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ABSTRACT 
The present study aims at improving the ability of the canonical genetic programming algorithm to solve problems, and 
describes an improved genetic programming (IGP). The proposed method can be described as follows: the first inves-
tigates initializing population, the second investigates reproduction operator, the third investigates crossover operator, 
and the fourth investigates mutation operation. The IGP is examined in two domains and the results suggest that the 
IGP is more effective and more efficient than the canonical one applied in different domains. 
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1. Introduction 
Genetic Programming (GP) is an automated method for 
creating a working computer program from a high-level 
problem statement of a problem [1,2]. It is a technique 
pioneered by John Koza [3] which enables computers to 
solve problems without being explicitly programmed and 
based on the idea of genetic algorithms presented by John 
Holland [4]. The goal is to use the concepts of Darwin 
evolution theory for computer program induction. The 
concepts are usually applied by genetic operators, such as 
selection, crossover, mutation and reproduction [5]. 

In Genetic Programming solutions to a problem are 
represented as syntactic trees (or symbolic expressions), 
which are evolved in a population of programs towards 
an effective solution to specific problems according to 
Darwinism. The flexibility and expressiveness of com-
puter program representation, combined with the power-
ful capability of evolutionary search, makes GP a prom-
ising method to solve a great variety of problems [6]. 

1.1 Goals 
To summarize, the learning/evolutionary process of the 
canonical GP algorithm has at least the following prob-
lems: the scale of the population is usually quit large and 
the convergence of the algorithm is very slow [7]; the 
evolved programs are usually too big and contain a large 
number of redundancy; programs within the initial popu-

lation are generated randomly; setting the algorithm pa-
rameter depends on the experience. To overcome these 
problems, the overall goal of this paper is to investigate a 
new approach to improve the efficiency of GP algorithm. 
Specifically, we will investigate whether the new ap-
proach outperforms the canonical GP in terms of data 
fitting performance and training time in the evolutionary 
process. 

1.2 Structure 
The rest of the paper is organized as follows. Section 2 
gives a brief overview of the canonical GP algorithm. 
Section 3 describes four developments to improve GP 
performance. Section 4 describes the experiment design 
and configurations. Section 5 is application. Section 6 
draws the conclusions and gives future directions. 

2. The Canonical GP Algorithm 
Genetic Programming starts with an initial population of 
randomly created programs composed of functions and 
terminals appropriate to the problem domain [1,2]. Then 
all programs in the population are evaluated in terms of 
how well it performs in the particular problem environ-
ment. This evaluation is called fitness measure. Accord-
ing to the theory of survival of the fittest, genetic opera-
tions are used to create a new offspring population of 
programs from the current population [8]. But the pa-
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rameters of genetic programming should be set in ad-
vance: those include the probability of reproduction, 
crossover, and mutation. Over many generations, the 
exact or the optimal solution will be found [9]. 

3. Algorithm Optimization 
3.1 Problems of Canonical GP Algorithm 
Problems of canonical GP algorithm are listed as follows. 
Firstly, the quality of the randomly created by initial 
programs can not be guaranteed against bad. Secondly, 
when the number of programs in the population is bigger, 
the convergence of the algorithm can be very slow, and 
one or two programs will be chosen randomly for repro-
duction, mutation or crossover during the evolutionary 
process. If the selected programs are too big, the evolu-
tion for the rest of the leaning process will be slow. More 
importantly, the good building blocks in these big pro-
grams will have a much greater chance to be destroyed 
than in the small ones, which could lead to poor solutions 
by the evolutionary process. 

3.2 Improvement 
Create a population of programs according to qualifica-
tion. The concrete method is described as follows: 

Step 1, set the scale of the population as M and then 
produce the initial population randomly with scale of 
MM bigger than M. 

Step 2, retain M programs with better fitness in the 
population to replace the initial population.  

Regarding this initial population creation process the 
selection of MM (big scale) has the direct impact on the 
convergence rate. If there is little difference between 
MM and M, the created initial population will be similar 
to the random product one. If there is a great deal of dif-
ference between the MM and M, the initial population 
creation process will need a long computing time. We set 
MM: M=4:3. 

