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ABSTRACT 

In this paper we reparameterize covariance structures in longitudinal data analysis through the modified Cholesky de- 
composition of itself. Based on this modified Cholesky decomposition, the within-subject covariance matrix is decom- 
posed into a unit lower triangular matrix involving moving average coefficients and a diagonal matrix involving inno- 
vation variances, which are modeled as linear functions of covariates. Then, we propose a penalized maximum likeli- 
hood method for variable selection in joint mean and covariance models based on this decomposition. Under certain 
regularity conditions, we establish the consistency and asymptotic normality of the penalized maximum likelihood es- 
timators of parameters in the models. Simulation studies are undertaken to assess the finite sample performance of the 
proposed variable selection procedure.  
 
Keywords: Joint Mean and Covariance Models; Variable Selection; Cholesky Decomposition; Longitudinal Data;  

Penalized Maximum Likelihood Method 

1. Introduction 

In recent years, the method of joint modeling of mean 
and covariance on the general linear model with multi- 
variate normal errors, was heuristically introduced by 
Pourahmadi [1,2]. The key advantages of such models 
include the convenience in statistical interpretation and 
computational ease in parameter estimation, which is 
described in Section 2. On the other hand, the estimation 
of the covariance matrix is important in a longitudinal 
study. A good estimator for the covariance can improve 
the efficiency of the regression coefficients. Furthermore, 
the covariance estimation itself is also of interest [3]. A 
number of authors have studied the problem of estimat- 
ing the covariance matrix. Pourahmadi [1,2] considered 
generalized linear models for the components of the 
modified Cholesky decomposition of the covariance ma- 
trix. Fan et al. [4] and Fan and Wu [5] proposed to use a 
semiparametric model for the covariance function. Re- 
cently, Rothman et al. [6] proposed a new regression in- 
terpretation of the Cholesky factor of the covariance ma- 
trix by parameterizing itself and guaranteed the positive- 
definiteness of the estimated covariance at no additional 
computational cost. Furthermore, based on this decom- 
position [6], Zhang and Leng [7] proposed efficient 
maximum likelihood estimates for joint mean-covariance 
analysis.  

As is well known, as a part of modeling strategy, 
variable selection is an important topic in most statistical 
analysis, and has been extensively explored over the last 
three decades. In a traditional linear regression setting, 
many selection criteria (e.g., AIC and BIC) have been 
extensively used in practice. Nevertheless, those selec- 
tion methods suffer from expensive computational costs. 
As computational efficiency is more desirable in many 
situations, various shrinkage methods have been devel- 
oped, which include but are not limited to: the nonnega- 
tive garrotte [8], the LASSO [9], the bridge regression 
[10], the SCAD [11], and the one-step sparse estimator 
[12]. Recently, Zhang and Wang [13] proposed a new 
criterion, named PICa, to simultaneously select explana- 
tory variables in the mean model and variance model in 
heteroscedastic linear models based on the model struc- 
ture. Zhao and Xue [14] presented a variable selection 
procedure by using basis function approximations and a 
partial group SCAD penalty for semiparametric varying 
coefficient partially linear models with longitudinal data. 

