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ABSTRACT 

In this study, we visualize Pareto-optimum solutions derived from multiple-objective optimization using spherical 
self-organizing maps (SOMs) that lay out SOM data in three dimensions. There have been a wide range of studies in-
volving plane SOMs where Pareto-optimal solutions are mapped to a plane. However, plane SOMs have an issue that 
similar data differing in a few specific variables are often placed at far ends of the map, compromising intuitiveness of 
the visualization. We show in this study that spherical SOMs allow us to find similarities in data otherwise undetectable 
with plane SOMs. We also implement and evaluate the performance using parallel sphere processing with several GPU 
environments. 
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1. Introduction 

With the rapid rise of hardware and software performance 
in recent years, computer-aided numerical simulations 
are being used more and more for designing products. 
These include construction drawings with CAD (Com- 
puter-Aided Design), optimizations of design parameters, 
and validations of candidate solutions, among others. 

It is often effective to formalize problems as optimiza- 
tion problems in order to employ numerical simulations 
as design aids. An optimization problem is one in which 
design variables are determined so that one or more ob- 
jective functions yield the highest or lowest possible va- 
lues under certain conditions. Real-world optimization 
problems tend to have multiple objective functions that 
pose trade-offs among each other: this type of problem is 
called a multiple-objective optimization problem. Be- 
cause of the trade-offs, a multiple-objective optimization 
problem has multiple optimal points, each of which is the 
most fit for a certain objective function. The set of these 
solutions is called the Pareto-optimal solution set. Many 
approaches have been proposed on how to reach the 
Pareto-optimal solution set [1]. 

In product design, an important task is to choose the 
best solutions from a Pareto-optimal solution set. It is re- 
quired, then, to visualize the solution set and show the 
designer what characteristics each of the solutions have 
in relation to other solutions and in relation to the con- 
taining set. However, whereas each solution in a multiple-  

objective optimization problem is a multi dimensional 
value consisting of many objective function values and 
design variables, the human eye can distinguish and com- 
prehend merely three dimensions at most. This gap needs 
to be bridged in order to present an intuitive visualiza- 
tion. 

One attempt at this challenge is the self-organizing 
map (SOM) [2], a kind of artificial neural network. A 
SOM is a means of translating high-dimension data to 
low-dimension data and is useful for visualizing a Pareto- 
optimal solution set, typically in three or less dimensions. 

Meanwhile, practical use of data analysis on the job 
site demands short execution times. Although future im- 
provements in hardware performance will allow larger 
and larger problems to be computed in realistic time- 
frames, thus enabling a wider range of design aids, recent 
years have seen the increase of processor frequency hit 
the ceiling. Instead, grounds for performance gains are 
shifting to many-core architectures, namely graphic pro- 
cessing units (GPUs). Many-core architectures have mul- 
tiple processing cores and yield exceptionally good per- 
formance with parallel algorithms. Thus, when handling 
large problems, one should employ highly parallel algo- 
rithms that are computed faster with many-core architec- 
tures. 

While SOMs require a vast amount of computations, 
they also have high loop-level parallelism and can be ex- 
pected to perform well on many core architectures [3]. 
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Based on these premises, we explored the visualization 
of Pareto-optimal solutions using SOMs (spherical SOMs 
[4] specifically) and evaluated the system using a GPU- 
based implementations. Spherical SOMs have been re- 
ported [5] to be less vulnerable to distortions compared 
to plane SOMs due to the fact that they have no edges. 
They also show a comparatively rational spatial relation- 
ship among the data points and can be clustered more 
accurately [4,6].  

In this paper, we discuss first the parallelizing of the 
spherical SOM algorithm, then evaluate its performance 
with a GPU-based implementation. Subsequently we dis- 
cuss the visualization of Pareto-optimal solution sets for 
two optimization problems: test functions commonly 
used in multi-objective genetic algorithms, and a prob- 
lem concerning the design of diesel engines, thus point- 
ing out the effectiveness of spherical SOMs and their 
advantages over planar SOMs.  