In Genetic Programming reproduction that copies bet-
ter programs to the next generation, it gives expression to 
survival of the fitness [2]. Different reproduction method 
has different selection intensity. Generally speaking, the 
reproduction operator structure gives one kind of choice 
plan, which makes better programs in the current popula-
tion easily enter the next generation population. In the 
canonical roulette wheel selection method, an individual 
in a population will be selected according to the propor-
tion of its own fitness to the total sum of the fitness of all 
the programs in the population [10]. Namely programs 
with low fitness scores will have a low probability to be 
reproduced. Programs which perform particularly well 
will have a very high probability of being selected. But 
roulette wheel selection has its deficiency: on the one 
hand the roulette wheel selection has not selected all bet-
ter programs. Some programs with high fitness scores 

have not the possibility to be duplicated to the next gen-
eration population, and even some inferior programs are 
possibly to be selected into the next generation. On the 
other hand, programs with good building blocks and low 
fitness scores have the possibility not to be duplicated. It 
easily arises the phenomenon of “premature”. Premature 
means that evolution is converging in the local optima, 
but it is not converging in the overall optima. 

In order to avoid the defects of roulette wheel selection 
method while retaining its advantages, a new method for 
improving reproduction operator is proposed as follows. 
Add the optimum programs to the next generation of the 
first category gene pool of the current population. Pro-
grams in the current population besides the first category 
gene pool are to be selected by the roulette wheel selec-
tion to the next generation population. Programs in the 
first category gene pool are to be copied to the next gen-
eration.  

Crossover combines the genetic material of two par-
ents by swapping a part of one parent with a part of the 
other [2]. With a tree-based representation, replacing a 
node means replacing the whole branch. This adds 
greater effectiveness to the crossover operator. The ex-
pressions resulting from crossover are greatly different 
from their initial parents. Therefore, it has the necessity 
to use the pre-selection mechanism to choose programs 
for crossover only when the new programs fitness scores 
are higher than the father programs’ they can replace the 
older ones into the next generation, otherwise carries out 
the crossover operator again. Because of the structure 
similarity between the new programs and the replaced 
father programs’, the genetic material of two parents is 
replaced by the same structure of the programs. There-
fore, it can effectively keep the diversity of the popula-
tion in evolution. The algorithm is more hopeful at find-
ing the best individual in the whole population. 

Mutation affects an individual in the population. Per-
forming mutation operator is beneficial to form the di-
versity of the population and avoid premature [1]. The 
mutation probability is quite small, taking 0~0.05 gener-
ally. The mutation operator randomly selects a point in 
the tree and replaces the existing sub-tree at that point 
with a new randomly generated sub-tree. If the replaced 
node is a function, the node has the same number argu-
ments is selected from function set. If the replaced node 
is a terminal node, then terminal is selected to form the 
leaf node [2].Thus fitness of the selected tree is changed. 
A worse individual is very likely to become better and a 
better individual is also very likely to become worse after 
performing mutation operator. Two ways have been 
adopted to perform mutation operator. In initial stage it 
replaces a whole node in the selected individual, that is to 
say, the operator removes a random sub-tree of a selected 
individual, and then puts a new sub-tree in the same 
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place. In later stage programs tends to be good, then it 
replaces just the node's information. 

4. Experiments Design and Configurations 
4.1 Program Representation and Generation, 

and Genetic Operators 
In this Improved Genetic Programming (IGP), we use 
tree structures to represent genetic programs. The ramped 
half-and-half method [1] is used for generating the pro-
grams restricted by an initial maximum depth in the ini-
tial population. In the mutation operator and crossover 
operator programs are restricted by a maximum depth. 

The maximum size allowed for a program is set as one 
of the principal parameters of a GP run to limit the depth 
of the program tree in crossover operator and mutation 
operator, and that may control the redundancy expression 
for individual to a certain degree, also may reduce com-
puting time greatly. 

Pre-selection mechanism, changing mutation intensity 
in mutation operator, is used in learning process. The 
elitist and roulette wheel selection mechanism is used in 
crossover operator and reproduction operator [11].  

More details of program representation and genera-
tion methods and the genetic operators are described in 
Section 3. 

