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Abstract 
 
Efforts to find an ideal model for pancreatitis date back to 1960’s. Many models are suggested since then. 
Every model has its own advantages and disadvantages. Some of these models test etiology while others 
simulate the complications of pancreatitis. An ideal model which by itself demonstrates all aspects of pan-
creatitis including systemic changes is yet to be described. In this review we tried to gather the basic, easy to 
construct models. 
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1. Introduction 
 
Acute pancreatitis (AP) is inflammation of pancreatic 
tissue which can present in a wide spectrum ranging 
from edema of the organ to necrosis and hemorrhage. 
Acute pancreatitis is a multi-etiology disease with con-
troversial physiopathology. Thus, it has an unpredictable 
course without a targeted treatment [1] which results in 
high morbidity and mortality. 

In the clinical setting gallstone obstruction is the most 
common cause (30%-50%) of AP. Alcoholism is the 
second most common cause and recurrent alcoholic AP 
leads to chronic pancreatitis. Infection, autoimmune re-
sponse, trauma, hyperlipidemia, hyperparathyroidism 
account for nearly 10% of AP cases [2]. 

There are many experimental studies which try to ide- 
ntify the pathogenesis and treatment options for pan-
creatitis. In this review we tried to evaluate the differ-
ences between models and the particular methodologies 
of each experimental model with outline of evolution of 
each technique.  

 
2. Closed Duodenal Loop (CDL) Induced 

Pancreatitis 
 

In physiological conditions there is a pressure difference 
between pancreatic duct (PD), sphincter of Oddi and 
duodenum. This prevents duodenopancreatic reflux. 
CDL, by violating this normal state, increases intraduo-
denal luminal pressure causing reflux of duodenal fluid 

to PD causing pancreatitis. Closed loop is constructed 
with duodenum surrounding the opening of the PD. 

This model was first described by Seidel and popular-
ized later by Pfeffer [1]. The first species used were dogs 
but rats were used later on. In dogs, duodenum is re-
sected distal to pylorus and opening of PD then double 
layer sutured. The continuity of the gastrointestinal tract 
is maintained by gastrojejunostomy and common bile 
duct is obliterated with sutures [3]. 

Mc Cutcheon and Race injected barium sulphate in to 
the loop and retrieved it inside the PD intraoperatively 
[4]. The same authors after severing the mucosal valvu-
lae of Oddi found that under physiologic intraduodenal 
pressures reflux into PD occured [5]. In this model if PD 
is sutured pancreas atrophies. Byme and Joison’s modi-
fication enables easy suturing of distended PD after in-
jection of secretin [6]. 

Contributions to this method were made by Chetty et al. 
via either filling the duodenum with Proteus and E coli 
infected human bile [2] or filling duodenum with auto-
claved human bile [7]. 

This model also explains the hyperamylasemia and 
duodenopancreatic reflux in afferent loop obstruction 
after Billroth 2 gastrectomy [8]. 

The histopathological changes in pancreas after this 
method are studied in detail by Rao et al.  

Mild to moderate pancreatitis is seen in six hours and 
hemorrhagic pancreatitis becomes widespread after 18 
hours. Although changes similar to human pancreatitis is 
encountered, this could also be the result of systemic 
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response to duodenal surgery [9]. 
Dickson et al. assessed the applicability of CDL on 

humans [7]. Their criticism was as follows: 
- Generally mild pancreatitis occurs 
- Infected duodenal fluid flows into PD and causes 

bacterial infiltration of pancreas while this is not the 
usual case in human pancreatitis 

- Transmural duodenal necrosis and cholangitis kill the 
animal 

- Peritoneal sepsis and bacteremia accompanies the 
pancreatitis at all times in CDL whereas  

This is not a common finding in human pancreatitis 
[10]. 
 
3. Diet Induced Pancreatitis 
 
The relationship between feeding with ethionine and 
acute pancreatitis is well known [11]. 

