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Abstract

In this paper, we consider a fully discrete finite element approxi-
mation for time fractional optimal control problems. The state and
adjoint state are approximated by triangular linear finite elements
in space and L1 scheme in time. The control is obtained by the
variational discretization technique. The main purpose of this work
is to derive the convergence and superconvergence. A numerical
example is presented to validate our theoretical results.
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1. Introduction

There has been a great deal of research on finite element methods
(FEMs) for partial differential equations (PDEs) or optimal control
problems (OCPs) governed by PDEs, mostly focused on the case of
integer order such as elliptic, parabolic and hyperbolic equations. Sys-
tematic introductions can be found in [1-3], and so on.

In the past two decades, numerical methods of fractional partial
differential equations (FPDEs) have attracted much attention, since
different FPDEs arise in various physical phenomena or processes with
memory and hereditary. Many authors have investigated finite differ-
ence methods [4, 5], spectral methods [6-8], mixed FEMs [9,10] and
FEMSs [11-13] to solve FPDEs. However, there are relatively few re-
searches on numerical methods for OCPs governed by fractional PDEs.

There are some published papers on FEMs for fractional OCPs. A
finite element approximation algorithm of optimal control problems
governed by time fractional diffusion equation is presented in [14], but
the authors do not provide error analysis results. In [15], a fast gradi-
ent projection method is investigated for a constrained fractional opti-
mal control. Finite element approximation of space fractional optimal
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control problem is considered in [16]. In [17], a priori error estimates
of time-stepping discontinuous Galerkin finite element approximation
for time fractional optimal control problem is established. A fully
discrete finite element approximation of optimal control problem gov-
erned by a time-fractional PDE is investigated in [18], where the time
fractional derivative operates on the diffusion term. However, to our
best of knowledge, superconvergence of finite element approximation
for time fractional OCPs is rare. The main purpose of this work is
to derive the convergence and superconvergence of fully discrete FEM
for time fractional OCPs.

Let J = [0,7] and © C R? be a bounded convex polygonal domain
with smooth boundary 0€2. We consider the following time fractional

OCPs:

1T
min 5/0 (Ily(t,x) — yalt, 2)[ 720 ‘*‘)‘H“@’m)uiz(ﬂ)) dt,

u€Ugyq

005 y(t,x) — Ay(t,z) = f(t,x) +ul(t,z), ted zeq, (1)
y(t,z) =0, teJ xe o,

y(0,2) =0, x €.

Here 00 (0 < o < 1) denotes the a-order left Caputo derivative
with respect to the time variable ¢ and defined by

o _ 1 o1 oy(s,2)
0Oyt @) = r(1fa)/0 G—sp a5 0= @)

ya(t,x), f(t,x) € C(J; L*(Q)) are given functions and the admissible
set Uyq is defined by

Ua = { v(t,x) € L*(J; L*(Q)) : v(t,x) > 0, a.e. in Q@ x J}.  (3)

Throughout the paper, L°(J; W™9(2)) denotes all L® integrable

functions from J into W™9(Q) with norm ||v|zsrwma) =
1

(fOT ||U||fxvm=q(ﬂ)dt> “for s € [1,00) and the standard modification for

s = 0o, where W™1(Q)) is Sobolev spaces on 2. Similarly, one can de-
fine H'(J; W™4(Q)) and C*(J; W™4(Q)) (see e.g. [19]). In addition,
c or C is a generic positive constant.

The rest of this paper is organized as follows. In Section 2, we
introduce a fully discrete approximation scheme of (1). In Section 3,
we provide a convergence result of the control variable. In Section 4,
we derive the superconvergence result of the state and adjoint state
variables. Some numerical examples are provided in the last section
to verify our theoretical results.

2. Finite Element Approximation of Time
Fractional OPCs

For the state and co-state, we introduce triangular linear finite element
for the spatial discretization and L1 scheme for the time discretization.
The control is obtained by variational discretization (VD) technique
[20].

For brevity, we denote W™2(Q2) by H™(Q) and drop € or J when-
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ever possible, i.e.,

|- llm20 =1 lmz=1"lms -llo=1"1
[ - HLP(J wme@) = | lzemy, |- llzerwma) = I |oewm.ay,
K ={v(z)€L*(Q):v(z) >0, ae inQ }.

Furthermore, we set HJ(Q) = {ve H'(Q):vjpo =0}, W =
H}(Q), U = L*(Q). In addition,

a(v,w):/Vv~Vw, Vv, weW,
Q

(f17f2):/ﬂf1'f2, Y fi, fo € U.