2. Multi-objective Optimization Problems 

A problem where multiple objectives must be optimized 
at the same time is called a multi-objective optimization 
problem. A multi-objective problem is generally forma- 
lized as Equation (1): there are n design variables x, and 
k objective functions f(x) are maximized (or minimized) 
under m constraints g(x). 
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Because it is often the case with multiple-objective op- 
timization that there are trade-offs among objective func-
tions, not all objective functions  if x  can be optimized 
at the same time. Therefore we aim for a set of Pareto- 
optimal solutions rather than a single optimal solution. 
Pareto-optimal solutions are defined by the solutions’ do- 
minance over each other. Below is the definition of do- 
minant solutions in multiple-objective optimization pro- 
blems (when all objective functions are optimal when mi- 
nimized): 

Definition of dominance: 
When (   1 2 1 2, , , n,x x x x x F x 

2x
) 

(a)  dominates  when  1x

(      1 2 1, 2, ,i if f i x x  k ) 

(b)  strongly dominates  when 1x 2x

(      1 2 1, 2, ,i if f i x x  k ) 

A solution 1  that dominates 2  is better than 2  
in the general sense. The intent then is to search for non- 
dominated solutions. Based on this definition of domi- 
nance, below is the definition of Pareto-optimal solu- 
tions: 

x x x

Definition of Pareto-optimal solutions: 

When (   0 1 2, , , nx x x x F x  ) 

(a) 0  is a weak Pareto-optimal solution when there 
are no solutions 

x
x F  that strongly dominate  0

(b) 0  is a Pareto-optimal solution when there are no 
solutions 

x
x

x F  that dominate  0

Figure 1 shows an example of Pareto-optimal solu-
tions when there are two objectives (k = 2). Solid dots 
show Pareto-optimal solutions. Open dots are inferior in 
every way to Pareto-optimal solutions. Thus we can ig-
nore the white dots and obtain the front consisting of 
Pareto-optimal solutions, which is shown as the dashed 
curve (the Pareto-optimal front). 

x

One way to visually investigate what kinds of Pareto- 
optimal solutions constitute a Pareto-optimal solution set 
is SOM. 

3. SOM 

3.1. SOM Overview 

SOM is a type of neural network trained by unsupervised 
learning and is known as a means of data mining. SOM 
can map a group of data into an arbitrary number of di- 
mensions without distorting correlations among these 
data points. Thus it is useful for visualizing high dimen- 
sion data into lower dimensions (typically two or three) 
so that characteristics can be grasped intuitively. It also 
lets us cluster the solution set and analyze its traits. 

3.2. SOM Algorithm 

A SOM consists of two layers: the competitive layer and 
the input layer. The competitive layer is where neurons 
are placed, and the input layer is the group of input data 
points. Neurons on the competitive layer are updated as 
the SOM is trained with successive read-ins from the 
input layer.  

An input data point, defined as , is presented to 
all neurons in the network. Any given neuron i has a 
weight vector with number of dimensions n, correspond- 
ing to the dimensions of the input data. A neuron’s weight 
vector for a given time t is defined as . Learning 
coefficient α(t), neighborhood function hci(t), and neigh- 
borhood range σ(t) are also defined. A basic SOM algo-
rithm is as follows: 

 tx

m  i t

1) Initialize competitive layer 
With 0t   and the repetition count , all neurons T
 0im  in the competitive layer are set with initial weight 

vectors. 
2) Compute distances 
Input data point  tx  is presented to the competition 

layer and Euclidian distances from the neurons 
   i t tm x  are computed. 

3) Find the winner neuron 
The winner neuron c where  
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Figure 1. Pareto-optimum solutions. 
 

       minc it t t t  m x m x  is determined. 
4) Train  
The winner neuron c and all neurons within distance 

dci from it are adjusted by applying Equations (2). The 
neighborhood function hci(t) is defined by Equations (3) 
using the learning coefficient α(t). α(t) and the neighbor- 
hood range σ(t) are defined by Equations (4) and (5) re- 
spectively. 

         1i i ci it t h t t   m m x m t    (2) 
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d t
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        (3) 

    0t T t   T           (4) 

    0t T t   T           (5) 

5) Terminate 
If , set  and return to step (2). Other-

wise exit the loop. 
t T 1t t 

4. Spherical SOM 

4.1. Spherical SOM Overview 

When analyzing a Pareto-optimal solution set, it is im- 
portant not only to grasp where the solutions are clus- 
tered, but also to see what other neighboring solutions 
exist for a given solution, or how the solutions are posi- 
tioned in relation to each other. 

