
Journal of Software Engineering and Applications, 2012, 5, 129-137
doi:10.4236/jsea.2012.53020 Published Online March 2012 (http://www.SciRP.org/journal/jsea)

129

Visualization of Pareto Solutions by Spherical
Self-Organizing Map and It’s acceleration on a GPU

Masato Yoshimi1, Takuya Kuhara1, Kaname Nishimoto1, Mitsunori Miki1, Tomoyuki Hiroyasu2

1Factuly of Engineering, Doshisha University, Kyoto, Japan; 2Faculty of department of life and medical science, Doshisha University,
Kyoto, Japan.
Email: myoshimi@mikilab.doshisha.ac.jp

Received February 1st, 2012; revised March 1st, 2012; accepted March 12th, 2012

ABSTRACT

In this study, we visualize Pareto-optimum solutions derived from multiple-objective optimization using spherical
self-organizing maps (SOMs) that lay out SOM data in three dimensions. There have been a wide range of studies in-
volving plane SOMs where Pareto-optimal solutions are mapped to a plane. However, plane SOMs have an issue that
similar data differing in a few specific variables are often placed at far ends of the map, compromising intuitiveness of
the visualization. We show in this study that spherical SOMs allow us to find similarities in data otherwise undetectable
with plane SOMs. We also implement and evaluate the performance using parallel sphere processing with several GPU
environments.

Keywords: Self-Organizing Map; SOM; Spherical; GPU; Pareto-Optimal Solutions; GPU Acceleration

1. Introduction

With the rapid rise of hardware and software performance
in recent years, computer-aided numerical simulations
are being used more and more for designing products.
These include construction drawings with CAD (Com-
puter-Aided Design), optimizations of design parameters,
and validations of candidate solutions, among others.

It is often effective to formalize problems as optimiza-
tion problems in order to employ numerical simulations
as design aids. An optimization problem is one in which
design variables are determined so that one or more ob-
jective functions yield the highest or lowest possible va-
lues under certain conditions. Real-world optimization
problems tend to have multiple objective functions that
pose trade-offs among each other: this type of problem is
called a multiple-objective optimization problem. Be-
cause of the trade-offs, a multiple-objective optimization
problem has multiple optimal points, each of which is the
most fit for a certain objective function. The set of these
solutions is called the Pareto-optimal solution set. Many
approaches have been proposed on how to reach the
Pareto-optimal solution set [1].

In product design, an important task is to choose the
best solutions from a Pareto-optimal solution set. It is re-
quired, then, to visualize the solution set and show the
designer what characteristics each of the solutions have
in relation to other solutions and in relation to the con-
taining set. However, whereas each solution in a multiple-

objective optimization problem is a multi dimensional
value consisting of many objective function values and
design variables, the human eye can distinguish and com-
prehend merely three dimensions at most. This gap needs
to be bridged in order to present an intuitive visualiza-
tion.

One attempt at this challenge is the self-organizing
map (SOM) [2], a kind of artificial neural network. A
SOM is a means of translating high-dimension data to
low-dimension data and is useful for visualizing a Pareto-
optimal solution set, typically in three or less dimensions.

Meanwhile, practical use of data analysis on the job
site demands short execution times. Although future im-
provements in hardware performance will allow larger
and larger problems to be computed in realistic time-
frames, thus enabling a wider range of design aids, recent
years have seen the increase of processor frequency hit
the ceiling. Instead, grounds for performance gains are
shifting to many-core architectures, namely graphic pro-
cessing units (GPUs). Many-core architectures have mul-
tiple processing cores and yield exceptionally good per-
formance with parallel algorithms. Thus, when handling
large problems, one should employ highly parallel algo-
rithms that are computed faster with many-core architec-
tures.

While SOMs require a vast amount of computations,
they also have high loop-level parallelism and can be ex-
pected to perform well on many core architectures [3].

Copyright © 2012 SciRes. JSEA

Visualization of Pareto Solutions by Spherical Self-Organizing Map and It’s acceleration on a GPU 130

Based on these premises, we explored the visualization
of Pareto-optimal solutions using SOMs (spherical SOMs
[4] specifically) and evaluated the system using a GPU-
based implementations. Spherical SOMs have been re-
ported [5] to be less vulnerable to distortions compared
to plane SOMs due to the fact that they have no edges.
They also show a comparatively rational spatial relation-
ship among the data points and can be clustered more
accurately [4,6].