Ethionine is toxic to pancreatic acinar cells [12]. It 
inhibits phospholipid metabolism intracellularly [13,14]. 
Lombardi et al induced acute hemorrhagic pancreatitis 
in female mice with 0.5% ethionine enriched diet [15]. 
Widespread intra-abdominal fatty necrosis follows pan-
creatitis. If feeding is limited to 24 hours mortality is 
55-60%. If fed ad libidum this diet is 100% lethal in 5 
days [16]. Histopathologic and gross examination of 
pancreas between 48-72 hours after 24 hours feed did 
not show any pancreatic damage [17]. When animals are 
fed with choline, pancreatitis does not develop [18]. 
Choline takes up the ethyl groups liberated during 
breakdown of ethionine. Female sex steroids seem to 
promote development of pancreatitis so either young 
female mice or oestrogen treated male mice are pre-
ferred [19]. 

Diet without choline exerts synergistic effect to ethi- 
onine causing intraparanchymal activation of zymogens 
leading to massive hemorrhagic necrosis. The subcellu-
lar mechanism underlying this is the inhibition of mem-
brane lipid synthesis resulting in breakdown of endo-
plasmic reticulum and release of autophagic vacuoles. 
The end result is autolysis [20-22]. 

The diet model appears to be a good approximation of 
severe necrotizing human pancreatitis. Both the gross 
and histological appearance of the pancreatic and peri-
pancreatic inflammation as well as the clinical and bio-
chemical course of diet-induced pancreatitis resemble 
human disease. Ascites, acidosis, hypoxia and hypo-
volemia occur in this model like in human pancreatitis. 
The time course of the morphological and biochemical 
alterations have extensively been studied and are thus 
well defined in this model. However, small size of the 
animals used is a limitation for evaluation of surgical 
procedures and new diagnostic tools [23]. 

4. Arginine Induced Pancreatitis 
 
Apart from ethionine, other amino acids like arginine can 
also induce pancreatitis. High dose intraperitoneal injec-
tion of 500 mg/100 gr arginine can cause acute necrotiz-
ing pancreatitis in rats, rabbits and mice [24-28]. 

The possible mechanisms underlying the effect of ar-
ginine is via excessive nitric oxide production, lipid per-
oxidation and inhibition of protein synthesis [29-31]. 

Dose and exposure of arginine determines the severity 
of pancreatitis in this model. The changes range between 
interstitial edema, inflammatory infiltration, acinar de-
granulation to massive necrosis after 250 mg/kg and 450 
mg/100 kg of injections respectively [32,33]. 

In addition to ease in controlling the destruction, argi- 
nine exerts minimal effect on other tissues which makes 
this model a plausible non invasive method for experi-
mental pancreatitis [34]. 

The only drawback is its weak clinical relevance which 
made this method get replaced by other models. 
 
5. Secretagogue Induced Pancreatitis 
 
Cerulein is a decapeptide analogue of cholecystokinin 
(CCK) derived from the skin of the amphibian Hyra 
caerula. When given either 1-5 ng/kg intravenous (iv) 
bolus or 0.25-1 ng/kg/min iv infusion or 50-100 ng/kg 
subcutaneously this substance increases pancreatic secre-
tions [22]. If administered in supramaximal doses it 
causes edematous pancreatitis by increasing pancreatic 
protein secretions [35]. 

Cerulein interferes with packaging of zymogens and 
lysosomal hydrolases after synthesis in endoplasmic re-
ticulum leading to intracellular activation of trypsinogen 
[36]. In 48 hours after infusion zymogen granules start 
fusion with lysosomes resulting in inflammation and 
acute pancreatitis [37,38]. 

The usual way of administration is by a catheter in-
serted in internal jugular vein of the rat at a rate of 1-2 
ml/hour [39,40]. Cerulein can be diluted in normal saline 
and infused iv in 3-5 hours [41,42]. 

Cerulein can also be administered intraperitoneally [43- 
45]. Multiple injections can be done in one hour intervals 
with 5-200 g/kg doses.  

Subcutaneous delivery can be achieved in multiple in-
jections with 25-50 g/kg dose [46,47]. 

