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Abstract 
 
With reference to sensor node architectures, we consider the problem of supporting forms of memory 
protection through a hardware/compiler approach that takes advantage of a low-cost protection circuitry 
inside the microcontroller, interposed between the processor and the storage devices. Our design effort 
complies with the stringent limitations existing in these architectures in terms of hardware complexity, 
available storage and energy consumption. Rather that precluding deliberately harmful programs from 
producing their effects, our solution is aimed at limiting the spread of programming errors outside the 
memory scope of the running program. The discussion evaluates the resulting protection environment from a 
number of salient viewpoints that include the implementation of common protection paradigms, efficiency 
in the distribution and revocation of access privileges, and the lack of a privileged (kernel) mode. 
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1.  Introduction 
 

In sensor node architectures, stringent limitations in 
terms of hardware complexity and energy consumption [1] 
prevent utilization an intrinsically complex device such 
as a memory management unit for virtual to physical 
address translation [2]. This situation is not likely to 
change in the near future. Rather than incrementing the 
hardware power of the single sensor node, system 
designers are likely to take advantage of progress in 
integration technologies to reduce the node size and cost, 
so as to support new applications using sensor networks 
connecting an always increasing number of nodes [3,4]. 

In the absence of a memory mapping device, a single 
address space is shared by all processes, and the form of 
protection enforced by address space separation between 
processes is lacking. The code and data areas of all 
applications are exposed to the risk of corruption by an 
erroneous process that can even crash the system kernel 
[5]. This problem is exacerbated by the fact that the 
writing of application software for sensor nodes is an 
especially challenging activity, owing to the limitations in 
terms of available memory and processing power, event-
driven concurrency, requirements of real-time response, 
dynamic application update, and the need to comply with 

a variety of different sensors. Even worse, programmers 
may usually rely on very limited support for debugging 
[2]. These considerations suggest that the presence of 
protection mechanisms between processes, which is a 
common feature in general-purpose systems, is highly 
desirable even in sensor node environments.  

By taking the salient characteristics of an environment 
of this type into considerations, we shall propose a form 
of fine-grained memory protection [6] as a solution to the 
protection problem, outlined above. Our solution takes 
advantage of a form of synergy between the hardware 
and the compiler. The interface of the protection 
hardware consists of a set of primitives, the protection 
operations. The compiler inserts the calls to these 
operations at appropriate points of the object code to 
enforce separation of memory privileges between tasks 
while preventing the application programmer from 
calling these operations explicitly. These are easy 
compiler tasks, which can be made largely transparent to 
the programmer. Placing new burdens on the compiler is 
a tendency now exploited in the solution of several 
architectural problems, e.g., data prefetching, cache 
control, translation lookaside buffer management, and 
instruction scheduling at compile time.  

The rest of this paper is organized as follows. Section 
2 introduces a simple, low-cost addition to the hardware  
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Figure 1. Hardware configuration featuring a memory protection unit interposed between the processor and the memory 
devices. 
 
inside the microcontroller, and the software primitives to 
control this hardware and enforce memory protection. 
Section 3 evaluates the resulting hardware/compiler 
memory protection scheme from a number of salient 
viewpoints that include the implementation of common 
protection paradigms, efficiency in the distribution and 
revocation of access permissions, and the lack of a 
privileged (kernel) mode. For each protection problem, 
we devise a solution that demonstrates the flexibility of 
the proposed approach to memory protection. 
 
2.  The Protection System 
 
We shall refer to a classical sensor node configuration in 
which a microcontroller includes a processor that 
interfaces both volatile (RAM) and non-volatile 
reprogrammable (Flash/ROM) storage devices. The 
memory space is logically partitioned into 2n blocks of a 
fixed size. Blocks are the passive entities to be protected 
from tasks. By the term task we mean any active entity 
capable of generating memory accesses; thus, a task may 
be a scheduled computation [5], or, in an event-driven 
paradigm, the activity produced by a function activated 
by a hardware interrupt [3,4].  

A protection domain is a collection of access 
permissions for memory blocks which can be randomly 
scattered throughout the whole memory. When a task is 
running, it is associated with a domain, called the active 
domain. When the task performs an access attempt to a 
given information item in memory, the access terminates 

successfully only if the active domain includes access 
permission for the block storing that information item. 
 