In this paper, we discuss first the parallelizing of the
spherical SOM algorithm, then evaluate its performance
with a GPU-based implementation. Subsequently we dis-
cuss the visualization of Pareto-optimal solution sets for
two optimization problems: test functions commonly
used in multi-objective genetic algorithms, and a prob-
lem concerning the design of diesel engines, thus point-
ing out the effectiveness of spherical SOMs and their
advantages over planar SOMs.

2. Multi-objective Optimization Problems

A problem where multiple objectives must be optimized
at the same time is called a multi-objective optimization
problem. A multi-objective problem is generally forma-
lized as Equation (1): there are n design variables x, and
k objective functions f(x) are maximized (or minimized)
under m constraints g(x).

1 2

1 2

min(max) , , , = 1, 2, ,

subject to , , , 0 = 1,2, ,

j n

j n

f x x x i k

g x x x j m

 (1)

Because it is often the case with multiple-objective op-
timization that there are trade-offs among objective func-
tions, not all objective functions if x can be optimized
at the same time. Therefore we aim for a set of Pareto-
optimal solutions rather than a single optimal solution.
Pareto-optimal solutions are defined by the solutions’ do-
minance over each other. Below is the definition of do-
minant solutions in multiple-objective optimization pro-
blems (when all objective functions are optimal when mi-
nimized):

Definition of dominance:
When (1 2 1 2, , , n,x x x x x F x

2x
)

(a) dominates when 1x

(1 2 1, 2, ,i if f i x x k)

(b) strongly dominates when 1x 2x

(1 2 1, 2, ,i if f i x x k)

A solution 1 that dominates 2 is better than 2
in the general sense. The intent then is to search for non-
dominated solutions. Based on this definition of domi-
nance, below is the definition of Pareto-optimal solu-
tions:

x x x

Definition of Pareto-optimal solutions:

When (0 1 2, , , nx x x x F x)

(a) 0 is a weak Pareto-optimal solution when there
are no solutions

x
x F that strongly dominate 0

(b) 0 is a Pareto-optimal solution when there are no
solutions

x
x

x F that dominate 0

Figure 1 shows an example of Pareto-optimal solu-
tions when there are two objectives (k = 2). Solid dots
show Pareto-optimal solutions. Open dots are inferior in
every way to Pareto-optimal solutions. Thus we can ig-
nore the white dots and obtain the front consisting of
Pareto-optimal solutions, which is shown as the dashed
curve (the Pareto-optimal front).

x

One way to visually investigate what kinds of Pareto-
optimal solutions constitute a Pareto-optimal solution set
is SOM.

3. SOM

3.1. SOM Overview

SOM is a type of neural network trained by unsupervised
learning and is known as a means of data mining. SOM
can map a group of data into an arbitrary number of di-
mensions without distorting correlations among these
data points. Thus it is useful for visualizing high dimen-
sion data into lower dimensions (typically two or three)
so that characteristics can be grasped intuitively. It also
lets us cluster the solution set and analyze its traits.

3.2. SOM Algorithm

A SOM consists of two layers: the competitive layer and
the input layer. The competitive layer is where neurons
are placed, and the input layer is the group of input data
points. Neurons on the competitive layer are updated as
the SOM is trained with successive read-ins from the
input layer.

An input data point, defined as , is presented to
all neurons in the network. Any given neuron i has a
weight vector with number of dimensions n, correspond-
ing to the dimensions of the input data. A neuron’s weight
vector for a given time t is defined as . Learning
coefficient α(t), neighborhood function hci(t), and neigh-
borhood range σ(t) are also defined. A basic SOM algo-
rithm is as follows:

 tx

m i t

1) Initialize competitive layer
With 0t and the repetition count , all neurons T
 0im in the competitive layer are set with initial weight

vectors.
2) Compute distances
Input data point tx is presented to the competition

layer and Euclidian distances from the neurons
 i t tm x are computed.

3) Find the winner neuron
The winner neuron c where

Copyright © 2012 SciRes. JSEA

Visualization of Pareto Solutions by Spherical Self-Organizing Map and It’s acceleration on a GPU 131

Figure 1. Pareto-optimum solutions.

 minc it t t t m x m x is determined.
4) Train
The winner neuron c and all neurons within distance

dci from it are adjusted by applying Equations (2). The
neighborhood function hci(t) is defined by Equations (3)
using the learning coefficient α(t). α(t) and the neighbor-
hood range σ(t) are defined by Equations (4) and (5) re-
spectively.