In order to increase the degree of pancreatitis more 
than one model can be used. Schmidt et al. combined iv 
cerulein (5 g/kg/hr) with low pressure intraductal gly-
codeoxycholic acid infusion [48]. They observed that 
edema, acinar necrosis, inflammation and hemorrhage 
were profound.  

Schoenberg et al. infused cerulein (5 micrograms/kg 
per hour) for 30 minutes, 3.5 hours, and 12 hours in rats. 
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No damage was seen after 30 minutes whereas after 3.5 
hours interstitial edema, intravascular migration of gran- 
ulocytes, zymogen degranulation and acinar cell necrosis 
was seen. After 12 hours, histological evaluation showed 
pronounced zymogen degranulation, extensive tissue 
necrosis, and migration of granulocytes into the tissue. 
Amylase and lipase activities increased 15 and 35-fold 
respectively during this time [49]. 

6. Duct Obstruction Induced Pancreatitis 

This model mimics benign and malignant partial or com-
plete obstruction of PD. The model reflects tumors, gall-
stone disease, trauma in the clinical setting. The surgical 
manipulation is simple, requiring either ligation of the 
common biliopancreatic duct or obstruction of the pan-
creatic duct by vertical cannulation or insertion of a bal-
loon-tipped catheter. The point of obstruction is close to 
the entry to duodenum, much like gallstone obstruction 
at the ampulla of Vater [50,51]. 

Duct obstruction leads to acinar atrophy without caus-
ing pancreatitis. The physiological mechanism of this 
model is thought to be similar to that of the CDL tech-
nique. It is postulated that bile reflux by triggering intra-
pancreatic digestive enzyme activation accounts for the 
major pathological factor in this model. Duct obstruction 
induced pancreatitis can be complicated with other 
stimulations and surgical manipulations. 

For example, caerulein or secretin can be administered 
to the animal together with duct ligation to exaggerate 
the pancreatic secretions [52-54]. 

The severity of pancreatitis produced by the duct ob-
struction model varies depending on the animal species 
used for experiment. In dogs physiological pressure in 
PD is 30 cmH2O [55]. When PD is ligated pressure rises 
to 40-80 cmH2O in 6-12 hours. Fluid accumulation in PD 
starts in 10-30 hours and continues up to 40 hours [56, 
57]. 

After 24 hours the equilibrium between secretion and 
PD obstrucion is maintained which stops further PD 
pressure rise and parenchymal water content [55,56]. One 
week after PD ligation acinar cell zymogen content was 
found to be decreased, rough endoplasmic reticulum is 
fragmented, golgi apparatus function is lost, autophagic 
vacuoles appear and exocrine pancreas is replaced with 
fibrous tissue [57]. These changes occur faster in rats than 
dogs. In rats, main bile duct passes through pancreas and 
many small pancreatic ducts join with it. In order to pre-
vent flow of only pancreatic secretions, duodenum is 
separated from transverse colon and a polyethylene tube 
inserted in to the proximal part of main bile duct [58].  

In rabbits PD obstruction does not lead to the mor-
phological changes of pancreatic trauma or inflammation 
but exocrine pancreas atrophies. PD is directly cannu-

lated and located in vertical direction in rabbits. This is 
thought to mimic obstructive biliary pancreatitis in hu-
mans [59]. This technique had been also utilized for as-
sessment of effect of pancreatic enzymes on small intes-
tine brush border enzyme activity [60]. 

Oppossums were also used for this model. Oppos-
sum’s bile structure closely resembles human biliary 
system. Bile tract has a single terminal end combining 
with PD 2-3 cm before opening into duodenum. 

Occlusion of the common bilipancreatic duct causes 
acute hemorrhagic pancreatitis and results in 100% mor-
tality in 14 days [61].  

When it is sutured adjacent to duodenum, pancreatic 
edema forms in 6 hours and peaks in 12 hours. At this 
stage fatty necrosis and parenchymal hemorrhage start to 
appear and infiltration by inflammatory cells occurs [61- 
63].  

