
I. J. Communications, Network and System Sciences, 2008, 3, 207-283
Published Online August 2008 in SciRes (http://www.SciRP.org/journal/ijcns/).

Copyright © 2008 SciRes. I. J. Communications, Network and System Sciences, 2008, 3, 207-283

 Hardware/Compiler Memory Protection in Sensor Nodes

Lanfranco LOPRIORE

Dipartimento di Ingegneria dell’Informazione: Elettronica, Informatica, Telecomunicazioni
Università di Pisa, via G. Caruso 16, 56122 Pisa, Italy

E-mail: l.lopriore@iet.unipi.it
Received on June 9, 2008; revised and accepted on August 25, 2008

Abstract

With reference to sensor node architectures, we consider the problem of supporting forms of memory
protection through a hardware/compiler approach that takes advantage of a low-cost protection circuitry
inside the microcontroller, interposed between the processor and the storage devices. Our design effort
complies with the stringent limitations existing in these architectures in terms of hardware complexity,
available storage and energy consumption. Rather that precluding deliberately harmful programs from
producing their effects, our solution is aimed at limiting the spread of programming errors outside the
memory scope of the running program. The discussion evaluates the resulting protection environment from a
number of salient viewpoints that include the implementation of common protection paradigms, efficiency
in the distribution and revocation of access privileges, and the lack of a privileged (kernel) mode.

Keywords: Access Control, Protection Domain, Protection System, Sensor Node

1. Introduction

In sensor node architectures, stringent limitations in
terms of hardware complexity and energy consumption [1]
prevent utilization an intrinsically complex device such
as a memory management unit for virtual to physical
address translation [2]. This situation is not likely to
change in the near future. Rather than incrementing the
hardware power of the single sensor node, system
designers are likely to take advantage of progress in
integration technologies to reduce the node size and cost,
so as to support new applications using sensor networks
connecting an always increasing number of nodes [3,4].

In the absence of a memory mapping device, a single
address space is shared by all processes, and the form of
protection enforced by address space separation between
processes is lacking. The code and data areas of all
applications are exposed to the risk of corruption by an
erroneous process that can even crash the system kernel
[5]. This problem is exacerbated by the fact that the
writing of application software for sensor nodes is an
especially challenging activity, owing to the limitations in
terms of available memory and processing power, event-
driven concurrency, requirements of real-time response,
dynamic application update, and the need to comply with

a variety of different sensors. Even worse, programmers
may usually rely on very limited support for debugging
[2]. These considerations suggest that the presence of
protection mechanisms between processes, which is a
common feature in general-purpose systems, is highly
desirable even in sensor node environments.

By taking the salient characteristics of an environment
of this type into considerations, we shall propose a form
of fine-grained memory protection [6] as a solution to the
protection problem, outlined above. Our solution takes
advantage of a form of synergy between the hardware
and the compiler. The interface of the protection
hardware consists of a set of primitives, the protection
operations. The compiler inserts the calls to these
operations at appropriate points of the object code to
enforce separation of memory privileges between tasks
while preventing the application programmer from
calling these operations explicitly. These are easy
compiler tasks, which can be made largely transparent to
the programmer. Placing new burdens on the compiler is
a tendency now exploited in the solution of several
architectural problems, e.g., data prefetching, cache
control, translation lookaside buffer management, and
instruction scheduling at compile time.

The rest of this paper is organized as follows. Section
2 introduces a simple, low-cost addition to the hardware

236 L. LOPRIORE

Copyright © 2008 SciRes. I. J. Communications, Network and System Sciences, 2008, 3, 207-283

Figure 1. Hardware configuration featuring a memory protection unit interposed between the processor and the memory
devices.

inside the microcontroller, and the software primitives to
control this hardware and enforce memory protection.
Section 3 evaluates the resulting hardware/compiler
memory protection scheme from a number of salient
viewpoints that include the implementation of common
protection paradigms, efficiency in the distribution and
revocation of access permissions, and the lack of a
privileged (kernel) mode. For each protection problem,
we devise a solution that demonstrates the flexibility of
the proposed approach to memory protection.

2. The Protection System

We shall refer to a classical sensor node configuration in
which a microcontroller includes a processor that
interfaces both volatile (RAM) and non-volatile
reprogrammable (Flash/ROM) storage devices. The
memory space is logically partitioned into 2n blocks of a
fixed size. Blocks are the passive entities to be protected
from tasks. By the term task we mean any active entity
capable of generating memory accesses; thus, a task may
be a scheduled computation [5], or, in an event-driven
paradigm, the activity produced by a function activated
by a hardware interrupt [3,4].