A map generated with SOM shows similar data points 
close to each other, which is helpful in assessing the si- 
milarities of the solutions. However, the fact that a pair 
of data points is placed far from each other on the map 
does not necessarily mean that the similarity is low. A 
designer analyzing a Pareto-optimal solution set would 
prefer similar data points to appear as close to each other 
on the map as possible. 

This apparent similarity (or proximity) of the solutions 
depends heavily on the form of the competitive layer 
used in SOM. A competitive layer in the shape of a two- 
dimensional plane often yields distortions in proximity 
because edges exist, and the number of neurons in the 
neighborhood range differs from neuron to neuron. To 
avoid this, SOMs with competitive layers in closed forms 
such as tori or spheres have been proposed. 

Torus SOMs are easy to implement as an extension to 
plane SOMs, but the resulting visualization takes the 
form of a donut, which is difficult to interpret with hu- 
man eyes, whereas spherical SOMs place the neurons on 
the surface of a sphere, making it easier to grasp the spa- 
tial relations. Thus spherical SOMs are suitable for visu- 
alization. 

4.2. Implementation of a Spherical SOM 

4.2.1. Data Structure 
Neurons in a spherical SOM are commonly placed in a 
geodesic dome, a type of quasi-regular polyhedron [5]. A 
geodesic dome is an approximated sphere constructed by 
halving each edge of a regular polyhedron, thus recur- 
sively increasing the number of surfaces. Neurons are 
placed on the apices of the geodesic dome, forming a 
hexagonal grid. Apices on a geodesic dome give the 
neurons a more uniform arrangement on the surface of a 
sphere compared to other methods such as polar coordi- 
nates. In this study we used a regular icosahedron, the 
regular polyhedron with the largest possible number of 
surfaces, for the original approximation of the sphere to 
further ensure uniformity. 

A geodesic dome, when unfolded via the edges of the 
icosahedron, forms a net that can be mapped to and han- 
dled in two dimensions. Thus, our competitive layer is 
represented as a two-dimensional array of neurons as 
shown in Figure 2. 

4.2.2. Parameters of the Neuron Struct 
The neurons in the two-dimensional array mentioned 
above have a data structure with the following properties: 

List of links to adjacent neurons 
There are 6 adjacent neurons for any given neuron, for 

they are placed on a hexagonal grid. Array indices for 
adjacent neurons can be computed using a fairly simple 
function for a plane SOM, but are unable to compute in 
some cases for a spherical SOM, namely at the edges of 
the net. Therefore we store the addresses of the adjacent 
neurons as a list for later reference. 

Weight vector 
The weight vector is stored as a one-dimensional ar-

ray. 
Euclid distance 
This property temporarily holds the computed distance 

between a neuron and a given input data point. 

Copyright © 2012 SciRes.                                                                                 JSEA 



Visualization of Pareto Solutions by Spherical Self-Organizing Map and It’s acceleration on a GPU 

Copyright © 2012 SciRes.                                                                                 JSEA 

132 

 

a spherical surface development
rectangular
coordinates

put neurons
on the apices  

Figure 2. Description of spherical surface on a two-dimensional array. 
 

Trained flag and Value were fixed to the maximum, while the Hue 
was determined from the weight vector. The Hue can 
take any value in range [0,360]. We used values in range 
[0,280] so that large values show up as red and small 
values show up as purple. 

This flag is turned on if a neuron has already been 
trained with a given input data point to avoid redundant 
exposures. 

Validity flag 
This flag is turned off if a neuron is not a valid part of 

competitive layer, in which case it should be excluded 
when computing distances and winner neurons. 

5. Execution of Spherical SOM with GPUs 

5.1. Hardware Acceleration 
Three-dimensional coordinates 

The SOM algorithm is known to have high parallelism 
for its distance computation, winning neuron computa- 
tion, and training in each cycle of its execution. There- 
fore we can expect fast execution using recent technolo- 
gies such as multi-core processors and other hardware 
suitable for parallel computation. 

These coordinates are used to draw a three dimen-
sional sphere. 

4.2.3. Distance and Winner Neuron Computation 
Because the neurons are placed in a two-dimensional 
array, distances and BMUs can be computed by simply 
scanning this array, as with a plane SOM. They are fil- 
tered before computation, however, according to their 
validity flags. 

High-speed executions of SOMs have been much de-
bated since the well-known research by Carpenter, et al. 
on hardware acceleration in 1987 [7]. COKOS (Copro- 
cessor for Kohonen’s Self-organizing map), a SIMD pro- 
cessor specifically for SOMs, was developed by Speck- 
man in 1992 [8]. This processor had 8 parallel processing 
cores and was designed to make the most out of SOM’s 
parallelism. 