 1i i ci it t h t t m m x m t (2)

0 ci

ci

ci

d t
h t

t d t

 (3)

 0t T t T (4)

 0t T t T (5)

5) Terminate
If , set and return to step (2). Other-

wise exit the loop.
t T 1t t

4. Spherical SOM

4.1. Spherical SOM Overview

When analyzing a Pareto-optimal solution set, it is im-
portant not only to grasp where the solutions are clus-
tered, but also to see what other neighboring solutions
exist for a given solution, or how the solutions are posi-
tioned in relation to each other.

A map generated with SOM shows similar data points
close to each other, which is helpful in assessing the si-
milarities of the solutions. However, the fact that a pair
of data points is placed far from each other on the map
does not necessarily mean that the similarity is low. A
designer analyzing a Pareto-optimal solution set would
prefer similar data points to appear as close to each other
on the map as possible.

This apparent similarity (or proximity) of the solutions
depends heavily on the form of the competitive layer
used in SOM. A competitive layer in the shape of a two-
dimensional plane often yields distortions in proximity
because edges exist, and the number of neurons in the
neighborhood range differs from neuron to neuron. To
avoid this, SOMs with competitive layers in closed forms
such as tori or spheres have been proposed.

Torus SOMs are easy to implement as an extension to
plane SOMs, but the resulting visualization takes the
form of a donut, which is difficult to interpret with hu-
man eyes, whereas spherical SOMs place the neurons on
the surface of a sphere, making it easier to grasp the spa-
tial relations. Thus spherical SOMs are suitable for visu-
alization.

4.2. Implementation of a Spherical SOM

4.2.1. Data Structure
Neurons in a spherical SOM are commonly placed in a
geodesic dome, a type of quasi-regular polyhedron [5]. A
geodesic dome is an approximated sphere constructed by
halving each edge of a regular polyhedron, thus recur-
sively increasing the number of surfaces. Neurons are
placed on the apices of the geodesic dome, forming a
hexagonal grid. Apices on a geodesic dome give the
neurons a more uniform arrangement on the surface of a
sphere compared to other methods such as polar coordi-
nates. In this study we used a regular icosahedron, the
regular polyhedron with the largest possible number of
surfaces, for the original approximation of the sphere to
further ensure uniformity.

A geodesic dome, when unfolded via the edges of the
icosahedron, forms a net that can be mapped to and han-
dled in two dimensions. Thus, our competitive layer is
represented as a two-dimensional array of neurons as
shown in Figure 2.

4.2.2. Parameters of the Neuron Struct
The neurons in the two-dimensional array mentioned
above have a data structure with the following properties:

List of links to adjacent neurons
There are 6 adjacent neurons for any given neuron, for

they are placed on a hexagonal grid. Array indices for
adjacent neurons can be computed using a fairly simple
function for a plane SOM, but are unable to compute in
some cases for a spherical SOM, namely at the edges of
the net. Therefore we store the addresses of the adjacent
neurons as a list for later reference.

Weight vector
The weight vector is stored as a one-dimensional ar-

ray.
Euclid distance
This property temporarily holds the computed distance

between a neuron and a given input data point.

Copyright © 2012 SciRes. JSEA

Visualization of Pareto Solutions by Spherical Self-Organizing Map and It’s acceleration on a GPU

Copyright © 2012 SciRes. JSEA

132

a spherical surface development
rectangular
coordinates

put neurons
on the apices

Figure 2. Description of spherical surface on a two-dimensional array.

Trained flag and Value were fixed to the maximum, while the Hue
was determined from the weight vector. The Hue can
take any value in range [0,360]. We used values in range
[0,280] so that large values show up as red and small
values show up as purple.

This flag is turned on if a neuron has already been
trained with a given input data point to avoid redundant
exposures.

Validity flag
This flag is turned off if a neuron is not a valid part of

competitive layer, in which case it should be excluded
when computing distances and winner neurons.

5. Execution of Spherical SOM with GPUs

5.1. Hardware Acceleration
Three-dimensional coordinates

The SOM algorithm is known to have high parallelism
for its distance computation, winning neuron computa-
tion, and training in each cycle of its execution. There-
fore we can expect fast execution using recent technolo-
gies such as multi-core processors and other hardware
suitable for parallel computation.

These coordinates are used to draw a three dimen-
sional sphere.

4.2.3. Distance and Winner Neuron Computation
Because the neurons are placed in a two-dimensional
array, distances and BMUs can be computed by simply
scanning this array, as with a plane SOM. They are fil-
tered before computation, however, according to their
validity flags.