By using the variational principle [2], we recast (1) as the following
weak formulation:

: 1 T 2 2
min 5 [ (ly = wall + Alul?)
007y, w) + aly, w) = (f,w) + (w,w),  teJweW,

y(0,z) =0, x € .

(4)

It follows from (see e.g., [21]) that (4) has a unique solution (y,u),
and that a pair (y,u) is a solution of (4), then there is a co-state p such
that the triplet (y,p,u) fulfills the following optimality conditions:

(08?:% )+a’(y7 ) (f?w) (u w) VUJGVV,tEJ, (5)
y(0,2) =0, weQ (6)

(ta%pa ) + a(q p) (y ydaQ)a v‘] € I/Vat € Ja (7)
p(x,T) =0, xr €Q, (8)
(Au+ p,v —u) >0, VveK,teJ (9)

Here ;0% denotes the a-order right Caputo derivative with respect
to t and defined by

o _ 1 o1 op(s,x)
tan(t’x)__F(lfa)/t G—se 05

Like in [22] , it is easy to prove that the inequality (9) is equivalent
to

p
u = max(0, _X) (10)

Let 7" be a family of quasi-uniform triangulations of €, such that

Q= |J eandh = max{h }, where h, is the diameter of the element
ecTh
e. Furthermore, we set

= { Uh EO(Q) 3'Uh‘e EPl, VeETh,”Uh‘aQ:O },

where P is the space of polynomials whose degree at most 1.
Let Py, be the elliptic projection, defined as follows. For any v € W,

a(v — Pyv,wp) =0, Yy, € Wh.
It has the following error estimates (see, [12]):

lv = Pyl + hl[V (v — Po)l| < Ch?|jv]]2. (11)
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In the next, we will consider L1 scheme for the time discretization.

Let 0 =tg < t; < -+ <ty =T be a given uniform partition of [0, T
with size 7 = % and t, =nr,n =0,1,--- ,N. We set ¢" = ¢(t,, )
and define the time-dependent maximum norm

_ n
ol rmey = max (0" lwma}-
Then a-order left Caputo derivative can be approximated as follows

o, mn 1 n_ k n . poa,n n
008y = m,;)bky +ry .=y oy (12)

n

where by = (k+ )17 — k17 bp = (n — 1)1 —pl=@ b2 = b,y —
bpn—k—1, bl =1 and 77 is the truncation error. It follows from [5], if

n Y, T

y € W2°°(L?), we have
7| = lodgy" — Fey| < 07>, (13
Similarly, the a-order right Caputo derivative can be approximated

as follows
1 N
_ .ok |~ - =
O = gy O e = B (1)
=n

where b = —1, 0% = by_p_1, b} = bp—p —bp_n_1, by = (k+ 1)1 —
k= If p € W2°°(L?), then

7| = [:0gp" — BPp"| < O (15)

Then a fully discrete finite element approximation scheme of opti-
mality conditions (5)-(9) writes as

(Ftayzawh>+a(yzawh> :(fn,wh)—F(UZ,’lﬂh),v’U}h S Wh7 ( )

n:1327"'aNay2:0> ( )

(ng27qh)+a(Qhapzil) :(y}?_yguqh)v V(Jh € Wha (18)

n=N-1,---,1,0p) =0, (19)

()\uﬁ—l—pz_l,v—uﬁ) >0, Voe K,n=1,2,---,N. (20)

As in reference [20], the inequality (20) is equivalent to

1
up :max((),fxp;:_l), n=12---,N. (21)

3. Convergence Analysis

In this section, we derive the convergence of the control for the ap-
proximation scheme (16)-(20). For ease of exposition, we set a, =
7T(2 — o). We introduce some useful intermediate variables. Let
(yi(u),py " (v)) € Wh x Wh,n =1,2,-- N fulfill the following e-

quations:
(Fyn (u)swn) + a(yh (), wn) =(f"wn) + (" wn) Y w, € W,
(22)
TL:1,2,"',N,y2(U):O7 (23)
(BPwi () an) +a (an, " (W) = (Y (W) =y, an) . Yan € W,
(24)

n=N-—-1,--- ,1707th(u) =0. (25)

The following conclusions will be used in the following convergence
analysis.
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Lemma 1. [10] Let {f”}nNzo be a sequence of functions on Q. Then
n n—1
n 1 n
(5 Zb’;&’f) =3 (Ié I+ > oklekI® - Zb lg* ~ £”||2>.
k=0 k=0
Lemma 2. [23] Let e¥ > 0, satisfy " < 22;11 (bp—1 —bg)e™ F +~
with v >0, k=1,2,--- L. Then

e" < Cr™ %y, n=12,---,L.