4.2.4. Choosing Neurons to Be Trained 
A SOM is trained by choosing neurons that are within a 
certain distance from a given point and adjusting them. 
In order to choose these neurons, we construct a search 
tree that has a certain depth by recurring into the link of 
adjacent neurons, thus representing a range of neurons to 
be trained. The tree is then traversed breadth first so that 
neurons closer to the origin (winner neuron) are trained 
first. Below are the details of this process. 

There have also been attempts to construct a SOM ac-
celerator on FPGA by Porrmann and Tamukoh [9]. Por- 
rman constructed a piece of hardware that executes SOMs 
with 6 processing modules connected to each other in a 
ring topology. Tamukoh implemented a piece of hardware 
that chooses a winner neuron by computing all distances 
at once and evaluated it using a vector dimension number 
of 128 and a map size of 16 by 16. He also used Manhattan 
distances instead of Euclidian distances to simplify com- 
putations and reduce circuit size. Processing modules and 
data memories existed for each weight vector, and the way 
these modules connected with each other replicated the 
competitive layer. Thus the modules were able to compute 
in a massively parallel manner. This piece of hardware 
could compute a SOM in constant time regardless of map 
size, and was proved to be 350 times faster than an Intel 
Xeon 2.80 GHz CPU. 

First, the winner neuron is trained. Then, we retrieve 
all adjacent neurons of the winner neurons and train them. 
At the same time, a list of neurons trained is created as 
shown in Figure 3. Then, we train the neurons that are 
adjacent to the ones in the list, effectively moving out- 
ward (these neurons are also stored in a new list). 

The trained flag is checked before each neuron is 
trained so that one neuron does not get trained multiple 
times from one input data point. Thus we recursively 
train neighboring neurons of the winner without duplica- 
tions or omissions. 

4.2.5. Displaying the Competitive Layer In 2009 Shitara attempted a high-speed execution of 
SOM using a GPU. He used an NVIDIA GeForce GTX- 
280, which was 150 times faster than a CPU [10]. This 
high parallelism holds for spherical SOMs as well. In this 
study we use GPUs for which development environments  

It is often effective to colorize each neuron when dis- 
playing the competitive layer as a visualization. We 
mapped the weight vector of each of the neurons into the 
HSV color space to colorize the neurons. The Saturation  
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Figure 3. Choosing neurons to be trained. 
 
have been published (and are actively researched) to im- 
plement a spherical SOM and discuss the performance 
based on execution with GPUs and conventional CPUs. 

5.2. Parallelizing the SOM Algorithm 

Let us discuss which parts of the SOM algorithm may be 
parallelized. 

The most costly process in the algorithm is the compu- 
tations of Euclidian distances between input vectors and 
neurons’ weight vectors. These computations are inde- 
pendent from each other so they may be parallelized. 

Selecting the winner neuron, the process in which a 
neuron with the minimum Euclidian distance is deter- 
mined, may also be parallelized. Sequential comparison 
would be O(n), but this can be reduced to O(log(n)) by 
employing a tournament-style comparison with binary 
trees. 

Training of the neurons may also be parallelized. In 
this process, computations against weight vectors for all 
neurons within a certain distance from the winner neuron 
are to be performed for a given input data point. These 
adjustments are independent of each other and may be 
parallelized. 

5.3. Evaluation 

Based on the above facts, we implemented a spherical 
SOM program that is executable with a GPU, and evalu-
ated its execution speed. 

C++, along with CUDA, NVIDIA’s GPU development 
environment, was used in implementation. The GPUs we 
used are 1) GeForce 8400GS, 2) GeForce GTX280, and 
3) Tesla C1060. Table 1 shows their technical specifi- 
cations. 

We also implemented a spherical SOM program for 
CPU to compare. The CPU we used was 4) Opteron 1210 
HE. 

SOM settings were as follows: 
 5-dimensional neurons 
 50000 (20 × 502) weight vectors 
 [0,9] neighborhood range 

5.3.1. Results 
Table 2 shows execution times for each GPU and CPU.  

Table 1. Technical specification for each GPU and CPU. 