High-speed executions of SOMs have been much de-
bated since the well-known research by Carpenter, et al.
on hardware acceleration in 1987 [7]. COKOS (Copro-
cessor for Kohonen’s Self-organizing map), a SIMD pro-
cessor specifically for SOMs, was developed by Speck-
man in 1992 [8]. This processor had 8 parallel processing
cores and was designed to make the most out of SOM’s
parallelism.

4.2.4. Choosing Neurons to Be Trained
A SOM is trained by choosing neurons that are within a
certain distance from a given point and adjusting them.
In order to choose these neurons, we construct a search
tree that has a certain depth by recurring into the link of
adjacent neurons, thus representing a range of neurons to
be trained. The tree is then traversed breadth first so that
neurons closer to the origin (winner neuron) are trained
first. Below are the details of this process.

There have also been attempts to construct a SOM ac-
celerator on FPGA by Porrmann and Tamukoh [9]. Por-
rman constructed a piece of hardware that executes SOMs
with 6 processing modules connected to each other in a
ring topology. Tamukoh implemented a piece of hardware
that chooses a winner neuron by computing all distances
at once and evaluated it using a vector dimension number
of 128 and a map size of 16 by 16. He also used Manhattan
distances instead of Euclidian distances to simplify com-
putations and reduce circuit size. Processing modules and
data memories existed for each weight vector, and the way
these modules connected with each other replicated the
competitive layer. Thus the modules were able to compute
in a massively parallel manner. This piece of hardware
could compute a SOM in constant time regardless of map
size, and was proved to be 350 times faster than an Intel
Xeon 2.80 GHz CPU.

First, the winner neuron is trained. Then, we retrieve
all adjacent neurons of the winner neurons and train them.
At the same time, a list of neurons trained is created as
shown in Figure 3. Then, we train the neurons that are
adjacent to the ones in the list, effectively moving out-
ward (these neurons are also stored in a new list).

The trained flag is checked before each neuron is
trained so that one neuron does not get trained multiple
times from one input data point. Thus we recursively
train neighboring neurons of the winner without duplica-
tions or omissions.

4.2.5. Displaying the Competitive Layer In 2009 Shitara attempted a high-speed execution of
SOM using a GPU. He used an NVIDIA GeForce GTX-
280, which was 150 times faster than a CPU [10]. This
high parallelism holds for spherical SOMs as well. In this
study we use GPUs for which development environments

It is often effective to colorize each neuron when dis-
playing the competitive layer as a visualization. We
mapped the weight vector of each of the neurons into the
HSV color space to colorize the neurons. The Saturation

Visualization of Pareto Solutions by Spherical Self-Organizing Map and It’s acceleration on a GPU 133

Figure 3. Choosing neurons to be trained.

have been published (and are actively researched) to im-
plement a spherical SOM and discuss the performance
based on execution with GPUs and conventional CPUs.

5.2. Parallelizing the SOM Algorithm

Let us discuss which parts of the SOM algorithm may be
parallelized.

The most costly process in the algorithm is the compu-
tations of Euclidian distances between input vectors and
neurons’ weight vectors. These computations are inde-
pendent from each other so they may be parallelized.

Selecting the winner neuron, the process in which a
neuron with the minimum Euclidian distance is deter-
mined, may also be parallelized. Sequential comparison
would be O(n), but this can be reduced to O(log(n)) by
employing a tournament-style comparison with binary
trees.

Training of the neurons may also be parallelized. In
this process, computations against weight vectors for all
neurons within a certain distance from the winner neuron
are to be performed for a given input data point. These
adjustments are independent of each other and may be
parallelized.

5.3. Evaluation

Based on the above facts, we implemented a spherical
SOM program that is executable with a GPU, and evalu-
ated its execution speed.

C++, along with CUDA, NVIDIA’s GPU development
environment, was used in implementation. The GPUs we
used are 1) GeForce 8400GS, 2) GeForce GTX280, and
3) Tesla C1060. Table 1 shows their technical specifi-
cations.

We also implemented a spherical SOM program for
CPU to compare. The CPU we used was 4) Opteron 1210
HE.

SOM settings were as follows:
 5-dimensional neurons
 50000 (20 × 502) weight vectors
 [0,9] neighborhood range

5.3.1. Results
Table 2 shows execution times for each GPU and CPU.

Table 1. Technical specification for each GPU and CPU.

