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Abstract

Mechanotransduction refers to a physiological process by which me-
chanical forces, such as pressures exerted by ionized fluids on cel-
I membranes and tissues, can trigger excitations of electrical na-
tures that play important role in the control of various sensory (i.e.
stimuli-responsive) organs and homeostasis of living organisms. In
this work, the influence of mechanotransduction processes on the
generic mechanism of the action potential is investigated analyt-
ically, by considering a mathematical model that consists of two
coupled nonlinear partial differential equations. One of these two
equations is the Korteweg-de Vries equation governing the spatio-
temporal evolution of the density difference between intracellular
and extracellular fluids across the nerve membrane, and the other
is Hodgkin-Huxley cable equation for the transmembrane voltage
with a self-regulatory (i.e. diode-type) membrane capacitance. The
self-regulatory feature here refers to the assumption that membrane
capacitance varies with the difference in density of ion-carrying in-
tracellular and extracellular fluids, thus ensuring an electromechan-
ical feedback mechanism and consequently an effective coupling of
the two nonlinear equations. The exact one-soliton solution to the
density-difference equation is obtained in terms of a pulse excitation.
With the help of this exact pulse solution the Hodgkin-Huxley cable
equation is shown to transform, in steady state, to a linear eigen-
value problem some bound states of which can be obtained exactly.
Few of such bound-state solutions are found analytically.
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1. Introduction

The mechanism by which the action potential is generated and trans-
mitted along the neuronal network, is a complex phenomenon that has
been actively investigated in Mathematical Physics [1-8]. A pioneer
model of the nerve-impulse generation was proposed by Hodgkin and
Huxley (hereafter referred to as HH model) [1]; the model rests on
the picture of the nerve impulse as an electric voltage propagating in
form of pulse wave along the nerve fiber. Thus according to the HH
model the nerve impulse is a self-regenerative wave associated with the
electrochemical activity of the nerve cells, due to flow of ion currents
(Na and K) through specific ion channels [1]. This wave is assumed
to propagate with a constant shape following a mechanism which can
be summarized as follow: During the generation and transmission of
the nerve impulse, the leading edge of the depolarization region of the
nerve triggers adjacent membranes to depolarize. This causes a self-
propagation of the excitation related to the transmembrane potential
down the nerve fiber [1,9,10].

Hodgkin and Huxley suggested that a convenient way to describe
the propagation of this transmembrane potential, is to view the nerve
fiber as an electrical transmission line. Hence in its most conventional
formulation, the HH electrical model assumes currents in intracellular
and extracellular fluids to be ohmic such that the net transmembrane
current is the sum of ionic and capacitive currents. In this context,
the conservation law for current flow across the membrane leads to
the following reaction-diffusion equation [1]:

ov v

Cnm T D 922 F(V), (1)
where V is the transmembrane voltage (also referred to as action po-
tential), C), is the membrane capacitance, D is the diffusion coefficient
and F'(V) is the contribution from ion currents to the transmembrane
voltage generation. However, besides the well-established electrical ac-
tivity of the nerve membrane, there are experimental evidences [11-16]
of existing mechanical forces acting on the membrane [8] also con-
tributing to the nerve impulse generation [17]. To this last point, it
is well known that at equilibrium the nerve membrane is in a liquid
phase; however under mechanical forces the membrane undergoes a
structural change to a gel phase resulting in an increase of its com-
pressibility, reminiscent of structural properties of anharmonic solid-
s [17,18]. To describe the formation of density pulses associated with
mechanical constraints acting on the nerve membrane, there has been
proposals to include nonlinearity in the membrane compressibility to-
gether with dispersive effects related to the ladder structure of the
nerve fiber [17]. In this respect a nonlinear mathematical model in-
cluding dispersions was proposed by Heimburg and Jackson [4], and
later on extended by several authors (see e.g. ref. [7]). The underlying
equation, considering a one-dimensional (1D) density pulse propagat-
ing along a biomembrane of a cylindrical shape, is given by [4,7]:

0%u 0 ou 0*u
w:cg% {(1 +pu)8:c} —h@> (2)

where u is the density change across the membrane due to mechanical
contraints on the membrane, ¢ is the sound speed in the homogeneous
regime (i.e. in the absence of pressure waves), h and p are constants
[17] (hereafter we shall set p = —1 for simplicity [7]).
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Given the evident simultaneous contributions of both electrical and
mechanical activities of the nerve in the generation of the action poten-
tial, a better description of the generic mechanism of the action poten-
tial requires full account of these two activities. In this work we pro-
pose a mathematical model which combines the two nonlinear partial
differential equations, namely the one describing the spatio-temporal
evolution of the density pulse across the membrane, and the HH cable
equation with a feedback from ion flows across the nerve membrane
representede by a density-dependent membrane capacitance. The full
model being analytically untractable, in the present context we focus
mainly on the generic mechanism of the action potential. In this re-
gard we consider the steady-state regime of the model, where exact
soliton solutions can be found. In a future work numerical simulations
will be carried out on the spatio-temporal model, to check the stability
of these exact soliton solutions as they propagate along the nerve.