Another variant of this techique is partial obstruction 
of the pancreatic duct studied on cats. After exposure of 
the PD it is partially sutured proximally. PD is cannu-
lated from the tail and secretions are collected. The se-
cretion is increased with secretin and CCK. It was found 
that changes in pancreas depend on the degree of ob-
struction. If it exceeds 75%, acinar atrophy and decrease 
in response to secretin and CCK stimulation occurs.  

Lesser degrees of obstruction only impairs enzymatic 
secretions. Three months after recovery from obstruction 
neither enzyme nor bicarbonate secretions return to nor-
mal and tissue regeneration does not occur [64]. The 
disadvantage of this technique is difficulty in determin-
ing the degree of obstruction which is assessed by in-
stilling vinyl chloride in retrograde fashion in to PD and 
examining it under microscope. 

The duct obstruction model has high clinical relevance 
in that it simulates obstruction induced AP. Moreover, 
this induction method is quick and does not require so-
phisticated surgical techniques. These advantages have 
made this model a favorite for investigating the patho-
physiology, as well as the therapeutic treatment of ob-
struction induced pancreatitis. It does not require ad-
ministration of systemically active substances. Although 
not used as frequently as it had been, it should be kept in 
mind when experimenting chronic obstructive pancreati-
tis as acinar cell loss and fibrosis is encountered in long 
term ductal obstruction. 

7. Ex Vivo Perfusion Model 

This model was first described by Saharia et al. in 1977. 
It enables experimentation of different etiologies of pan-
creatitis [65]. 

The technical details are as follows: Pancreas of the 
dog is mobilized with the duodenal segment adjacent to 
it. Splenic artery and superior mesenteric artery distal to 
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inferior pancreaticoduodenal artery is cannulated. Portal 
vein is cannulated and incoming venous blood is col-
lected in a reservoir. A 16 G polyethylene catheter is 
placed in PD via a small duodenotomy. The circulation 
in this model is first started with 200ml of autologous 
blood. Human serum albumin (2.5 g), glucose (500 mg) 
and sodium bicarbonate (20 ml) is added to the perfused 
blood. During the experiment pH should be kept at 7.40. 
Blood glucose level is fixed at 100 mg/dl [65,66]. 

After the pancreas is harvested it is stored on a plexi-
glass surface in a humid environment. The blood in ve-
nous reservoir is passed through 95% oxygen and 5% 
carbondioxide suppyling oxygenator. Another pump pu- 
shes back the blood via the splenic and superior mesen-
teric arteries. The index for blood flow is either 20-30 
ml/min or 1 ml/min/6 gr of tissue [67]. Temperature of 
the perfusate is adjusted to 37°C. Partial obstruction can 
be added to the model by inserting 25 G catheter in to 
pancreas [68]. Increasing the blood flow results is edema 
[65]. Albumin added previously decreases edema and 
hemorrhage of the pancreas [69]. 

Alcoholic pancreatitis can be induced by adding free 
fatty acids or acetaldehyde in to perfusate [65,70-73]. 
Different etiologies can be studied by changing the flow 
rate, oxygen content, delaying perfusion or adding ceru- 
lein [71,74,75]. 

Although expensive, ex vivo perfusion model is a 
plausible model as the organ is isolated from body pre-
venting systemic factors intervening. A complex equip-
ment which has a propensity for breakdown in about 4 
hours made this model remain inpopular. 
 
8. Duct Infusion Pancreatitis 
 

Cannulation of the pancreatic duct provides another way 
of inducing an experimental AP model. Once the cannula 
has been implanted, an exogenous substance can be in-
fused into the pancreas via the pancreatic ductal system. 
Several substances have been used as inducers of pan-
creatitis in this method. These have included stimulating 
factors and toxic substances such as bile acids (tauro-
cholate or glycodeoxycholic acid), ethyl alcohol, perace-
tate and tert-butyl hydroperoxide. The most common of 
all these substances are bile acids [76-78]. 

In rats biliopancreatic duct is catheterized with 24 G 
polyethylene tube and ligated [79]. Main hepatic duct is 
clamped under liver and intraductal infusion is started. 
Glycodeoxycholic acid prepared in glycylglycine buffer 
(pH = 8) is recommended as infusate. Infusion should be 
in 1.5 minutes, with 30 mmHg pressure and 0.1-0.5 ml 
volume. 