GPU
Number of

SP
Core Clock

(GHz)
Memory Size

(MB)
Memory

bandwidth (GB/s)

(a) 16 0.45 256 6.4

(b) 240 1.27 1024 141.7

(c) 240 1.30 4096 102.0

Table 2. Execution times for each GPU and CPU.

Environment Execution Time (ms) Speed ratio with CPU

(a) 29340 2.56

(b) 5320 14.13

(c) 5250 14.31

The results show that GPU acceleration is effective with
spherical SOMs just as it is with plane SOMs. Figure 4
shows execution times for each of the steps in the SOM
algorithm. Figure 5 shows percentages of time taken for
each step for each processor.

5.3.2. Discussions
Tables 1 and 2 show that the two processors with the
most SPs (stream processors) performed more than 10
times better than the CPU. This is due to the fact that
performance gain is nearly proportional to the number of
SPs when parallelism is high.

Figures 4 and 5 show that the proportion of distance
calculation time is high with the 8400 GS. This is appa-
rently because we passed the input neuron as an argu-
ment to the GPU function. The size of data passed results
in (the number of calls x number of input neurons), which
is considerably large. The 8400GS has a low memory
bandwidth compared to the other GPUs and thus could
not handle the computations as swiftly.

Figure 5 shows that parallelizing was especially effec-
tive with distance calculations. Although the 8400 GS
(which has relatively few SPs and a lower frequency)
took more time than CPU, the GPUs with 240 SPs were
more than 10 times faster than CPU. On the other hand,
winner selection and training have lower parallelisms
than distance calculation.

Compared to plane SOM in research [10], we have a
lower rate of acceleration for spherical SOM. This is a
result of the way adjacent neurons are accessed. We used
a list of links to access adjacent neurons of a certain
neuron. Thus we must dereference the link every time we
access an adjacent neuron, and this results in considera-
bly more memory accesses, rendering parallelization less
effective.

This problem may be solved by the use of Fermi.
Fermi is a GPU architecture for GPGPUs developed by
NVIDIA. One of the advantages over conventional GPUs
is its memory access speed, which was improved by in-

Copyright © 2012 SciRes. JSEA

Visualization of Pareto Solutions by Spherical Self-Organizing Map and It’s acceleration on a GPU 134

Figure 4. Execution time of each operation on each envi-
ronment.

P
ar

ce
n

t
of

 P
ro

ce
ss

in
g

(%
) 100

90
80
70
60
50
40
30
20
10

0
CPU

Processor

8400GS GTX280 C1060

Initilaization

Distance Calculation

Selection Winner

Learnig

Figure 5. Percentage of execution time on each operation.

stalling a cache memory. Reduction of memory access
overhead using Fermi shall result in a better parallel ac-
celeration of spherical SOM.

6. Visualizing Pareto-Optimal Solutions with
Spherical SOM

6.1. Spherical SOM with a Test Function

In this section we discuss how a Pareto-optimal solution
set may be visualized by spherical SOM. First we shall
engage ZDT2, a common test function for multi-objec-
tive optimization problems. ZDT2 is a monomodal and
non-convex function defined by Expression (6).

1 1

2

2

1

1 9 1

1

n

i
i

f x

f g h

g x

h x g

x

x x x

x

x x

n

 (6)

Using spherical SOM, we visualized data containing
objective functions for Pareto-optimal solutions obtained
from ZDT2 and the design parameters that determined
them. The input data consisted of 12 dimensions: 2 di-
mensions of objective functions 1 2f , f

 10, , ,
 and 10 dimen-

sions of design variables 1 2x x x . We used 100
data points.

For comparison we used SOMPAK, a freely available
plane SOM program package. SOMPAK allows us to

configure the dimensions of the competitive layer, amongst
others, and can output the training results in both numeric
and image formats. For this experiment we configured the
lattice to a hexagonal grid and the neighborhood function
to a step function. Table 3 shows the other configurations.
Also, we set the initial number of exposures to 100,000,
meaning the 100 Pareto-optimal solutions would be ex-
posed to the competitive layer 1,000 times each.

To meet the conditions of the plane SOM, our sphere-
cal SOM was configured with a step function as the
neighborhood function. The competitive layer was initia-
lized with random values. Table 3 shows configurations
for the spherical SOM as well.

Figure 6 is the result from the plane SOM. It is colo-
red with the same method as the spherical SOM. It shows
that high values for 1f concentrate on the lower right
corner and low values for 1f concentrate on the lower
left corner.