A protection domain is a collection of access
permissions for memory blocks which can be randomly
scattered throughout the whole memory. When a task is
running, it is associated with a domain, called the active
domain. When the task performs an access attempt to a
given information item in memory, the access terminates

successfully only if the active domain includes access
permission for the block storing that information item.

2.1. Hardware Support for Memory Protection

At the hardware level, protection is supported by a
circuitry inside the microcontroller, the memory
protection unit (MPU), interposed between the processor
and the memory devices (Figure 1). For each given
memory block βi, i = 0, 1, …, n – 1, MPU contains a
block protection register BPRi associated with this block.
The size of BPRi is d bits, where d is the number of the
basic domains ∆0, ∆1, …, ∆d-1 which are supported by the
protection system (as will be made clear later, more
domains can be defined in terms of unions of the basic
domains). Let BPRi,j denotes the j–th bit of BPRi. If set,
this bit specifies that domain ∆j holds access permission
for block βi. This means that a task running in ∆j can
successfully access the memory locations in βi for both
read and write.

At any given time, a d-bit register of MPU, the active
domain register (ADR), contains a quantity with a single
bit set, the j-th bit corresponding to the name ∆j of the
domain that is active at that time. An address generated
by the processor is partitioned into the index i of a block
βi and an offset within this block. Quantity i is sent to the
array of block protection registers to select the register
BPRi associated with βi. If the result of the bitwise AND
of the contents of ADR and BPRi is 0, then domain ∆j has
no access permission for βi, and an exception of

HARDWARE/COMPILER MEMORY PROTECTION IN SENSOR NODES 237

Copyright © 2008 SciRes. I. J. Communications, Network and System Sciences, 2008, 3, 207-283

protection violation is raised to the processor. If this is
not the case, the memory address is delivered to the
storage devices and the access to memory is
accomplished successfully.

When a given task is running, ADR contains the bit
configuration corresponding to the name ∆j of the domain
of this task. As a result, the task can freely access (and
even corrupt) all the blocks in this domain; whereas it
cannot read or modify the contents of the other blocks. In
this way, we implement a form of error confinement.
Corrupting the memory areas in the task’s own domain is
less serious than corrupting information items outside the
boundaries of this domain.

Of course, more bits of BPRi can be set at the same
given time, to indicate block sharing between domains. If
both bits BPRi,j and BPRi,k are set, then block βi is shared
by domains ∆j and ∆k, for instance.

Table 1. Protection operations.

Operation Effect

setDomain(∆) Activates domain ∆.

grantAP(β, ∆) Grants access permission for block β to
domain ∆. Fails if the active domain
does not include this access permission.

revokeAP(β, ∆) Revokes access permission for block β
from domain ∆. Fails if the active
domain does not include this access
permission.

2.2. Protection Operations

A set of primitives, the protection operations, makes it
possible to access the active domain register and the
block protection registers and modify their contents
(Table 1). Let bi, dj and dk denote bit configurations
featuring a single bit set, i.e. the i-th, the j-th and the k-th
bit, respectively. Operation setDomain(dj) writes
quantity dj into ADR, thereby activating domain ∆j.
Operation grantAP(bi, dk) sets bit BPRi,k, thereby
granting access permission for block βi to domain ∆k.
Execution terminates successfully only if the active
domain ∆j, as specified by the contents of ADR, includes
the access privilege to be granted, i.e. bit BPRi,j is
asserted. Finally, operation revokeAP(bi, dk) clears bit
BPRi,k, thereby revoking the access permission for block
βi from domain ∆k. Execution terminates successfully
only if the active domain ∆j includes the access privilege
to be revoked, i.e. bit BPRi,j is asserted. The protection
operations are idempotent; each of these operations
yields the same result after applying it multiple times.

It should be clear that a harmful task could well use
the protection operations unfairly, to change the active
domain and gain control of the blocks in a different
domain, for instance. We rely on the compiler to prevent
the programmer from inserting explicit calls to the

protection operations into application programs; whereas
these calls will be inserted by the compiler at appropriate
points of the program code. Of course, it would be easy
for the programmer to circumvent a loose protection of
this type. Rather that precluding deliberately harmful
programs from producing their effects, our protection
environment is aimed at confining the consequences of
programming errors within the memory scope of the
running program.