4.2 Function and Terminal Sets 
In the function set, the five standard arithmetic operators 
and seven math functions are used to form the non-ter-
minal nodes: 
FuncSet { , ,.*, ./, .^, sin, cos, tan, cot, exp, log,sqrt}.= + −  

The +, and—operators have their usual mean-
ings——addition and subtraction, while.*, ./, .^ repre-
sents the variable with correspondence matrix elements 
carrying on multiplication, left division and involution. 
The programs are developed in MATLAB7.0. 

 
Table 1. Basic parameters of Genetic Programming 

Parameters Values Parameters Values 

population-size 800 internal-node-rate 0.9 

initial population 
method 

half-and-half 
method initial-max-depth 5 

crossover-rate 0.70 max-depth after 
mutation 7 

mutation-rate 0.05 max-depth after 
mutation 7 

reproduction-rate 0.05 max-generations 100 

4.3 Parameters and Termination Criteria 
In canonical GP the probabilities of selection, crossover 
and mutation are set in advance depending on the ex-
perience. The evolution process carries on under the 
predetermined probability from start to the end. In the 
IGP all control parameters of genetic programming algo-
rithm are optimized and combined by use of the or-
thogonal experiment method. Orthogonal experiment is a 
method of studying the multi-factor multi-levels design 
experiment, and this method can curb the blindness dur-
ing accessing parameter in GP and let us obtain the sci-
entific experimental results by a few testing sequences. 
The basic parameter values used in this approach are 
shown in Table 1. 

The evolutionary process runs for a fixed number 
(max-generation) of generations unless it finds a solution 
or a program is close enough to the desired solution. 

5. Application 
5.1 Applied to Symbolic Regression 
The IGP has been tested by two considerable complexity 
examples, and under the same platform and precision 
compared to the original algorithm. 

Function 1 
4 3 2y x x x x= + + +               (1) 

Function 2 
sin3 sin 2 siny x x x= + +           (2) 

For reducing the factor influence as far as possible in 
the IGP evolution process, the experiments are repeated 
50 times for all cases and the average results are shown 
in Figure 1~Figure 4. These results are compared with 
the canonical GP and the IGP using same instances. 
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Figure 1. Compairson convergence between GP and the 
new approach (Function 1) 
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Figure 2. Comparison convergence between GP and the 
new approach (Function 2) 
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Figure 3. Simulation result of GP and the new approach 
(Function 1) 
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Figure 4. Simulation result of GP and the new approach 
(Function 2) 

Fitting functions expression: 
Function 1. GP fitting expression 

( sin ) log 4x xy x x x e= − +  

Function 1. IGP fitting expression 
4tan( cot( cot( )))x xy x x x x e x= + − − +  

Function 2. GP fitting expression 
sin tancos tan( )( cot( ) ) /

x xx x xy x x x e= − +  

Function 2. IGP fitting expression 
tan / log( ) / cos sin

xx xy x xe x x= +  

As seen from Figure 1 ~ Figure 4, the results demon-
strate the ability of the IGP in this paper in the iterative 
algebra, the restraining time and the smooth fitting, and 
all have the distinct improvement. The results demon-
strate the ability of the improved algorithm which is 
more efficient in evolving good programs for best solu-
tions in symbolic regression. 

5.2 Applied to Software Reliability Modeling 
In the software qualitative target system, software reli-
ability is the most important inherent characteristics. 
Software reliability models are the basis of quantitative 
analysis, and through the model the software reliability 
can be quantitatively assessed and predicted, and then 
estimate the delivery of the date, adjust the distribution 
of resources to determine whether the software has 
reached a predetermined reliability requirements and so 
on. 

Among several models proposed in the literature, GP 
evolutionary model has its own characteristics： 
u Retain all known information, directly involved 

in the quantitative calculations, and minimize the accu-
mulation of errors; 
u In addition to the original data, there are no fac-

titious assumptions to maximize the faithful to a given 
data. 

Software reliability modeling can be classified into 
two classes, based on whether the models center on fail-
ure times or failure counts. In this paper, we mainly fo-
cus on failure times. During the testing process when the 
failure data are collected, they can come in the format of 
failure times, i.e., (t1,t2,…,tn). ti is the time when ith 
failure is observed. We give two examples, one failure 
data series (in Table 2) comes from a software which is 
from armored force of engineering university, and the 
other (in Table 3) comes from NTDS(Naval Tactical 
Data System) of U.S. Navy Fleet Computer Program-
ming Center). 