Figure 8 shows the parameters represented by points
, 2 and 3 on Figure 7. From these parameters

alone, these three data points are similar in pattern.
and 2 , particularly, should be placed rather close to
each other on the visualized map.

p1 p

p

p
p1

Of course, this is not to say that all similar data points
appeared close to each other on the spherical SOM.
However, we have shown that some relationships other-

Table 3. Configurations of the SOM.

 Number of neurons
Number

of
learning

The initial
value of

learning rate

The initial
value of

neighborhood
range

Plane
SOM

900 (30 × 30) 2.56 0.05 15

Spherical
SOM

1,002 (10 × 10 × 10 +
2)

14.13 0.05 15

Figure 6. Visualization of ZDT2 on a spherical SOM.

Figure 7. Visualization of ZDT2 by plane SOM.

Copyright © 2012 SciRes. JSEA

Visualization of Pareto Solutions by Spherical Self-Organizing Map and It’s acceleration on a GPU

Copyright © 2012 SciRes. JSEA

135

f1 f2 x1x2 x3 x4 x5 x6 x7 x8 x9 x10

min

max

f1 f2 x1x2 x3 x4 x5 x6 x7 x8 x9 x10 f1 f2 x1x2 x3 x4 x5 x6 x7 x8 x9 x10

p1 p2 p3

Figure 8. Objective functions and design variables for each points (p1, p2, p3).

wise obscured in the plane SOM were indeed observable
in the spherical SOM.

The next section shall describe how the same is true
for a diesel engine design problem.

6.2. Fuel Injection Scheduling for Diesel Engines

6.2.1. Overview
Diesel engines are generally more durable and fuel-effi-
cient than gasoline engines, and they also have a lower
CO2 emission. However, ecological concerns are rising
and regulations have become more strict. In reacengines’
CO2 emission, gasoline and diesel alike.

Figure 9. Injection mechanism of diesel. Recent diesel engines make it possible to electroni-
cally control the EGR rate (exhaust gas recirculation rate)
and swirl ratio. Timings of fuel injection and its chrono-
logical ratios can also be altered. Modifying these values
have the effect of changing the SFC (specific fuel con-
sumption) and the amount of NOx (nitrogen oxides) gen-
erated. Attempts have been made to electronically con-
trol engine parameters to reduce SFC, NOx emission and
soot emission at once. This optimization problem is
called the diesel engine fuel injection scheduling problem,
and is usually handled as a multiple-objective optimiza-
tion problem because there are trade-offs between NOx
and soot as well as NOx and SFC.

scheduling problem. Configurations for SOMPAK and
the spherical SOM were identical to those shown in Ta-
ble 3.

Figure 10 shows results from the spherical SOM. Each
sphere in these images is turned to the left by 90 degrees to
render the next one. The sphere is colored according to
SFC values: red when SFC is high and purple when low.
A cluster of red is shown where SFC is particularly high.

Figure 11 shows the visualization by plane SOM.
High SFC values are concentrated to the top left, and the
values go down in the order of top right corner, bottom
right corner and bottom left corner. In this experiment we deal with two-stage fuel in jec-

tions, as shown in Figure 9. The design variables are the
parameters of a diesel engine that are electronically con-
trollable now or will be controllable in the future, in-
cluding the boost pressure, EGR rate, start angle, and
swirl ratio. Table 4 shows the 11-dimensional data used
for this experiment. The design variables are as they ap-
pear in paper [11].

Both the spherical SOM and plane SOM show SFC
values change gradually as we move from one point to
another. Thus the spherical SOM is capable of catego-
rizing and visualizing the solution space, just as Obaya-
shi [12] stated was possible for plane SOM.

6.2.3. Differences in Data Placement
We have seen that plane SOM can effectively visualize a
Pareto-optimal solution set, but some data that are similar
to each other may have been positioned on opposite
edges. We shall investigate where points of data from
plane SOM (Figure 11) are shown in spherical SOM.

Pareto-optimal solutions with different SFC, NOx and
soot values can be obtained by adjusting the design vari-
ables. This experiment used data that contains the 3 di-
mensions of objective functions and 8 dimensions of
design variables.

First let us look at p2 and p4. The objective functions
and design variables are relatively similar, and should be
displayed close to each other in a SOM visualization.
However, in the plane SOM, they are placed on opposite
edges on the right side. This results in the data points 1p

6.2.2. Visualization of the Pareto-Optimal Solution
Set Using Spherical SOM

We trained a spherical SOM 1000 times using 100
Pareto-optimal solutions obtained from the fuel injection

Visualization of Pareto Solutions by Spherical Self-Organizing Map and It’s acceleration on a GPU 136

Table 4. Design variables and objective function of input data.