3. Discussion

3.1. The Protection Model

In a traditional paradigm, a protection system is modeled
by using an access matrix with one row for each
protected object β0, β1, …, βn-1 and one column for each
protection domain ∆0, ∆1, …, ∆d-1 (Figure 2). The matrix
element corresponding to a given object and a given
domain specifies the access rights held by this domain on
the object. In a representation by rows, the access matrix
takes the form of a set of access control lists, one list for
each protected object; the access control list of a given
object specifies the access rights held by each domain on
this object. In a representation by columns, the access
matrix takes the form of a set of capability lists, one list
for each domain; the capability list of a given domain
specifies the access rights held by this domain on each
protected object [7].

Access control lists make it easy to manage the access
rights held by all domains for a given object. However,
determining the access rights that form a given domain is
a costly action that implies inspection of all access
control lists. Capability lists allow straightforward
administration of the access rights in a given domain and
facilitate actions of access right transmission between
domains. However, access rights tend to propagate
throughout the system. This makes it hard if not
impossible to determine the domains that hold access
rights for a given object, as is required to revoke access
permissions, for instance [8].

In our protection environment, by reserving a bit for
each domain, register BPRi implements the concept of an
access control list for block βi (Figure 3). Furthermore,
the bits in position j of all block protection registers,
considered as a whole, form the capability list of domain
∆j. In facts, the array of block protection registers is our
hardware implementation of the access matrix, which
allows us to take advantage of both methods of access
right representation, access control lists and capability
lists.

For instance, in the capability list approach, access
right transmission between domains corresponds to
execution of the grantAP() operation that copies an
access permission from the active domain into a given
domain. This can be useful to pass ownership of a buffer

238 L. LOPRIORE

Copyright © 2008 SciRes. I. J. Communications, Network and System Sciences, 2008, 3, 207-283

Figure 2. Configuration of the access matrix. The ♦ symbol
in a given element of the matrix indicates that the domain of
the corresponding column holds access permission for the
object of the corresponding row.

Figure 3. Hardware implementation of the access matrix.

between tasks, for instance. In the access control list
approach, access privilege revocation is obtained by
executing the revokeAP() operation and eliminating the
access permission for a given object from a given
protection domain. Revocation is important when the
sharing of a data item is done on a temporary basis, for
instance. In spite of its simplicity, this technique allows
selective revocation of an access privilege from any
subset of the domains that hold this privilege [9].

3.2. Memory Protection and the Privileged
 Mode

At the hardware level, the classical concept of a
privileged (kernel) mode corresponds to both a set of
privileged instructions and unlimited device access.
Increased hardware complexity follows in the
implementation of the instruction set as well as in
processor interfacing. At the software level, system
efficiency is negatively affected by the need to save and
then restore the context of the running task at each
system call [5]. Furthermore, the privileged mode
prevents in-line expansion of the system calls [10]. All
these sources of processor time wastage give raise to
additional energy costs.

We give no special privilege to the kernel. As a result,
we may well expand the protection operations in-line into
the object code. In-line expansion will be straightforward
and very effective. In fact, at the assembly language level,
the protection operations translate into few instructions
or even a single instruction (as may be the case for
setDomain(), for instance). We never disable protection.
Instead, we limit the scope of each application and even
of the kernel to the smallest extent necessary to carry out
its job.

Of course, our protection hardware may well emulate
the unrestricted memory access of a traditional privileged
mode. A result of this type will be obtained by writing

the all-one bit configuration into the active domain
register. The negative effects of an approach of this type
on overall system stability are well known [11]. A better
solution is to have the kernel run in its own, separate
domain. In this way, a stable kernel can always guarantee
a form of cold restart after a system crash due to
application memory corruption [12].

3.3. Protection Domain Switching

Let us first refer to an event-driven environment featuring
non-blocking functions activated by hardware interrupts.
In an environment of this type, when execution of a
function is started up, the active domain must change to
reflect the memory scope of the new function. A result of
this type will be obtained by reserving a specific domain
to that function or to a set of correlated functions sharing
a common memory scope. The compiler will use the
setDomain() operation to produce the necessary domain
switch, by inserting a call to this operation at the
beginning of the code of each of these functions.

A problem connected with domain switching is that of
restoring the previous domain on termination of
execution of the activities in the new domain. A common
approach relies on a protection stack where to save the
name of the old domain. Given the memory restraints of
sensor node environments, the cost of a separate stack for
each task is usually considered prohibitive [12]. We shall
take advantage of the idempotence property of the
protection operations. On returning from the new domain,
the caller will use setDomain() to restore the original
domain, independently of possible situations of
coincidence of the new domain with the old.