In dogs trypsin is used along with bile acids [80]. After 
duodenectomy accessory pancreatic duct is cannulated 
with 1.5 mm tube and bile acids and trypsin in 1:1 ratio, 

0.5 ml/kg solution is given with 140-150 mmHg pressure. 
Infusion of bile acids is a fast and cheap way of inducing 
pancreatitis resembling human pancreatitis. Mortality 
can be controlled with changing the quantity of the in-
fusate. Both edematous and hemorrhagic pancreatitis can 
be induced. Major disadvantage is different response of 
different species to infusion. 

Taurodeoxycholate (0.2 ml, 0.025 molar, glycylgly 
cine-NaOH, pH: 8.0) is the second most used substance. 
In rats it is delivered 0.04 ml/min with an infusion pump 
[81]. Schoenberg et al. recommend that the pressure does 
not exceed 15 cmH2O during infusion [82]. In 3.5 hours 
20% of rats die while in 57% die in 12 hours. After 3.5 
hours fulminant hemorrhagic pancreatitis is seen under 
light microscope. Zymogen degranulation, 50% cell ne-
crosis, mild tissue edema, inflammatory cell infiltration 
is observed. In 12 hours almost all of the acinar cells 
undergo necrosis.  

In dogs 20 G catheter is placed in pancreatic duct and 
1.8 gr sodium taurocholate with 250.000 U benzoyl L- 
arginine ethyl ester hydrochloride crystal trypsine in 20 
ml sorenson buffer infusion is carried on for 30 minutes 
not exceeding a pressure of 30 cmH2O [83]. Intraductal 
taurocholate infusion causes severe pancreatitis. Inflam-
mation is not homogenous and mostly on the head of 
pancreas [84]. 

The repeatability and clinical relevance associated 
with the duct perfusion induced pancreatitis make it an 
excellent experimental model for pancreatitis studies. 
However it requires careful monitoring of perfusion 
pressure and an invasive surgery. Intraductal infusion of 
saline alone has been reported to induce mild pancreatitis 
[85]. Findings demonstrated that pancreatic injury is at-
tributable not only to the exogenous substance infused 
but the combination of the exogenous substance and the 
hydrostatic pressure associated with the infusion. The 
presence of exaggerated hydrostatic pressure makes it 
less clinically relevant relative to other models like the 
duct obstruction model. Despite this drawback, the duct 
perfusion model is the most commonly used pancreatitis 
model because of its similarity to clinical pancreatitis 
[86,87]. 

The confounding effects of increased ductal pressure 
can be ameloriated by antegrade perfusion model which 
is first studied by Reber et al. [88]. They used cats for 
this purpose. The technique requires removal of spleen 
and greater omentum. Two catheters are placed in PD; 
one through duodenum and the other from the tail of 
pancreas [89]. Perfusion is maintained by a pump at a 
rate of 0.2-3.75 ml/hour for two hours. At this rate intra-
ductal pressure does not exceed 20 cmH2O. Reber et al. 
recommend use of certain substances (bile, aspirin, hy-
drochloric acid, ethanol, secondary bile acids) to over-
come pancreatic canal barrier and increase permeability. 
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9. Vascular Induced Pancreatitis 
 
Acute pancreatitis is encountered after cardiopulmonary 
bypass [90]. Changes in vascular perfusion of pancreas 
leads to pancreatitis in many animals including dogs, rats, 
cats [91,92]. 

Vascular perfusion can be changed by altering either 
of inflow, outflow or microcirculation of the organ. 

In 1962 Pfeffer et al. used 8-20 gr polyetyhlene mi-
crospheres to occlude superior pancreaticoduodenal ar-
teries. With this technique irreversible occlusion of ter-
minal arterioles is achieved impeding microcirculation 
[93] causing hemorrhagic pancreatitis in 11 hours. Using 
larger particles only result in pancreatic edema.  