2.1.  Hardware Support for Memory Protection 
 
At the hardware level, protection is supported by a 
circuitry inside the microcontroller, the memory 
protection unit (MPU), interposed between the processor 
and the memory devices (Figure 1). For each given 
memory block βi, i = 0, 1, …, n – 1, MPU contains a 
block protection register BPRi associated with this block. 
The size of BPRi is d bits, where d is the number of the 
basic domains ∆0, ∆1, …, ∆d-1 which are supported by the 
protection system (as will be made clear later, more 
domains can be defined in terms of unions of the basic 
domains). Let BPRi,j denotes the j–th bit of BPRi. If set, 
this bit specifies that domain ∆j holds access permission 
for block βi. This means that a task running in ∆j can 
successfully access the memory locations in βi for both 
read and write. 

At any given time, a d-bit register of MPU, the active 
domain register (ADR), contains a quantity with a single 
bit set, the j-th bit corresponding to the name ∆j of the 
domain that is active at that time. An address generated 
by the processor is partitioned into the index i of a block 
βi and an offset within this block. Quantity i is sent to the 
array of block protection registers to select the register 
BPRi associated with βi. If the result of the bitwise AND 
of the contents of ADR and BPRi is 0, then domain ∆j has 
no access permission for βi, and an exception of 
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protection violation is raised to the processor. If this is 
not the case, the memory address is delivered to the 
storage devices and the access to memory is 
accomplished successfully. 

When a given task is running, ADR contains the bit 
configuration corresponding to the name ∆j of the domain 
of this task. As a result, the task can freely access (and 
even corrupt) all the blocks in this domain; whereas it 
cannot read or modify the contents of the other blocks. In 
this way, we implement a form of error confinement. 
Corrupting the memory areas in the task’s own domain is 
less serious than corrupting information items outside the 
boundaries of this domain.  

Of course, more bits of BPRi can be set at the same 
given time, to indicate block sharing between domains. If 
both bits BPRi,j and BPRi,k are set, then block βi is shared 
by domains ∆j and ∆k, for instance. 
 

Table 1. Protection operations. 
 

Operation Effect 

setDomain(∆) Activates domain ∆.  

grantAP(β, ∆) Grants access permission for block β to 
domain ∆. Fails if the active domain 
does not include this access permission. 

revokeAP(β, ∆) Revokes access permission for block β 
from domain ∆. Fails if the active 
domain does not include this access 
permission. 

 
2.2.  Protection Operations 
 
A set of primitives, the protection operations, makes it 
possible to access the active domain register and the 
block protection registers and modify their contents 
(Table 1). Let bi, dj and dk denote bit configurations 
featuring a single bit set, i.e. the i-th, the j-th and the k-th 
bit, respectively. Operation setDomain(dj) writes 
quantity dj into ADR, thereby activating domain ∆j. 
Operation grantAP(bi, dk) sets bit BPRi,k, thereby 
granting access permission for block βi to domain ∆k. 
Execution terminates successfully only if the active 
domain ∆j, as specified by the contents of ADR, includes 
the access privilege to be granted, i.e. bit BPRi,j is 
asserted. Finally, operation revokeAP(bi, dk) clears bit 
BPRi,k, thereby revoking the access permission for block 
βi from domain ∆k. Execution terminates successfully 
only if the active domain ∆j includes the access privilege 
to be revoked, i.e. bit BPRi,j is asserted. The protection 
operations are idempotent; each of these operations 
yields the same result after applying it multiple times. 

It should be clear that a harmful task could well use 
the protection operations unfairly, to change the active 
domain and gain control of the blocks in a different 
domain, for instance. We rely on the compiler to prevent 
the programmer from inserting explicit calls to the 

protection operations into application programs; whereas 
these calls will be inserted by the compiler at appropriate 
points of the program code. Of course, it would be easy 
for the programmer to circumvent a loose protection of 
this type. Rather that precluding deliberately harmful 
programs from producing their effects, our protection 
environment is aimed at confining the consequences of 
programming errors within the memory scope of the 
running program. 
 
3.  Discussion 
 
3.1.  The Protection Model 
 
In a traditional paradigm, a protection system is modeled 
by using an access matrix with one row for each 
protected object β0, β1, …, βn-1 and one column for each 
protection domain ∆0, ∆1, …, ∆d-1 (Figure 2). The matrix 
element corresponding to a given object and a given 
domain specifies the access rights held by this domain on 
the object. In a representation by rows, the access matrix 
takes the form of a set of access control lists, one list for 
each protected object; the access control list of a given 
object specifies the access rights held by each domain on 
this object. In a representation by columns, the access 
matrix takes the form of a set of capability lists, one list 
for each domain; the capability list of a given domain 
specifies the access rights held by this domain on each 
protected object [7].  

