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ABSTRACT 

Using the portfolio model, we introduce a general stochastic process that is not necessarily a diffusion/jump process and 
the random variable is not necessarily normally distributed. 
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1. Introduction 

The literature on stochastic processes (especially in 
finance) relied mainly on Levy processes such as Wiener 
process, Poisson process, and the Variance-Gamma pro- 
cess. Examples include Madan and Seneta [1], Focardo 
and Fabozzi [2], among many others. Much of the 
literature assumes a Wiener process (Brownian motion), 
which implies normally distributed and independent 
stationary increments. The Brownian motion is exten- 
sively used in stochastic finance especially in investment 
models (see, for example, Alghalith [3]). 

However, these assumptions of diffusion/jump process 
and Gaussian/Poisson distribution (or any specific pro- 
bability distribution) can be relaxed. That is, we can in- 
troduce a general stochastic process that is more general 
than the Levy process without losing significant analy- 
tical convenience. Consequently, this paper offers three 
major contributions. First, it relaxes the assumption of a 
diffusion/jump process. Secondly, it relaxes the Gau- 
ssian/Poisson distribution or any specific probability dis- 
tribution. Thirdly, it provides solutions without reliance 
on the existing duality or variational methods. Moreover, 
we introduce a general model that can be applied to any 
specific topic. 

2. The Model 

In general, a continuous stochastic process  s t s T
X

 
  

can be written as a function of a control variable, state 

variables and a random variable as the following (the 
first two integrals can be zero) 

 π = π d , d , d , ,
T T T

T s s s s
t t t

X f s Y s s t
 

 
 
  θ T       (1) 

where πs  is the control variable, sθ  is a vector of state 
variables or coefficients, sY  is a stochastic factor, and 

s  is a random variable (not necessarily a Brownian 
motion) and thus the assumption of normal distribution 
(or any specific probability distribution) is not required. 
Moreover, in contrast to Levy processes, f  is not 
necessarily a linear (diffusion) function. In addition, we 
assume sX  is admissible and progressively measurable,  
where  s t s T 

  is the filtration. 

The objective is to maximize the expected utility of 
π
TX  with respect to  πt

 π
π

max ,T tE u X 
   

where  is a differentiable, bounded and concave 
utility function. Using the method of Alghalith [4], the 
solution yields 

u

 π π = 0,T tE u X f 
  

             (2) 

where the subscript denote the derivatives. 
Consider this exact Taylor polynomial (and suppress- 

ing the notations) (Equation (3)) 
Taking expectations of both sides yields (Equation (4)) 
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Thus, 
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3. Example—The Investment/Consumption  

Model 

It is well-known that the stock price sS  is a function of 
the expected return  , the volatility ,  and a random 

riable va   

   = d , d , ,
T T

T s sS S s Y s s 
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where 

T

s
t t t

Y 

sY  is stochastic economic factor. However,    

is not necessarily normally distributed and  .S  is not 
necessarily a linear function. Consequen wealth 
function is given by 



where 

tly, the 

 π, = π d , d , , d , ,
T T T

c
T s s s s T
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t t

is the portfolio process, scπs   is the consu
tion pr  

mp- 
ocess, x  is the initial wealth, sr  is the 

rate of n. us, 
risk-free 

 retur  Th
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The objective is to maximize the expected utility of 

wealth and consumption with respect to the portfolio and 
onsumption 

The solutions are 

c
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t T c tE u X X u c            (10) 

Using an exact Taylor expansion (and supp ssing the notations), we obtain re
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Therefore we can obtain expressions for the optimal portfolio and consumption 
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We can obtain explicit solutions under specific forms 

of the utility function. For example, under mean-variance 
(quadratic) preference, we can obtain explicit solutions 
since is constant and is linear. It is worth noting 
that even with Levy process general explicit solutions 

ere not provided by the literature; thus, the assumption 
of
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 a Levy process does not offer a significant analytical 

convenience. 
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