In the following two tables x is sequence number and ti 
is the cumulative failure time series. 
u Calculation of reliability parameter 
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Table 2. Failure data series [12] 

x 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

xi 1 1 1 5 4 24 6 14 33 1 30 22 13 22 77 7 

ti 1 2 3 8 12 36 42 56 89 90 120 142 155 177 254 261 

 
Table 3. Failure data series (NTDS) [13] 

x ti x ti x ti 

1 9 11 71 21 116 

2 21 12 77 22 149 

3 32 13 78 23 156 

4 36 14 87 24 247 

5 43 15 91 25 249 

6 45 16 92 26 250 

7 50 17 95 27 337 

8 58 18 98 28 384 

9 63 19 104 29 396 

10 70 20 105 30 405 

 
Under the same platform and precision compared to 

the original algorithm, after a 100-generation evolution 
of fitness computing to be better models for (x in Table 
2-3 in the software failure time measured, and x> 1): 

( ) ( )( )( )( )( )cotcos tan ln sin x
GPT f x x x x x x x x= = ⋅ ⋅ − ⋅ − +  

sin( ) cos(( cos ) / cot( tan ))x
IGP IGPT f x x x x x x x x= = − + +  

 
Cumulative failure time Calculated by the GP model 

t17= 292.1355, t16 time the average time between fail-
ures MTBF = 31.1355. Cumulative failure time Calcu-
lated by the IGP model t17= 297.0135, t16 time the av-
erage time between failures MTBF = 31.0436. The cu-
mulative failure time of the observed results t17=300, t16 
time the average failure time MTBF = 39. 

( ) ( )( )( )ln
sin / cot tan

x
x

NTDST f x x x x e x x= = + − − ⋅  

( ) 21.2 logNTDS IGPT f x x x− = =  

Cumulative failure time Calculated by the GP 
model 27 315.22t = , t26 time the average time between 
failures MTBF = 65.22. The cumulative failure time of 
the observed results t27=337, t26 time the average failure 
time MTBF = 47. 

To summarize, the results from the experiment show 
that software reliability models are established by IGP 
having relatively good predictive power for one step. 
u Failure curve 
The initial failure rate is 0.59948, 0.6447 respectively 

calculated by the model (TGP), (TIGP). The current fail-
ure rate (t = 261) of the Software is 0.048614, 0.0038378 
respectively. The software failure curve is shown below. 
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Figure 5. Failure curve of (TGP) model 
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Figure 6. Failure curve of (TIGP) model 
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Figure 7. Failure curve of (TNTDS) model 
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Figure 8. Failure curve of (TNTDS-IGP) model 
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Figure 9. Simulation result of GP and IGP model 
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Figure 10. Simulation result of GP and IGP model 

 
The initial failure rate is 0.5、0.24869 respectively 

calculated by the model (TNTDS), (TNTDS-IGP). The 
current failure rate (t = 405) of the Software is 
0.0026775、0.0022268 respectively. The software failure 
curve is shown above. 
u Model simulation 
Simulation studies are presented to validate the models. 

The results show that the models set up by IGP are better 
than the models set up by the canonical algorithms. 

According to the theoretical and experimental analysis, 
our IGP algorithm not only provides the same excellent 
performance as the canonical GP, but also can save con-
siderable convergence time against canonical GP. 

6. Conclusions 
GP is a powerful paradigm that can be used to solve dif-
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ferent problems in several domains. However, the evolu-
tionary time is quite long. The goal of this paper is to 
investigate ways to improve the power of GP algorithm. 

We describe fitness-based method to generate initial 
population, elitist and roulette wheel selection mecha-
nism and pre-selection mechanism used in crossover op-
erator, and set a limit to depth of the program tree in 
crossover operator and changing mutation intensity in 
mutation operator. The approach was examined in two 
symbolic regression experiments and two software reli-
ability modeling all achieved much better results for sev-
eral problems in different domains than the canonical 
one. 

The improved genetic programming has accelerated 
the speed of the GP convergence and avoided the traps of 
local optima to a great extent. We will investigate 
whether the performance on the smooth fit can be im-
proved more by using some math tools. 
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