Access control lists make it easy to manage the access 
rights held by all domains for a given object. However, 
determining the access rights that form a given domain is 
a costly action that implies inspection of all access 
control lists. Capability lists allow straightforward 
administration of the access rights in a given domain and 
facilitate actions of access right transmission between 
domains. However, access rights tend to propagate 
throughout the system. This makes it hard if not 
impossible to determine the domains that hold access 
rights for a given object, as is required to revoke access 
permissions, for instance [8].  

In our protection environment, by reserving a bit for 
each domain, register BPRi implements the concept of an 
access control list for block βi (Figure 3). Furthermore, 
the bits in position j of all block protection registers, 
considered as a whole, form the capability list of domain 
∆j. In facts, the array of block protection registers is our 
hardware implementation of the access matrix, which 
allows us to take advantage of both methods of access 
right representation, access control lists and capability 
lists.  

For instance, in the capability list approach, access 
right transmission between domains corresponds to 
execution of the grantAP() operation that copies an 
access permission from the active domain into a given 
domain. This can be useful to pass ownership of a buffer  
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Figure 2. Configuration of the access matrix. The ♦ symbol 
in a given element of the matrix indicates that the domain of 
the corresponding column holds access permission for the 
object of the corresponding row. 
 

 

 
 
 

Figure 3. Hardware implementation of the access matrix. 
 

between tasks, for instance. In the access control list 
approach, access privilege revocation is obtained by 
executing the revokeAP() operation and eliminating the 
access permission for a given object from a given 
protection domain. Revocation is important when the 
sharing of a data item is done on a temporary basis, for 
instance. In spite of its simplicity, this technique allows 
selective revocation of an access privilege from any 
subset of the domains that hold this privilege [9].  

 
3.2.  Memory Protection and the Privileged 
        Mode 
 
At the hardware level, the classical concept of a 
privileged (kernel) mode corresponds to both a set of 
privileged instructions and unlimited device access. 
Increased hardware complexity follows in the 
implementation of the instruction set as well as in 
processor interfacing. At the software level, system 
efficiency is negatively affected by the need to save and 
then restore the context of the running task at each 
system call [5]. Furthermore, the privileged mode 
prevents in-line expansion of the system calls [10]. All 
these sources of processor time wastage give raise to 
additional energy costs.  

We give no special privilege to the kernel. As a result, 
we may well expand the protection operations in-line into 
the object code. In-line expansion will be straightforward 
and very effective. In fact, at the assembly language level, 
the protection operations translate into few instructions 
or even a single instruction (as may be the case for 
setDomain(), for instance). We never disable protection. 
Instead, we limit the scope of each application and even 
of the kernel to the smallest extent necessary to carry out 
its job. 

Of course, our protection hardware may well emulate 
the unrestricted memory access of a traditional privileged 
mode. A result of this type will be obtained by writing 

the all-one bit configuration into the active domain 
register. The negative effects of an approach of this type 
on overall system stability are well known [11]. A better 
solution is to have the kernel run in its own, separate 
domain. In this way, a stable kernel can always guarantee 
a form of cold restart after a system crash due to 
application memory corruption [12]. 
 
3.3.  Protection Domain Switching 
 
Let us first refer to an event-driven environment featuring 
non-blocking functions activated by hardware interrupts. 
In an environment of this type, when execution of a 
function is started up, the active domain must change to 
reflect the memory scope of the new function. A result of 
this type will be obtained by reserving a specific domain 
to that function or to a set of correlated functions sharing 
a common memory scope. The compiler will use the 
setDomain() operation to produce the necessary domain 
switch, by inserting a call to this operation at the 
beginning of the code of each of these functions. 

A problem connected with domain switching is that of 
restoring the previous domain on termination of 
execution of the activities in the new domain. A common 
approach relies on a protection stack where to save the 
name of the old domain. Given the memory restraints of 
sensor node environments, the cost of a separate stack for 
each task is usually considered prohibitive [12]. We shall 
take advantage of the idempotence property of the 
protection operations. On returning from the new domain, 
the caller will use setDomain() to restore the original 
domain, independently of possible situations of 
coincidence of the new domain with the old. 