Of course, the approach outlined above to treat
asynchronous hardware interrupts can as well be used to
deal with synchronous system calls issued by tasks
explicitly. In a system featuring no memory protection,
system calls may well take the simple form of a library of

HARDWARE/COMPILER MEMORY PROTECTION IN SENSOR NODES 239

Copyright © 2008 SciRes. I. J. Communications, Network and System Sciences, 2008, 3, 207-283

software routines [10]; whereas protection usually forces
these calls to be implemented as traps. In our
environment, we are in a position to take advantage of
linked system primitives or even in-line expansion of the
system calls in the application code while preserving
separation of access privileges between applications and
the system kernel.

Let us now consider a task starting up execution of an
operation on a given encapsulated object. In a situation
of this type, the memory scope of the task should be
enlarged to include the memory area reserved for the
internal representation of this object. We can implement
this form of amplification of access rights at little effort
by relaxing the constraint that, at any given time, the
active domain register must contain only one bit set. So
doing, we can define the active domain in terms of the
union of two or more basic domains, by setting the bits of
ADR that correspond to these domains. In our example,
let ∆j be the active domain and ∆k be the domain
including the internal representation of the encapsulated
object. We shall use setDomain() to replace the contents
of ADR with the result of the bitwise OR of these
contents and a quantity having a single bit set, the k-th bit
corresponding to ∆k. So doing, we expand the active
domain to be the logic union of the original domain and
the domain of the object.

3.4. Hardware Costs

As seen in the Introduction, the overall design of a sensor
node must carefully comply with stringent requirements
in terms of energy consumption and space efficiency
[13,14]. As far as protection is concerned, the processor
time required to manage the protection information has
an energy cost that must be kept low [5], and the memory
space reserved for storage of the protection information
should be kept to a minimum.

In our design, the protection hardware is a small
fraction of the total. Its overall complexity is much lower
than that of a memory management unit supporting
address translation besides protection. For eight basic
protection domains (not counting the domains defined in
terms of unions of the basic domains), the cost of the
protection circuitry in term of the memory resources for
the block protection registers and the active domain
register is n + 1 bytes, n being the number of memory
blocks. Thus, the memory requirements of the protection
information are kept low. Furthermore, the memory
protection strategy neither is an inherent source of
memory space waste (by implying a separate stack for
each process [3,5], for instance) nor produces processor
inefficiencies (e.g., by hampering in-line expansion of the
calls to the protection operations and the system kernel).

4. Concluding Remarks

A widely-used approach to the construction of sensor
node software is to compile and link all applications and
the kernel, and then load the resulting system image into
the sensor node; the software is now operational as a
whole [4]. An alternative is to permit forms of dynamic
linking of application programs, to bring a new
application into the system or to upgrade an existing
application, for instance [15,16]. In both cases, in the
absence of a privileged mode and of address space
separation between applications, no protection
mechanism inhibits application software from corrupting
code and data in memory, even within the scope of the
kernel.

On the other hand, the ever increasing complexity of
sensor node software deserves special attention from the
system architect, especially given the possible effects of
programming errors, which may spread even outside the
node onto the whole sensor network [12].

The costs in terms of both hardware and energy
requirements connected with classical forms of memory
management and protection are usually considered
prohibitive for a sensor node. This is certainly true for a
memory management unit supporting address translation
and address space separation between processes. On the
other hand, we have shown how to take advantage of a
synergy between the hardware and the compiler and
implement a form of memory protection between
application programs and the kernel, at low costs in terms
of additional hardware inside the microcontroller,
processing time, memory space requirements and energy
consumption.

We have been aimed at safety rather than security [10].
The software installed on a sensor node is usually
considered as reliable, but, of course, not bug free. Our
purpose has been to limit the spread of programming
errors outside the memory scope of the running program
[17]. This means that we hypothesize a set of protection
mechanisms at the network level, preventing delivery to
nodes of deliberately harmful programs.

In our opinion, in a sensor node environment, the
advantages that ensue from a hardware/compiler
approach to protection may well compensate the
disadvantages connected with the lack of a privilege
mode and of address space separation between the
processes. We hope that our design effort will be a
significant contribution in this direction.

5. References

[1] T. Liu, C. M. Sadler, P. Zhang, and M. Martonosi,

“Implementing software on resource-constrained mobile
sensors: experiences with Impala and ZebraNet,”
Proceedings of the 2nd International Conference on
Mobile Systems, Applications, and Services, Boston,
Massachusetts, USA, pp. 256–269, June 2004.