In this paper we show that the modified Cholesky de- 
composition of the covariance matrix, rather than its in- 
verse, also has a natural regression interpretation, and 
therefore all Cholesky-based regularization methods can 
be applied to the covariance matrix itself instead of its 
inverse to obtain a sparse estimator with guaranteed posi- 
tive definiteness. Furthermore, we aim to develop an 
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efficient penalized likelihood based method to select 
important explanatory variables that make a significant 
contribution to the joint modelling of mean and covari- 
ance structures for longitudinal data. With proper choices 
of the penalty functions and the tuning parameters, we 
establish the consistency and asymptotic normality of the 
resulting estimator. Simulation studies are used to illus- 
trate the proposed methodologies. Compared with exist- 
ing methods, our procedure offers the following differ- 
ences and improvements. Firstly, Zhang and Leng [7] 
discussed efficient maximum likelihood estimates and 
model selection for joint mean-covariance analysis based 
BIC. As is well known, BIC selection method would 
suffer from expensive computational costs. However, our 
method can select significant variables and obtain the 
parameter estimators simultaneously in the joint model- 
ling of mean and covariance structures for longitudinal 
data, that implies that our method can avoid the heavy 
computational burden. Secondly, in this paper we assume 
the covariates may be of high dimension, which become 
increasingly common in many health studies, and our 
method also can select the important subsets of the cova- 
tiates. Thirdly, we reparameterize covariance structures 
in longitudinal data analysis through the modified Cho- 
lesky decomposition of itself, which is brought closer to 
time series analysis, for which the moving average model 
may provide an alternative, equally powerful and parsi- 
monious representation.  

 T

1, ,
ii i im     1im  i vector and 

The rest of this paper is organized as follows. In Sec- 
tion 2 we first describe a reparameterization of covari- 
ance matrix itself through the modified Cholesky de- 
composition and introduce the joint mean and covariance 
models for longitudinal data. We then propose a variable 
selection method for the joint models via penalized like- 
lihood function. Asymptotic properties of the resulting 
estimators are considered in Section 3. In Section 4 we 
give the computation of the penalized likelihood estima- 
tor as well as the choice of the tuning parameters. In Sec- 
tion 5 we carry out simulation studies to assess the finite 
sample performance of the method. 

2. Variable Selection for Joint 
Mean-Covariance Model 

2.1. Modified Cholesky Decomposition of the 
Covariance Matrix 

Suppose that there are n independent subjects and the ith 
subject has mi repeated measurements. Specifically, de-  

note the response vector  T

1, ,
ii i imy y y



 T

1, ,
ii i imt t t



1, ,i n

 for the ith 

subject, , which are observed at time  

 . We assume that the response vector is  

normally distributed as

 is an   is an  

 m m 1, ,i n 

1

i i  positive definite matrix  . As a 
tool for regularizing the inverse covariance matrix, 
Pourahmadi [1] suggested using the modified Cholesky 
factorization of i

 . To parametrize , Pourahmadi 
[1] first proposed to decompose it as i i i i . The 
lower triangular matrix i  is unique with 1’s on its di- 
agonal and the below diagonal entries of iT  are the 
negative autoregressive parameters 

i
TT T D 

T
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The diagonal entries of  are the innovation vari- 
ances as  2 Varij ij

 ~ ,i i iy N   , where  
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1

1
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j

ij ij ijk ik ij i
k

.  
According to the idea of the proposed decomposition 

in Rothman et al. [6], we let i i , a lower triangular 
matrix with 1’s on its diagonal, we can write  

i i i i . We actually use a new statistically mean- 
ingful representation that reparameterizes the covariance 
matrices by the modified Cholesky decomposition advo- 
cated by Rothman et al. [6]. The entries ijk  in i  can 
be interpreted as the moving average coefficients in 

y l j m  




    

1 1 1i i iy

, 

where    0,i iN D  and  for  

 T

1, ,
ii i im    ijk. Note that the parameters l  and  

 2log ij  are unconstrained.  
Based on the modified Cholesky decomposition and 

motivated by [1,2] and Ye and Pan [15], the uncon- 
strained parameters ij ijk, l  and ij 2log   are modeled 
in terms of the generalized linear regression models 
(JMVGLRM) 