2. The Model

The nerve fiber can be pictured as a cylinder with walls made from
the cell membrane surrounded by intracellular and extracellular fluids
[6]. The intracellular fluid stands for a conductive liquid with a high
concentration of potassium ions but low concentration of sodium and
chlorine ions, while the cell membrane acts like a barrier preventing
ions from intracellular liquid from mixing with extracellular liquid.
Due to the difference in ion concentrations between intracellular and
extracellular fluids, a resting potential is expected to set up across
the membrane. If the nerve is depolarized, or more precisely in the
presence of a stimulus, the membrane becomes selectively permeable
to ion currents flowing rapidly into the cell, reversing the polarity of
the action potential.

In the picture of electric cable, the selective regulation of trans-
menbrane ions by the cytoplasm suggests a “management” (or self-
regulation) of the charges stored in the nerve membrane capacitance.
Consequently we can expect changes in the electrostatic potential of
the membrane during a propagating density pulse, indicating a possi-
bility for an electromechanical coupling between the membrane den-
sity and the electrostatic potential. Such electromechanical coupling
has been widely reported in neurophysiological experients [19-22], and
can be linked with changes in the membrane capacitance as a result
of variation of the fuid density across the membrane.

To include the electromechanical coupling in the mathematical mod-
el for the nerve impulse generation, we reformulate the HH equation
for the action potential which leads to the following new mathematical
model for the nerve-impulse generation and propagation (neglecting
the contribution of F(V'), for simplicity):

0Qm PV
o - Do ®)
0%u 0 ou 0*u

Characteristic parameters in the above set of coupled e-
quations are defined as follow:

® Q. (u) is the total charge stored in the membrane capac-
itance at time t,
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e D is the diffusion coefficient,
® (( is the sound speed along the membrane,

e h is the fourth-order dispersion coefficient [4].

By definition, the term in the left of Equation (3) represents the cur-
rent I. across the membrane capacitance C,,(u) = 9Q,,(u)/0V. This
means that I, is related to the instantaneous charge in the membrane
i.e. Qm = Cp(u)V (assuming that the membrane capacitance is not
explicitely dependent on the transmembrane voltage), through the re-
lation I. = 8Q,,/0t. The term in the right-hand side of Equation (3)
is the diffusion current related to charge flow across the membrane
(with D = a/2R, where a is the radius of the cylindric nerve and R is
the membrane resistance).

We consider that at some given time ¢ the membrane capacitance
C,, is determined by the difference u in densities of the fluids crossing
the membrane, and propose a law of dependence of C,, on u of the
following form:

0Cr,(z,1)
ot
where £ is real and constant. With Equation (5) we can transform

Equation (3) into a reaction-diffusion problem with a linear source
term namely:

= wu(z,1), ()

2
Cm(x,t)aa—‘t/ = DZT‘Z/ — ku(z,t)V. (6)
Since formula (5) suggests that the membrane capacitance C, (,t)
is fixed by the net difference u(z,t) in densities of the ionic fluids
crossing the membrane at time ¢ and position x, in the next section
we solve analytically Equation (4) in order to obtain the anaytical
expression of u(z,t).

3. Pulse Solution to the Density-Difference
Equation

Equation (4) describes the motion of waves in one space dimension.
Let us assume that the solutions we seek are localized coherent struc-
tures obeying:
li =
iz, t) =0, (7)
and propagating in the direction of positive . Thus, using the coor-
dinate transformations:

h
u(e,t) = 9(ET), E=c(——1), T="1 (®)
0 Cc
we can rewrite Equation (4) as:
op _ o 0% 2
T C“ﬁafg - 9E3 + O(h%), 9)

where « and [ are constants depending on ¢y, h and c¢. Note that
parameters « and  can be set to any value by coordinate transfor-
mation, however the values we shall use in this work are & = 6 and
B = —1 for which Equation (9) reduces to the canonical Korteweg-de
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Vries equation [23]. As we are interested in exact analytical solutions
to the density-wave equation, let us first explicitely set the associate
mathematical problem. Starting with an initial density pulse wug(x),
we are interested in the initial-value problem:

Ou ou  O3u
u(z,0) = wug(x).

We look for the existence of special solutions called solitons, which
are travelling waves with permanent shape obtained by means of the
Inverse-Scattering Transform [23].