Permanent occlusion of the superior pancreaticoduo-
denal artery results in elevated serum pancreatic enzymes 
and necrosis. However, the artery occlusion induced pan-
creatitis model has weak clinical correlation because 
pancreatitis induced by artery occlusion in humans is 
rare [94]. 

Pancreatic blood flow can also be severed by occlu-
sion of pancreatic veins, either by ligation or injection of 
microspheres. Splenic or gastroduodenal vein occlusion 
has been shown to lead to elevated serum amylase and 
histopathological findings [95]. 

One of the methods for suppressing the inflow to the 
pancreas is to create a low flow state by inducing hypo-
volemic shock. In 1987, Brasilia et al. showed that with-
drawal of 30% to 35% of blood from dogs created hy-
povolemic shock. After 3 hours of hypovolemia canine 
pancreases showed a significant weight gain. 

Microscopic analysis revealed significant edema, he- 
morrhage, acinar cell necrosis, and fat necrosis. Hypo-
volemic shock induced pancreatitis imitates the pan-
creatitis observed after extensive surgery in the clinical 

setting [96]. 
The major disadvantage of vascular induced pancreati-

tis is the effects of intense surgical trauma exerted on the 
animals. It neccessitates extensive bleeding, complex 
surgical protocol and continuous analgesia. It is usually 
applied to large animals like dogs and pigs. In hypo-
volemic shock induced pancreatitis, the damage is not 
localized to pancreas but systemic. Venous occlusion and 
disturbance of pancreatic microcirculation have low re-
peatability. Thus, the vascular-induced pancreatitis mo- 
del has become less popular [97]. 
 
10. Intraparenchymal Taurocholate  

Injection 
 
This model is worth mentioning because it is highly re-
producible any easy to apply. 

When injected into tail or body of rat pancreas with 25 G 
needle, 1 ml 10% solution of taurocholate causes ne-
crotic lobules, fatty necrosis in and arround pancreas 
[98]. 

Paran et al. showed that six hours after injection 
plasma activites of amylase, lipase and lactate dehydro-
genase increase and twenty four hours after injection 
pancreatic morphological changes with good correlation 
to clinical findings and mortality were seen [99]. 
 
11. Conclusions 
 
Endoveurs to identify an ideal model for pancreatitis date 
back to 1960’s. The models tested are summarized in 
Table 1. Each model has its own advantages and draw- 
backs. The researcher should choose among the models 
depending on what he wants to test in his experiment, the 
infrastructure of his laboratory and his surgical skills. 

 
Table 1. Summary of the models reviewed. 

 Animals Advantages Disadvantages 

CDL Rats, dogs Clinical relevence Complex surgical technique  
   High surgical trauma  
   Not suitable for small animals 
Diet Induced Mice Non invasive, reproducible Weak clinical relevance 
   Suitable for small animals 
Arginine Induced Rats, mice, rabbits Non invasive,easy to control damage, Weak clinical relevance 
  toxicity limited to pancreas  
Secretagogue Induced Mice, rats, rabbits, Non invasive, easy to control damage Weak clinical relevance 
 dogs,pigs Reproducible  
Duct Obstruction Rats, rabbits, opossums Mimics gallstone-obstruction  Severe AP only in oppossums 
  induced pancreatitis  
Ex vivo Perfusion Model Dogs,pigs Organ isolated from systemic effectors Expensive, complex surgery   
   Complex equipment 
Duct Infusion Rats, rabbits, dogs, pigs Clinical relevence, wide spectrum of  Hydrostatic pressure as 
  substances to test confounding factor 
Vascular Induced Rats, cats, dogs, pigs Assesment of operative and  Complex surgical technique  
  venous thrombosis pancreatitis High surgical trauma, expensive 
    Low reproducibility 
Intraparenchymal Taurocholate Rats Highly reproducible, easy to apply Localized pancreatitis 
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Some models test etiology while others simulate the 
complications of pancreatitis. Combination of models 
can also be used if single model does not fulfill the needs. 
Ideal model which by itself demonstrates all aspects of 
pancreatitis including systemic changes is yet to be de-
scribed. 
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