Lemma 3. Let (y, p,u) and (yn, pr, un) be the solutions of (5)-(9) and
(16)-(20), respectively. Suppose that y,p € W2°°(L?) n W1 (H?).
Then

ly"™ =y ()l + lp" — pr(w)]| < C(h* +727%), (26)
ly™ —yr )l + " — pr(u)]s < C(h+727%). (27)

Proof. Set y™—yp(u) = y" —Pry"+Pry™ —yp (u) := n"+¢". Choosing
v = wp, in (5) and subtracting (22) from (5), we obtain error equation

(FY (0" =i (w),wa) +a(y" =y (u),wn) + (ry -, wn) = 0. (28)
By the definition of P, and (28), we have
(Ftacnv wh) +a (<n7 wh) = (Ftannﬂ wh) - (Tg,w wh)‘ (29)

Let wp, = F¢™ and use Lemma 1, we get

(C” F¢h)
n||2 n k)2 n ny\ |12 (30)
Vel +Zb IVEE Zb IV (¢" =) 117 ) -
k=0
From y € W1°°(H?) and (11), there holds
a, n n—k
I ||‘ T Zbkam
<) bfjoF
- 1F Z kO [ (31)

<—Zbk/

SCh ||ytHLoo(H2).

(e ]|t

n—k
tn—

k—1

Then, by applying Hélder’s inequality || f-g||z1 ) < || fllz2)ll9llz2(0)
Young’s inequality and (31), we arrive at

@, M N o, N (e i) 1 N C
(Ftn 7FtC)§HFt77 ||||Ft< HS§IIFtC ||2+5h4- (32)
Likewise
Fa n < Fa n < Fa n 2 C 472(1 33
(ry - FEC™) < lry N FEC] || S (33)

Combining (29)-(33) and notice that b} < 0(0 < k < n), we obtain

n—1
IVC™1? < =D BRIIVEF|? + O (h? + 727%)2. (34)
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It follows from (34), Lemma 2 and Poincaré’s inequality that
Ic™lls < CIIVE™ | < C(h? +7279). (35)
In the same way, we can derive
1Pup™ = ph(u)ll1 < CIIV(Prp” — ph(w))l| < C(A* +727%). (36)

Hence, (26) and (27) follow from embedding theorem, triangle in-
equality, (11) and (35)-(36). O

Theorem 4. Let (y,p,u) and (yp, pr, up) be the solutions of (5)-(9)
and (16)-(20), respectively. Assume all the conditions in Lemma 3 are
true. Then

[u" —upl| < C (R*+7). (37)
Proof. Set v =u} and v = u™ in (9) and (20) respectively, we have
Alu™ = |?
=A(u" —up,u” —uy)
< (Ph ' = (W =) + (T (w) = p" T U — ) (38)
4 (pn—l _ pn7un _ U'Z)
=L+ 1+ Is.
For the first term I3, it follows from (16)-(19) and (22)-(25) that

L= (ph =t =P (w), u" — upy)
= (F(wp =y (), pp " (w) —pp )
— (Bf(p (w) — p), v — yn (w)) (39)
— (wr =y (W), yn — yi(w)

<=y —yi(w)]*.

According to Holder’s inequality and Young’s inequality, we get

L= (py~ ' (uw) —p"hu" —up)

1, . _ 1 (40)
<Slph ™ w) =" 1P + gl = k]l
For the last term, we get
Iy=(p" ' —p™u" —up)
<SP+ gl — P
=2 2 h (41)
1 2 2 1 n n||2
S357 [Pell2(r2) + 5”“ —upl]”.
From (26) and (38)-(41), we obtain (37). O

4. Superconvergence Analysis

In this section, we derive the superconvergence of the state and adjoint
state variables.

Theorem 5. Let (y,p,u) and (yp, pr, un) be the solutions of (5)-(9)
and (16)-(20), respectively. Assume all the conditions in Theorem 4
are true. Then

1Py™ = yilly + | Pap™ — Pl < C (B* + 7). (42)
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Proof. Let Ppy™ — y = 6™. From (5), (16) and the definition of P,
forn=1,2,---,N and Ywy, € W", we get

(FY0™, wp) + a (0™, wp,)

= 7(Ft n 7wh) + (u 7uhvwh) - (Ty,rvwh) .