As a useful recall, within the framework of the Inverse-Scattering
Transform any exactly integrable nonlinear evolution equation for a
function u = u(z,t) can be mapped onto a pair of spectral problems
so-called Lax pair [24], namely:

L, +[L,A] =0, (11)

where L and A are two linear operators the coefficients of which depend
on the function u and its derivatives. Suppose:

82
and
0? 0 0

then the associated evolution equation;
Ly +[L,A] =0, (14)

turns to the following Korteweg-de Vries equation:
g o o
ot Ox = Ox®

The first step in the Inverse-Scattering Transform is to solve the
forward scattering problem namely:

—0. (15)

LU =\, (16)

where the spectral parameter A € R because the operator L is self-
adjoint. If the potential u in (12) decays sufficiently quickly as |z| —
00, then the linear problem (16) can be written:
U~ AT (17)
There are two possible kinds of eigenfunctions for problem (17):

1. bound states: If A < 0, then we may define k = /—\ to have:

U(z) = de 4 ce ™" as x — oo. (18)

The values of k for which d = 0, so that ¥(x) is bounded as
xr — +00, are the discrete eigenvalues of L, denoted k,. The
corresponding functions ¥,, = c,e *»* are bound states. It is
convenient to normalize ¥,, so that:

/ V2 (2)dz = 1, (19)

with this normalization condition the constant ¢,, is the normal-
ization constant.
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2. unbound states: If A > 0, then all the solutions ¥ of Equation
(17) are sinusoidal as  — £o0 and are consequently unbounded.
Therefore there exists eigenfunctions, for all A > 0, of the form:

e~ L bk, t)et**  as x — oo,
(@, k) ~ { a(k,t)e ke as x — —oo.

The constant a is called the transmission coefficient and b the
reflection coefficient.

The eigenvalues k, k, together with the constants ¢,, b and a con-
stitute the scattering data. The time dependence of these scattering
data ensues from the second auxiliary equation i.e.:

v, = AU, (20)
in this case we have the following relations:

alk,t) = a(k,0),  blk,t) = b(k,0)e3*"t,
en(t) en(0)e¥¥nt Ky () = ki (0).

The inverse scattering problem is the problem of reconstructing the
wave potential v on the basis of the scattering data. Given the nor-
malization constant c, the eigenvalues —k2 for the bound states, and
the reflection and transmission coefficients for the continuous spectra,
the potential u(z,t) is recovered from:

u(zx,t) = fZ%K(r,z;t), (21)

where the implicitly time-dependent function K (x,y) satisfies the
Gelfand-Levitan-Marchenko equation [25,26]:

K(m,y)—&-F(:E—%-y)-|-/OoK'(amz)l*”(z—l—y)dz:07 (22)
in which:
_ 1 ikx a —knx
Fla)= o /R bk, e dk + 3 en(t)e o, (23)

We now apply this procedure to the initial value problem (10), where
the initial profile is taken to be:

u(z,0) = —2sech?x. (24)
We note the following:

1. Since u(x,0) € L?(R), the operator L is self-adjoint and thus
has a real spectrum.

2. u(z,0) € L'(R) and [ u(x)dz < 0, hence the discrete spectrum
in the scattering problem (17) with the potential (24) is non
empty.

With the initial potential (24), the scattering problem (17) at ¢ =0
becomes:

U, + (X + 2sech?z)¥ = 0, (25)
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which transforms into the Associated Legendre equation:

d o dv A

where 7 = tanhxz. Recall that the Associated Legendre equation is of
the general form [27]:

d dy k2
— (=72 1)+ -——|y=0 26
G-+ ey g |u=0. o
where n and k are integers. The corresponding bounded solutions are
given by:
yj(T)O(PJk(T% ]:1725 , 1, (27)
where:
. :
k _ k 2k d 1L, J
Pi@) = (0t g (G- 1) e

are Associated Legendre polynomials. Hence the bounded solution of
Equation (25), corresponding to A = —k?, exists for k = k; = 1 and
the discrete eigenfunction is therefore:

U, (z) P} (tanhz) = —sechz, (29)
where:
P = (-1 =) ()
m o drn” "
1 am ., m
Pn(r) = WW<T ™. (30)

Since f]R sech?z dx = 2, the normalized eigenfunction becomes:

1
Uy (z) = —=sechu.

V2
The asymptotic behavior of this solution yields:
Uy () < V267 as & — 400,

so that:

c1(0) = V2.