GPU
Number of 

SP 
Core Clock 

(GHz) 
Memory Size 

(MB) 
Memory 

bandwidth (GB/s)

(a) 16 0.45 256 6.4 

(b) 240 1.27 1024 141.7 

(c) 240 1.30 4096 102.0 

 
Table 2. Execution times for each GPU and CPU. 

Environment Execution Time (ms) Speed ratio with CPU

(a) 29340 2.56 

(b) 5320 14.13 

(c) 5250 14.31 

 
The results show that GPU acceleration is effective with 
spherical SOMs just as it is with plane SOMs. Figure 4 
shows execution times for each of the steps in the SOM 
algorithm. Figure 5 shows percentages of time taken for 
each step for each processor. 

5.3.2. Discussions 
Tables 1 and 2 show that the two processors with the 
most SPs (stream processors) performed more than 10 
times better than the CPU. This is due to the fact that 
performance gain is nearly proportional to the number of 
SPs when parallelism is high. 

Figures 4 and 5 show that the proportion of distance 
calculation time is high with the 8400 GS. This is appa- 
rently because we passed the input neuron as an argu- 
ment to the GPU function. The size of data passed results 
in (the number of calls x number of input neurons), which 
is considerably large. The 8400GS has a low memory 
bandwidth compared to the other GPUs and thus could 
not handle the computations as swiftly. 

Figure 5 shows that parallelizing was especially effec- 
tive with distance calculations. Although the 8400 GS 
(which has relatively few SPs and a lower frequency) 
took more time than CPU, the GPUs with 240 SPs were 
more than 10 times faster than CPU. On the other hand, 
winner selection and training have lower parallelisms 
than distance calculation.  

Compared to plane SOM in research [10], we have a 
lower rate of acceleration for spherical SOM. This is a 
result of the way adjacent neurons are accessed. We used 
a list of links to access adjacent neurons of a certain 
neuron. Thus we must dereference the link every time we 
access an adjacent neuron, and this results in considera- 
bly more memory accesses, rendering parallelization less 
effective. 

This problem may be solved by the use of Fermi. 
Fermi is a GPU architecture for GPGPUs developed by 
NVIDIA. One of the advantages over conventional GPUs 
is its memory access speed, which was improved by in-  
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Figure 4. Execution time of each operation on each envi-
ronment. 
 

P
ar

ce
n

t 
of

 P
ro

ce
ss

in
g 

(%
) 100

90
80
70
60
50
40
30
20
10

0
CPU

Processor

8400GS GTX280 C1060

Initilaization

Distance Calculation

Selection Winner

Learnig

 

Figure 5. Percentage of execution time on each operation. 
 
stalling a cache memory. Reduction of memory access 
overhead using Fermi shall result in a better parallel ac-
celeration of spherical SOM. 

6. Visualizing Pareto-Optimal Solutions with 
Spherical SOM 

6.1. Spherical SOM with a Test Function 

In this section we discuss how a Pareto-optimal solution 
set may be visualized by spherical SOM. First we shall 
engage ZDT2, a common test function for multi-objec- 
tive optimization problems. ZDT2 is a monomodal and 
non-convex function defined by Expression (6). 
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        (6) 

Using spherical SOM, we visualized data containing 
objective functions for Pareto-optimal solutions obtained 
from ZDT2 and the design parameters that determined 
them. The input data consisted of 12 dimensions: 2 di-
mensions of objective functions  1 2f , f

 10, , ,
 and 10 dimen-

sions of design variables 1 2x x x . We used 100 
data points.  

For comparison we used SOMPAK, a freely available 
plane SOM program package. SOMPAK allows us to 

configure the dimensions of the competitive layer, amongst 
others, and can output the training results in both numeric 
and image formats. For this experiment we configured the 
lattice to a hexagonal grid and the neighborhood function 
to a step function. Table 3 shows the other configurations. 
Also, we set the initial number of exposures to 100,000, 
meaning the 100 Pareto-optimal solutions would be ex- 
posed to the competitive layer 1,000 times each. 

To meet the conditions of the plane SOM, our sphere- 
cal SOM was configured with a step function as the 
neighborhood function. The competitive layer was initia- 
lized with random values. Table 3 shows configurations 
for the spherical SOM as well. 

Figure 6 is the result from the plane SOM. It is colo- 
red with the same method as the spherical SOM. It shows 
that high values for 1f  concentrate on the lower right 
corner and low values for 1f  concentrate on the lower 
left corner. 