 Name p 1 p2 p3 p4 p5

f1: Fuel emissions 458.7836 226.3017 260.8934 290.4700 160.1595

f2: NOx emissions 0.0004 0.0006 0.0004 6.2650 0.0006 Objective Functions

f3: Soot emissions 0.0963 0.0752 0.1063 0.0006 0.0875

x1: Boost pressure 3.5000 3.5688 3.4938 3.5188 3.4938

x2: Recirculation rate 0.2906 0.2906 0.2906 0.0000 0.2906

x3: Swirl ratio: 5.5781 5.9531 4.3125 5.9844 5.0516

x4: First injection period 8.2813 12.7660 15.3910 3.0000 14.5160

x5: Middle injection period 13.5938 3.6566 3.7500 17.2500 3.0000

x6: A second injection period 10.3594 13.5313 17.4688 -1.2500 13.5313

x7: Injection start angle 9.7656 9.3750 8.8281 5.7656 8.8281

Design Variables

x8: First fuel injection (rate) 0.5445 0.5047 0.7625 0.7883 0.7953

0° 90° 180° 270°

Figure 10. Visualization of SFC space on a spherical SOM.

Figure 11. Visualization of SFC space on a plane SOM.

through 5 to be mapped to a sideways U-shape span-
ning over the entire map. On the other hand, the spherical
SOM in Figure 10 shows and side by side.

p

2 4

Next, let us look at 1 and 3 . Because these injec-
tions differs in shape, as shown in Figure 11, the value
of

p p
p p

1f differs, and so does each point in Figure 10.

However, whereas p1 and p3. are plotted far from each
other in plane SOM (Figure 11), they are close by in
spherical SOM (Figure 10). This is the result of design
variables 4x through 8x in Table 4 4x through 8x
determine the shape of injection. p1 and p3 have different
values for these variables, but the other variables are

Copyright © 2012 SciRes. JSEA

Visualization of Pareto Solutions by Spherical Self-Organizing Map and It’s acceleration on a GPU 137

similar. These points were seen as completely different
on the plane SOM, but on the spherical SOM they are
seen as similar points of data, albeit being in different
clusters. This means that the spherical SOM was capable
of a certain kind of clustering not offered by the plane
SOM.

These results tell us that not only does the spherical
SOM have the same benefits of the plane SOM, but can
also present similarities more accurately. Thus the sphe-
rical SOM is suitable for visualizing a Pareto-optimal
solution set.

7. Conclusions

In this study, we discussed the visualization of Pareto-
optimal solutions of multiple-objective optimization pro-
blems using SOMs (self-organizing maps). More spe-
cifically, we focused on spherical SOMs instead of the
traditional plane SOMs. Plane SOMs can cause distor-
tions of data along its edges, whereas spherical SOMs,
due to the fact that they have no edges, can visualize si-
milarities among data more accurately. We also imple-
mented a spherical SOM for execution with GPUs and
evaluated its performance.

First we described the details of implementation and
discussed its parallelism. Then we compared its execu-
tion time with multiple GPUs and a CPU. The results
showed that GPU usage yielded considerably higher
performance.

Then we used two Pareto-optimal solution sets from
multiple-objective optimization problems to evaluate the
effectiveness of spherical SOMs. The first was a test fun-
ction commonly used in research for multiple-objective
optimization, and the other was a real-life diesel engine
fuel injection scheduling problem. We showed from the
results that the spherical SOMs not only offered the
benefits of the plane SOM but also was capable of map-
ping data more accurately. We also showed that spherical
SOMs let us grasp more versatile clusters of data. Thus,
using a spherical SOM to visualize a Pareto-optimal so-
lution set is a highly viable approach.

In future studies, we shall evaluate spherical SOMs and
their implementations on a variety of problem sizes. We
shall also further validate the use of GPUs for spherical
SOMs and, at the same time, make attempts to make
memory access more efficient.