Consequently c¢;(t) = v/2e*. This information is sufficient for the
reconstruction of u(x,t), given that we have chosen an initial profile
for which b(k) = 0 for all k. It follows that Equation (23) becomes:

F(x;t) = 2e877,

and the integral Equation (22) is therefore:
K(x,z;t) + 28t~ (2+2) | 2/ K(z,y; t)est*(lﬁz)dy =0.

This implies that K(z, z;t) = L(x,t)e”*, where L is such that:

L+ 2e%7 + 2L€8t/ e Vdy = 0. (31)

x
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0.2 T T T

u(x)

1.2 1 I !

X

Figure 1. Spatial profile of the pulse solution to the density-difference
equation.

Equation (31) can be solved directly to yield:

7268t7z
Thus,
o 2e8t—2x
u(‘rvt) = 2% (1+68t—2z)
= —2sech?(z — 4t), (33)

which is a pulse soliton. The spatial profile of the solution to
the density-difference equation is sketched in Figure 1, in di-
mensionless units.

4. The Action Potential

Having obtained the analytical expression for the density pulse u(x,t),
let us now look for possible solutions to Equation (6). In this purpose
we assume that the axon is a cylinder of length L, and that the nerve
impulse lasts for T" units of time. With these considerations, the model
turns to the following boundary-values system:

ov 0?V
C’m(:c,t)a = DW — rku(z,t)V, 2 €[0,L], t>0, (34)
VO.0) = h(t), V(LO=0, V(50 =), (35)
ou ou  &u
a = GU% — @7 S € [O,T] (36)
u(z,0) = wup(z). (37)

Equation (34) needs to be solved numerically, to gain a consisten-
t understanding of the spatio-temporal evolution of the action po-
tential along the axon. Nonetheless there exists a regime in which
exact analytical solutions can be obtained. Focusing on this specif-
ic regime, namely the steady-state regime where the density pulse
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u(z,t) = up(z), the action potential can be reduced to its stationary
form v(z) and as a sequel Equation (34) turns to:

82

[ Ox?

This is a linear-operator equation with zero eigenvalue in which

w= %". Equation (38) is actually similar to Equation (25), and for this

reason we can apply the same variable change to find an Associated

Legendre equation but now with n(n + 1) = g and k¥ = 0. For this

case, bounded solutions assuming arbitrary values of the integer n are
the Legendre polynomials:

+9(x)v(z) =0, V(x) = —psech?x. (38)

_1ar
T onpldrm

U (T) (T2 —=1)", n=1,2,3--. (39)

Exact analytical expressions for the first three bound states are
given below:

vi(z) = tanhx, D =2k, (40)
1

ve(x) = 5(3tanh2x —1), D=6k, (41)
1

vs(xz) = 5(5tcmh23: —3)tanhz, D =12k. (42)

The three bound states are sketched in (Figure 2).

Note that these bound states are not the only possible solutions
to the steady-state equation for the action potential, other possible
solutions can be obtained for different values of the parameter p = %
linking the diffusion coefficient D with the coefficient k coupling the
two equations.

It is worthwhile to stress here that the steady-state solutions ob-
tained analytically, are exact initial profiles of the action potential
and hence are expected to play a significant role in numerical simula-
tions of Equation (34), in order to find exact spatio-temporal profiles
for the propagating action potential V' (z,t). Owing to the extremely
rich variety of possible steady-state profiles for the action potential,
represented by distinct Legendre polynomials v, (7) for different val-
ues of p = % =n(n+ 1), to gain a consistent insight from numerical
simulations it will be useful to consider a reasonable number of bound
states. Therefore numerical simulations of the model deserve a specific

framework of study and will be considered in a future work.

va2
V3

Figure 2. Sketches of the first three bounded modes for the action potential, in the steady state.
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5. Conclusion

We have introduced a mathematical model to describe the influence
of mechanosensory processes, on the generation and propagation of
the nerve impulse. The model rests on a picture of the axon having
the form of a long cylinder, with the membrane regarded as a capac-
itive diode for which the capacitance is constantly adjusted by the
difference in densities of intracellular and extracellular ionic fluids, on
either side of the membrane. Mathematically the model consists of
a Korteweg-de Vries equation for the ionic density exchange across
the nerve membrane, coupled to the HH cable equation with a vari-
able capacitance. While the full model turns out to be analytically
untractable, we obtained that its stationary regime represents a very
rich source of various possible exact soliton solutions. Namely we ob-
tained a single-pulse soliton for the density difference, and several dis-
tinct possible solitary-wave profiles for the action potential including
a pulse, a kink, a pulse-in-kink structure and so on. Given their large
numbers, the issue of their propagation requires solving numerical-
ly the corresponding spatio-temporal equation. This numerical study
must take into consideration several of these profiles, which requires
a specific framework of study. This last aspect will be considered in a
separate work.
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