Figure 8 shows the parameters represented by points 
, 2  and 3  on Figure 7. From these parameters 

alone, these three data points are similar in pattern.  
and 2 , particularly, should be placed rather close to 
each other on the visualized map.  

p1 p

p

p
p1

Of course, this is not to say that all similar data points 
appeared close to each other on the spherical SOM. 
However, we have shown that some relationships other- 
 

Table 3. Configurations of the SOM. 

 Number of neurons
Number 

of  
learning 

The initial 
value of 

learning rate 

The initial 
value of 

neighborhood 
range 

Plane 
SOM 

900 (30 × 30) 2.56 0.05 15 

Spherical 
SOM 

1,002 (10 × 10 × 10 + 
2) 

14.13 0.05 15 

 

 

Figure 6. Visualization of ZDT2 on a spherical SOM. 
 

 

Figure 7. Visualization of ZDT2 by plane SOM. 
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f1 f2 x1x2 x3 x4 x5 x6 x7 x8 x9 x10

min

max

f1 f2 x1x2 x3 x4 x5 x6 x7 x8 x9 x10 f1 f2 x1x2 x3 x4 x5 x6 x7 x8 x9 x10

p1 p2 p3

 

 

Figure 8. Objective functions and design variables for each points (p1, p2, p3). 
 
wise obscured in the plane SOM were indeed observable 
in the spherical SOM. 

 

The next section shall describe how the same is true 
for a diesel engine design problem. 

6.2. Fuel Injection Scheduling for Diesel Engines 

6.2.1. Overview 
Diesel engines are generally more durable and fuel-effi- 
cient than gasoline engines, and they also have a lower 
CO2 emission. However, ecological concerns are rising 
and regulations have become more strict. In reacengines’ 
CO2 emission, gasoline and diesel alike. 

Figure 9. Injection mechanism of diesel. Recent diesel engines make it possible to electroni- 
cally control the EGR rate (exhaust gas recirculation rate) 
and swirl ratio. Timings of fuel injection and its chrono- 
logical ratios can also be altered. Modifying these values 
have the effect of changing the SFC (specific fuel con- 
sumption) and the amount of NOx (nitrogen oxides) gen-
erated. Attempts have been made to electronically con-
trol engine parameters to reduce SFC, NOx emission and 
soot emission at once. This optimization problem is 
called the diesel engine fuel injection scheduling problem, 
and is usually handled as a multiple-objective optimiza- 
tion problem because there are trade-offs between NOx 
and soot as well as NOx and SFC. 

 
scheduling problem. Configurations for SOMPAK and 
the spherical SOM were identical to those shown in Ta-
ble 3. 

Figure 10 shows results from the spherical SOM. Each 
sphere in these images is turned to the left by 90 degrees to 
render the next one. The sphere is colored according to 
SFC values: red when SFC is high and purple when low. 
A cluster of red is shown where SFC is particularly high. 

Figure 11 shows the visualization by plane SOM. 
High SFC values are concentrated to the top left, and the 
values go down in the order of top right corner, bottom 
right corner and bottom left corner. In this experiment we deal with two-stage fuel in jec- 

tions, as shown in Figure 9. The design variables are the 
parameters of a diesel engine that are electronically con-
trollable now or will be controllable in the future, in-
cluding the boost pressure, EGR rate, start angle, and 
swirl ratio. Table 4 shows the 11-dimensional data used 
for this experiment. The design variables are as they ap-
pear in paper [11]. 

Both the spherical SOM and plane SOM show SFC 
values change gradually as we move from one point to 
another. Thus the spherical SOM is capable of catego- 
rizing and visualizing the solution space, just as Obaya- 
shi [12] stated was possible for plane SOM. 

6.2.3. Differences in Data Placement 
We have seen that plane SOM can effectively visualize a 
Pareto-optimal solution set, but some data that are similar 
to each other may have been positioned on opposite 
edges. We shall investigate where points of data from 
plane SOM (Figure 11) are shown in spherical SOM. 

Pareto-optimal solutions with different SFC, NOx and 
soot values can be obtained by adjusting the design vari-
ables. This experiment used data that contains the 3 di-
mensions of objective functions and 8 dimensions of 
design variables. 