According Lemma 1, we have
1 n—1 n—1
(207", 0") = 5~ <||9”||2 + ) bRlF) = b6t - 9”II2> - (44)
T k=0 k=0
Note that

a(0",0") > c["|3. (45)

Set wp, = 0™ in (43), then from (44)-(45), Holder’s inequality and
Young’s inequality, we obtain

1671 + 2a7c] 0”17

Y,

n—1
< = DTBEIOM - 200 (e - (=) + 7, 07)
k=0

n—1
< =D ORIOMP + 20 (|E ™+ lum = uill + (v 1) 167

k=0
n—1
< = BRI+ ar (10 1P + Ml = w1 + llrg 17+ 167]1%) -
k=0
(46)

From (13), (31), Lemma 2, Theorem 4 and embedding theorem, we
derive

1Pay™ =il < C (h* + 7). (47)
Similarly, we can get
| Pnp™ — pp]ls < C (h2 +7). (48)

Then (42) follows from (47)-(48). O

5. Numerical Experiments

The optimal control problem was dealt numerically with codes de-
veloped based on AFEPack. The package is freely available and the
details can be found at [24]. We solve the following time fractional
optimal control problem:

T
i3 w3 )
007 y(t,x) — Ay(t,z) = f(t,x) +u(t,z), inQx(0,T],

y(t,z) =0, ondQ x (0,77,
y(x,0) = yo(z), inf

The discretization was described in Section 2. For ease of exposition,
we denote Hu — hhHloo(LQ), thy — yh”loo(Hl) and ||Php — ph”loo(Hl)
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by |lleulll, |lleylllx and ||lepl]|1, respectively. The spatial and time
convergence rates are computed by the following formula:

In(e;4+1) — In(e;)

In(7;41) — In(r)’

In(e;+1) — In(e;) and R —

B = Talhen) — (o)

where e; (e;41) denotes the error when the spatial partition size is
hi (hiy1) or the time step size is 7;(7i41)-

Example 1 Let Q@ = [0,1] x [0,1], T =1, A = 1. The data are as
follows:

y(t,x) = sin(27xy)sin(2wxs)t,
p(t, x) = sin(2rz )sin(27zs) (1 — ¢),
u(t, ) = max(0, —p(t, x)),
ft,2) = 007y(t, ) — Ay(t, x) — u(t, x),
ya(t, ) = y(t,z) — Opp(t, x) — Ap(t, ).
For different «, the errors |||e.||], |||ey||[1 and |||ep|||1 are shown in

Tables 1-3, where h;11 = h;/2 and 7,41 = 7 /4.

Table 1. The convergence rate for Example 1 with a = 0.05.

ho7 lllewll Ry R: eyl Ry R, lllepllh Ry R.
L L 4674202 - - 8.2685¢-3 - - 74163¢-3 - -

L L 13123¢—2  1.83 092  2302le—3  1.84 092  2.0014e—3 190  0.94
A 3.3262e-3 198 0.99  5.9132e—4 196 098  5.1089%e—4  1.97  0.99
LA 84136e—4 198 099  14876e—4 199  1.00  1.2846e—4 199  1.00

Table 2. The convergence rate for Example 1 with a = 0.5.

b7 lllewll] Bn  Rr lleyllls Rn R, lepllls By Rr
& 5 2.1405e—2 - - 6.0628¢—3 - - 6.3384e—3 - -

% 45 5.3908e—3  1.99 099  15228e—3  1.99 100  1.5903¢—3  1.99  1.00
% o5 1.3485e—3 200  1.00  3.8158¢—4  2.00  1.00  3.9828¢—4  2.00  1.00
% @ 3338%e—4 201  1.01  9.5292e—5 200 100  9.7726e—5  2.03  1.01

Table 3. The convergence rate for Example 1 with a = 0.95.

b7 lllew]l] Bn  Rr llleyllh Bn R, llepllh B Ry
5 15 4.5959e—2 - - 7.2163e—3 - - 9.5103e—3 - -

% 35 1.230le—2  1.90 095  1.7037e—3  2.08  1.04  2.2462e—3  2.08  1.04
% Te5 3.1189%e—3 197 099  4.224Te—4 201  1.01  5.5526e—4 201  1.01
&  wo  7-8113e—4 199  1.00  1.0548¢—4  2.00  1.00  1.3847e—4  2.00  1.00
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From numerical results in Tables 1-3, it is clear that |||u — upl|| =
O(h? + 1), [I1Phy = ynllly = O(h? + 1) and ||| Pop — pal[|1 = O(h* + 1),
which are consistent with our theoretical analysis.

6. Conclusion

In this paper, we establish the convergence and superconvergence re-
sults of a fully discrete finite element approximation for time fraction-
al optimal control problems. Numerical experiment results verify the
correctness of our theoretical results.
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