Of course, the approach outlined above to treat 
asynchronous hardware interrupts can as well be used to 
deal with synchronous system calls issued by tasks 
explicitly. In a system featuring no memory protection, 
system calls may well take the simple form of a library of 
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software routines [10]; whereas protection usually forces 
these calls to be implemented as traps. In our 
environment, we are in a position to take advantage of 
linked system primitives or even in-line expansion of the 
system calls in the application code while preserving 
separation of access privileges between applications and 
the system kernel. 

Let us now consider a task starting up execution of an 
operation on a given encapsulated object. In a situation 
of this type, the memory scope of the task should be 
enlarged to include the memory area reserved for the 
internal representation of this object. We can implement 
this form of amplification of access rights at little effort 
by relaxing the constraint that, at any given time, the 
active domain register must contain only one bit set. So 
doing, we can define the active domain in terms of the 
union of two or more basic domains, by setting the bits of 
ADR that correspond to these domains. In our example, 
let ∆j be the active domain and ∆k be the domain 
including the internal representation of the encapsulated 
object. We shall use setDomain() to replace the contents 
of ADR with the result of the bitwise OR of these 
contents and a quantity having a single bit set, the k-th bit 
corresponding to ∆k. So doing, we expand the active 
domain to be the logic union of the original domain and 
the domain of the object. 
 
3.4.  Hardware Costs 
 
As seen in the Introduction, the overall design of a sensor 
node must carefully comply with stringent requirements 
in terms of energy consumption and space efficiency 
[13,14]. As far as protection is concerned, the processor 
time required to manage the protection information has 
an energy cost that must be kept low [5], and the memory 
space reserved for storage of the protection information 
should be kept to a minimum. 

In our design, the protection hardware is a small 
fraction of the total. Its overall complexity is much lower 
than that of a memory management unit supporting 
address translation besides protection. For eight basic 
protection domains (not counting the domains defined in 
terms of unions of the basic domains), the cost of the 
protection circuitry in term of the memory resources for 
the block protection registers and the active domain 
register is n + 1 bytes, n being the number of memory 
blocks. Thus, the memory requirements of the protection 
information are kept low. Furthermore, the memory 
protection strategy neither is an inherent source of 
memory space waste (by implying a separate stack for 
each process [3,5], for instance) nor produces processor 
inefficiencies (e.g., by hampering in-line expansion of the 
calls to the protection operations and the system kernel).  
 
4.  Concluding Remarks 
 

A widely-used approach to the construction of sensor 
node software is to compile and link all applications and 
the kernel, and then load the resulting system image into 
the sensor node; the software is now operational as a 
whole [4]. An alternative is to permit forms of dynamic 
linking of application programs, to bring a new 
application into the system or to upgrade an existing 
application, for instance [15,16]. In both cases, in the 
absence of a privileged mode and of address space 
separation between applications, no protection 
mechanism inhibits application software from corrupting 
code and data in memory, even within the scope of the 
kernel.  

On the other hand, the ever increasing complexity of 
sensor node software deserves special attention from the 
system architect, especially given the possible effects of 
programming errors, which may spread even outside the 
node onto the whole sensor network [12].  

The costs in terms of both hardware and energy 
requirements connected with classical forms of memory 
management and protection are usually considered 
prohibitive for a sensor node. This is certainly true for a 
memory management unit supporting address translation 
and address space separation between processes. On the 
other hand, we have shown how to take advantage of a 
synergy between the hardware and the compiler and 
implement a form of memory protection between 
application programs and the kernel, at low costs in terms 
of additional hardware inside the microcontroller, 
processing time, memory space requirements and energy 
consumption. 

We have been aimed at safety rather than security [10]. 
The software installed on a sensor node is usually 
considered as reliable, but, of course, not bug free. Our 
purpose has been to limit the spread of programming 
errors outside the memory scope of the running program 
[17]. This means that we hypothesize a set of protection 
mechanisms at the network level, preventing delivery to 
nodes of deliberately harmful programs. 

In our opinion, in a sensor node environment, the 
advantages that ensue from a hardware/compiler 
approach to protection may well compensate the 
disadvantages connected with the lack of a privilege 
mode and of address space separation between the 
processes. We hope that our design effort will be a 
significant contribution in this direction. 
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