In the access colitiol the all-one bit configuration into the active domai
approach, access privilege revocation is obtaingd b register. The negative effects of an approach isftiipe
executing therevokeAR) operation and eliminating the on overall system stability are well known [11].b&tter
access permission for a given object from a givensolution is to have the kernel run in its own, saf@
protection domain. Revocation is important when the domain. In this way, a stable kernel can alwaysantae
sharing of a data item is done on a temporary b&sis a form of cold restart after a system crash due to
instance. In spite of its simplicity, this technéqallows application memory corruption [12].

selective revocation of an access privilege from any

subset of the domains that hold this privilege [9]. 3.3. Protection Domain Switching
3.2. Memory Protection and the Privileged Let us first refer to an event-driven environmestfiring
Mode non-blocking functions activated by hardware inipts.

In an environment of this type, when execution of a

At the hardware level, the classical concept of afunction is started up, the active domain must gkaio
privileged (kernel) mode corresponds to both addet reflect the memory scope of the new function. Aulesf
privileged instructions and unlimited device access this type will be obtained by reserving a spedaifionain
Increased hardware complexity follows in the to that function or to a set of correlated funcsigharing
implementation of the instruction set as well as ina common memory scope. The compiler will use the
processor interfacing. At the software level, syste SetDomail) operation to produce the necessary domain
efficiency is negatively affected by the need teesand  switch, by inserting a call to this operation at th
then restore the context of the running task atheac beginning of the code of each of these functions.
system call [5]. Furthermore, the privileged mode A problem connected with domain switching is tht o
prevents in-line expansion of the system calls .[20] restoring the previous domain on termination of
these sources of processor time wastage give taise execution of the activities in the new domain. Antoon
additional energy costs. approach relies on a protection stack where to faee

We give no special privilege to the kernel. As suig name of the old domain. Given the memory restraifits
we may well expand the protection operations ip-imo sensor node environments, the cost of a sepaeatk fir
the object code. In-line expansion will be strafigiward each task is usually considered prohibitive [12E Btall
and very effective. In fact, at the assembly lagguievel, take advantage of the idempotence property of the
the protection operations translate into few irgtoams ~ protection operations. On returning from the newndn,
or even a single instruction (as may be the case fothe caller will usesetDomail)) to restore the original
setDomaiff), for instance). We never disable protection. domain, independently of possible situations of
Instead, we limit the scope of each application emen  coincidence of the new domain with the old.
of the kernel to the smallest extent necessaryatoy out Of course, the approach outlined above to treat
its job. asynchronous hardware interrupts can as well be wse

Of course, our protection hardware may well emulatedeal with synchronous system calls issued by tasks
the unrestricted memory access of a traditionaflpged ~ explicitly. In a system featuring no memory proiect
mode. A result of this type will be obtained by ting system calls may well take the simple form of adly of
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software routines [10]; whereas protection usufiitges A widely-used approach to the construction of senso
these calls to be implemented as traps. In ournode software is to compile and link all applicaicand
environment, we are in a position to take advantfge the kernel, and then load the resulting system ématp
linked system primitives or even in-line expansadrthe the sensor node; the software is now operationah as
system calls in the application code while presgrvi whole [4]. An alternative is to permit forms of dymic
separation of access privileges between applicatn linking of application programs, to bring a new
the system kernel. application into the system or to upgrade an exgsti
Let us now consider a task starting up executioarof application, for instance [15,16]. In both cases,the
operation on a given encapsulated object. In atsito absence of a privileged mode and of address space
of this type, the memory scope of the task showdd b separation between applications, no protection
enlarged to include the memory area reserved fer th mechanism inhibits application software from coting
internal representation of this object. We can an@nt  code and data in memory, even within the scopéhef t
this form of amplification of access rights atldéiteffort kernel.
by relaxing the constraint that, at any given tirtlee On the other hand, the ever increasing compleXity o
active domain register must contain only one bit Se sensor node software deserves special attentiom the
doing, we can define the active domain in termghef  system architect, especially given the possiblectsf of
union of two or more basic domains, by settingtite of programming errors, which may spread even outdide t
ADR that correspond to these domains. In our exampl node onto the whole sensor network [12].
let A, be the active domain andy be the domain The costs in terms of both hardware and energy
including the internal representation of the enabyied requirements connected with classical forms of nrgmo
object. We shall ussetDomail() to replace the contents management and protection are usually considered
of ADR with the result of the bitwise OR of these prohibitive for a sensor node. This is certainlyetfor a
contents and a quantity having a single bit setkith bit memory management unit supporting address traoslati
corresponding ta\,. So doing, we expand the active and address space separation between processéise On
domain to be the logic union of the original domaind  other hand, we have shown how to take advantage of

the domain of the object. synergy between the hardware and the compiler and
implement a form of memory protection between
3.4. Hardware Costs application programs and the kernel, at low casteims

of additional hardware inside the microcontroller,

As seen in the Introduction, the overall desiga sknsor processing time, memory space requirements anaggener

: ; : tion.
node must carefully comply with stringent requirernse consump .
in terms of energy consumption and space efficiency_rhWe hfatlclve bee_n ?'Teg at safety rather thadn S‘?C“"ﬂy [ I
[13,14]. As far as protection is concerned, thecpssor N .;O dare m;:? e;)le botn "’]} sensor nc: s |st;Jsua y
time required to manage the protection informatias considered as refiable, but, Of course, not bug. teur

an energy cost that must be kept low [5], and teenory purpose hgs been to limit the spread of programming
space reserved for storage of the protection irdion errors o_ut3|de the memory scope O.f the running arog
should be kept to a minimum. [17]. This means that we hypothesize a set of ptime

In our design, the protection hardware is a Smallmechanisms at the network level, preventing dejiter

fraction of the total. Its overall complexity is ofulower nocljes of dehpgrately harmful progra(;‘ns. . t th
than that of a memory management unit supporting d n ?ur oplrglhor;, In a senfsor node rclen\élronm/en, 'Ie
address translation besides protection. For eigisicb advantages at ensue lrom a hardware/comprier

protection domains (not counting the domains defiime g_pprccjjacht to protectut)nd mf”t‘z t\rllve”I csmpf)ensatg .Ithe
terms of unions of the basic domains), the costhef ISadvantages connected wi € lack of a prieieg

protection circuitry in term of the memory resowgder mode and of address space separation between the

the block protection registers and the active domai Processes. We_ ho_pe _that_ our d¢5|gn effort will be a
register isn + 1 bytes,n being the number of memory significant contribution in this direction.

blocks. Thus, the memory requirements of the ptimec
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