First let us look at p2 and p4. The objective functions 
and design variables are relatively similar, and should be 
displayed close to each other in a SOM visualization. 
However, in the plane SOM, they are placed on opposite 
edges on the right side. This results in the data points  1p

6.2.2. Visualization of the Pareto-Optimal Solution 
Set Using Spherical SOM 

We trained a spherical SOM 1000 times using 100 
Pareto-optimal solutions obtained from the fuel injection  
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Table 4. Design variables and objective function of input data. 

 Name p 1 p2 p3 p4 p5 

f1: Fuel emissions 458.7836 226.3017 260.8934 290.4700 160.1595 

f2: NOx emissions  0.0004 0.0006 0.0004 6.2650 0.0006 Objective Functions 

f3: Soot emissions  0.0963 0.0752 0.1063 0.0006 0.0875 

x1: Boost pressure 3.5000 3.5688 3.4938 3.5188 3.4938 

x2: Recirculation rate  0.2906 0.2906 0.2906 0.0000 0.2906 

x3: Swirl ratio:  5.5781 5.9531 4.3125 5.9844 5.0516 

x4: First injection period  8.2813 12.7660 15.3910 3.0000 14.5160 

x5: Middle injection period  13.5938 3.6566 3.7500 17.2500 3.0000 

x6: A second injection period 10.3594 13.5313 17.4688 -1.2500 13.5313 

x7: Injection start angle 9.7656 9.3750 8.8281 5.7656 8.8281 

Design Variables 

x8: First fuel injection (rate)  0.5445 0.5047 0.7625 0.7883 0.7953 

 

 
0°                         90°                        180°                       270° 

Figure 10. Visualization of SFC space on a spherical SOM. 
 

 

Figure 11. Visualization of SFC space on a plane SOM. 
 
through 5  to be mapped to a sideways U-shape span-
ning over the entire map. On the other hand, the spherical 
SOM in Figure 10 shows  and  side by side. 

p

2 4

Next, let us look at 1  and 3 . Because these injec-
tions differs in shape, as shown in Figure 11, the value 
of 

p p
p p

1f  differs, and so does each point in Figure 10. 

However, whereas p1 and p3. are plotted far from each 
other in plane SOM (Figure 11), they are close by in 
spherical SOM (Figure 10). This is the result of design 
variables 4x  through 8x  in Table 4 4x  through 8x  
determine the shape of injection. p1 and p3 have different 
values for these variables, but the other variables are 

Copyright © 2012 SciRes.                                                                                 JSEA 
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similar. These points were seen as completely different 
on the plane SOM, but on the spherical SOM they are 
seen as similar points of data, albeit being in different 
clusters. This means that the spherical SOM was capable 
of a certain kind of clustering not offered by the plane 
SOM. 

These results tell us that not only does the spherical 
SOM have the same benefits of the plane SOM, but can 
also present similarities more accurately. Thus the sphe- 
rical SOM is suitable for visualizing a Pareto-optimal 
solution set. 

7. Conclusions 

In this study, we discussed the visualization of Pareto- 
optimal solutions of multiple-objective optimization pro- 
blems using SOMs (self-organizing maps). More spe- 
cifically, we focused on spherical SOMs instead of the 
traditional plane SOMs. Plane SOMs can cause distor- 
tions of data along its edges, whereas spherical SOMs, 
due to the fact that they have no edges, can visualize si- 
milarities among data more accurately. We also imple- 
mented a spherical SOM for execution with GPUs and 
evaluated its performance. 

First we described the details of implementation and 
discussed its parallelism. Then we compared its execu- 
tion time with multiple GPUs and a CPU. The results 
showed that GPU usage yielded considerably higher 
performance. 

Then we used two Pareto-optimal solution sets from 
multiple-objective optimization problems to evaluate the 
effectiveness of spherical SOMs. The first was a test fun- 
ction commonly used in research for multiple-objective 
optimization, and the other was a real-life diesel engine 
fuel injection scheduling problem. We showed from the 
results that the spherical SOMs not only offered the 
benefits of the plane SOM but also was capable of map- 
ping data more accurately. We also showed that spherical 
SOMs let us grasp more versatile clusters of data. Thus, 
using a spherical SOM to visualize a Pareto-optimal so- 
lution set is a highly viable approach. 

In future studies, we shall evaluate spherical SOMs and 
their implementations on a variety of problem sizes. We 
shall also further validate the use of GPUs for spherical 
SOMs and, at the same time, make attempts to make 
memory access more efficient. 
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