[2] R. Kumar, A. Singhania, A. Castner, E. Kohler, and M.
Srivastava, “A system for coarse grained memory

240 L. LOPRIORE

Copyright © 2008 SciRes. I. J. Communications, Network and System Sciences, 2008, 3, 207-283

protection in tiny embedded processors,” Proceedings of
the 44th Annual Conference on Design Automation, San
Diego, California, USA, pp. 218–223, June 2007.

[3] A. Dunkels, B. Grönvall, and T. Voigt, “Contiki - a
lightweight and flexible operating system for tiny
networked sensors,” Proceedings of the First IEEE
Workshop on Embedded Networked Sensors, Tampa,
Florida, USA, pp. 455–462, November 2004.

[4] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K.
Whitehouse, A. Woo, D. Gay, J. Hill, M. Welsh, E.
Brewer, and D. Culler, “TinyOS: an operating system for
wireless sensor networks,” in Ambient Intelligence, New
York: Springer-Verlag, pp. 115–148, 2005.

[5] H. Cha, S. Choi, I. Jung, H. Kim, H. Shin, J. Yoo, and C.
Yoon, “RETOS: resilient, expandable, and threaded
operating system for wireless sensor networks,”
Proceedings of the 6th International Conference on
Information Processing in Sensor Networks, Cambridge,
Massachusetts, USA, pp. 148–157, April 2007.

[6] J. Shen, G. Venkataramani, and M. Prvulovic, “Tradeoffs
in fine-grained heap memory protection,” Proceedings of
the 1st Workshop on Architectural and System Support
for Improving Software Dependability, San Jose,
California, USA, pp. 52–57, October 2006.

[7] L. Lopriore, “Access control mechanisms in a distributed,
persistent memory system,” IEEE Transactions on
Parallel and Distributed Systems, Vol. 13, No. 10, pp.
1066–1083, October 2002.

[8] L. Lopriore, “Access privilege management in protection
systems,” Information and Software Technology, Vol. 44,
No. 9, pp. 541–549, June 2002.

[9] V. D. Gligor, “Review and revocation of access
privileges distributed through capabilities,” IEEE
Transactions on Software Engineering, Vol. SE-5, No. 6,
pp. 575–586, November 1979.

[10] D. Lohmann, J. Streicher, W. Hofer, O. Spinczyk, and W.
Schröder-Preikschat, “Configurable memory protection
by aspects,” Proceedings of the 4th Workshop on

Programming Languages and Operating Systems,
Stevenson, Washington, USA, October 2007.

[11] A. S. Tanenbaum, J. N. Herder, and H. Bos, “Can we
make operating systems reliable and secure,” Computer,
Vol. 39, No. 5, pp. 44–51, May 2006.

[12] R. Kumar, E. Kohler, and M. Srivastava, “Harbor:
software-based memory protection for sensor nodes,”
Proceedings of the 6th International Conference on
Information Processing in Sensor Networks, Cambridge,
Massachusetts, USA, pp. 340–349, April 2007.

[13] A. Eswaran, A. Rowe, and R. Rajkumar, “Nano-RK: an
energy-aware resource-centric RTOS for sensor
networks,” Proceedings of the 26th IEEE International
Real-Time Systems Symposium, Miami, Florida, USA,
pp. 256–265, December 2005.

[14] S. Yi, H. Min, J. Heo, B. Gu, Y. Cho, J. Hong, H. Oh,
and B. Song, “XMAS: An eXtraordinary Memory
Allocation Scheme for resource-constrained sensor
operating systems,” in: Mobile Ad-hoc and Sensor
Networks, Lecture Notes in Computer Science, Vol. 4325,
pp. 760–769, 2006.

[15] A. Dunkels, N. Finne, J. Eriksson, and T. Voigt, “Run-
time dynamic linking for reprogramming wireless sensor
networks,” Proceedings of the 4th International
Conference on Embedded Networked Sensor Systems,
Boulder, Colorado, USA, pp. 15–28, October 2006.

[16] C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivastava,
“A dynamic operating system for sensor nodes,”
Proceedings of the 3rd International Conference on
Mobile Systems, Applications, and Services, Seattle,
Washington, USA, pp. 163–176, June 2005.

[17] N. K. Jha, S. Ravi, A. Raghunathan, and D. Arora,
“Architectural support for safe software execution on
embedded processors,” Proceedings of the 4th
International Conference on Hardware/Software
Codesign and System Synthesis, Seoul, Korea, pp. 106–
111, 2006.