REFERENCES
[1] P. Czyzżak and A. Jaszkiewicz, “Pareto Simulated Anneal-

ing—A Metatheuristic Technique for Multiple-Objective
Combinatorial Optimization,” Journal of Multi-Criteria De-
cision Analysis, Vol. 7, No. 7, 1998, 34-47.
doi:10.1002/(SICI)1099-1360(199801)7:1<34::AID-MC

DA161>3.0.CO;2-6

[2] T. Kohonen, “The Self-Organizing Map,” Proceedings of
the IEEE, Vol. 78, No.9, 1990, pp. 1464-1480.
doi:10.1109/5.58325

[3] R. D. Prabhu, “SOMGPU: An Unsupervised Pattern
Classifier on Graphical Processing Unit,” IEEE Congress
on Evolutionary Computation, IEEE World Congress on
Computational Intelligence, Hong Kong, 1-6 June 2008,
pp. 1011-1018. doi: 10.1109/CEC.2008.4630920

[4] P. K. Kihato, H. Tokutaka, M. Ohkita, K. Fujimura, K.
Kotani, Y. Kurozawa and Y. Maniwa, “Spherical and To-
rus SOM Approaches to Metabolic Syndrome Evaluation,”
Neural Information Processing, Vol. 4985, 2008, pp. 274-
284. doi:10.1007/978-3-540-69162-4_29

[5] Y. Wu and M. Takatsuka, “Spherical Self-Organizing
Map Using Efficient Indexed Geodesic Data Structure,”
Neural Networks, Vol. 19, No. 6-7, 2006, pp. 900-910.
doi:10.1016/j.neunet.2006.05.021.

[6] H. Tokutaka, P. K . Kihato, K. Fujimura and M. Ohkita,
“Cluster Analysis using Spherical SOM,” Proceedings of
the 6th International Workshop on Self-Organizing Maps.
Bielefeld, 3-6 September 2007, pp. 1-7.
doi:10.2390/biecoll-wsom2007-101

[7] G. A. Carpenter and S. Grossberg, “A Massively Parallel
Architecture for a Self-Organizing Neural Pattern Recog-
nition Machine,” Computer Vision, Graphics and Image
Processing, Vol. 37, No. 1, 1987, pp. 54-115.
doi:10.1016/S0734-189X(87)80014-2

[8] H. Speckmann, P. Thole and W. Rosenstiel, “A COpro-
cessor for KOhonen’s Self-Organizing Map (COKOS),”
Proceedings of 1993 International Joint Conference on
Neural Networks, Nagoya, 25-29 October 1993, pp. 1951-
1954. doi:10.1109/IJCNN.1993.717038

[9] H. Tamukoh, T. Aso, K. Horio and T. Yamakawa, “Self-
organizing Map Hardware Accelerator System and Its
Application to Real Time Image Enlargement,” Proceed-
ings of 2004 IEEE International Joint Conference on Neu-
ral Networks, Budapest, 25-29 July 2004, pp. 2686-2687.
doi:10.1109/IJCNN.2004.1381073

[10] A. Shitara, Y. Nishikawa, M. Yoshimi and H. Amano,
“Implementation and Evaluation of Self-Organizing Map
Algorithm on a Graphic Processor,” Proceeding Parallel
and Distributed Computing and Systems 2009, Cam-
bridge, 2-4 November 2009.

[11] T. Hiroyasu, K. Kobayashi, M. Nishioka and M. Miki,
“Diversity Maintenance Mechanism for Multi-Objective
Genetic Algorithms Using Clustering and Network Inver-
sion,” Lecture Notes in Computer Science, Vol. 5199, No.
1, 2008, pp. 722-732.
doi:10.1007/978-3-540-87700-4_72

[12] S. Obayashi and D. Sasaki, “Visualization and Data Min-
ing of Pareto Solutions Using Self-Organizing Map,”
Proceedings of the 2nd International Conference on Evo-
lutionary Multi-Criterion Optimization, Faro, 8-11 April,
2003, pp.796-809.
doi: 10.1007/3-540-36970-8_56

Copyright © 2012 SciRes. JSEA

http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1099-1360(199801)7:1%3C34::AID-MCDA161%3E3.0.CO;2-6/abstract
http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1099-1360(199801)7:1%3C34::AID-MCDA161%3E3.0.CO;2-6/abstract
http://dx.doi.org/10.1109%2F5.58325
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4630920&isnumber=4630767
http://dx.doi.org/10.1007/978-3-540-69162-4_29
http://www.sciencedirect.com/science/article/pii/S0893608006000736
http://biecoll.ub.uni-bielefeld.de/volltexte/2007/159/
http://www.sciencedirect.com/science/article/pii/S0734189X87800142
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=717038
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1381073
http://dx.doi.org/10.1007/978-3-540-87700-4_72
http://www.springerlink.com/content/k2h77b6lcxqgu84b/