  T T 2 T, , logij ij ijk ijk ij ijg x l z h       .     (1) 

 gHere   is a monotone and differentiable known 
link function, and ijx , ijk  and ij  are the p × 1, q × 1 
and d × 1 vectors of covariates, respectively. The covari- 
ate ij

z h

x  and ij  are the usual covariates used in regres- 
sion analysis, while ijk  is usually taken as a polyno- 
mial of time difference 

h
z

ik ijt t . In addition, denote  

 T

1, ,
ii i imX x x   T

1, ,
ii i imH h h  and . We further  

refer to   as moving average coefficients and   as 
innovation coefficients. In this paper we assume that the 
covariates ijx , ijk  and ij  may be of high dimension 
and we would select the important subsets of the covari- 
ates ij

z h

x , ijk  and ij , simultaneously. We first assume 
all the explanatory variables of interest, and perhaps their 
interactions as well, are already included into the initial 
models. Then, we aim to remove the unnecessary ex- 
planatory variables from the models.  

z h
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2.2. Penalized Maximum Likelihood for 
JMVGLRM 

Many traditional variable selection criteria can be con- 
sidered as a penalized likelihood which balances model- 
ling biases and estimation variances [11]. Let    
denote the log-likelihood function. For the JMVGLRM, 
we propose the penalized likelihood function   

       

       2 3

1 1

p

i

d

j k
j k

p p
 

1

1i

q

L p


 

 
 
 

 TT

1 1; , ,q d   



 

 


       (2) 

where   1 1, , , , ; , ,s p       
with s p q d    and    lp 

 l
 is a given penalty 

function with the tuning parameter . The 
tuning parameters can be chosen by a data-driven crite- 
rion such as cross validation (CV), generalized cross- 
validation (GCV) [9], or the BIC-type tuning parameter 
selector [16] which is described in Section 4. Here we 
use the same penalty function  for all the regres- 
sion coefficients but with different tuning parameters 

 1, 2,3l 

 p 

 1 ,  2  and  3  for the mean parameters, moving 
average parameters and log-innovation variances, respec- 
tively. Note that the penalty functions and tuning pa- 
rameters are not necessarily the same for all the parame- 
ters. For example, we wish to keep some important vari- 
ables in the final model and therefore do not want to pe- 
nalize their coefficients. In this paper, we use the 
smoothly clipped absolute deviation (SCAD) penalty 
whose first derivative satisfies 

     
   I t

1

a t
p I t
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2a 
3.7a 

 

for some  [11]. Following the convention in [11], 
we set  in our work. The SCAD penalty is a 
spline function on an interval near zero and constant out- 
side, so that it can shrink small value of an estimate to 
zero while having no impact on a large one. 

The penalized maximum likelihood estimator of  , 
denoted by ̂ , maximizes the function  L   in (2). 
With appropriate penalty functions, maximizing  L   
with respect to   leads to certain parameter estimators 
vanishing from the initial models so that the correspond- 
ing explanatory variables are automatically removed. 
Hence, through maximizing  L   we achieve the goal 
of selecting important variables and obtaining the pa- 
rameter estimators, simultaneously. In Section 4, we pro- 
vide the technical details and an algorithm for calculating 
the penalized maximum likelihood estimator ̂ .  

3. Asymptotic Properties 

We next study the asymptotic properties of the resulting 

penalized likelihood estimate. We first introduce some 
notations. Let 0  denote the true values of  . Fur- 
thermore, let  

       
TT TT 1 2

0 01 0 0 0, , ,s        
 



 1

. 

For ease of presentation and without loss of generality, 
it is assumed that 0  consists of all nonzero compo- 
nents of  2

0 00  and that  . Denote the dimension of 
 1
0  by 1s . Let 
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1
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 .  

 lHere we denote   as n  to emphasize its de- 
pendence on sample size . n

 1n   is equal to either  , 
 2  or 3 , depending on whether j0  is a component 

of  1 j s0 ,  0  or  0  

,

. 
To obtain the asymptotic properties in the paper, we 

require the following regularity conditions: 
(C1): The covariate vectors ij ijkx z

im

 and ijh  are fixed. 
Also, for each subject the number of repeated measure- 
ments, , is fixed 

 1, , , 1, , , 1, , 1ii n j m k j      . 

(C2): The parameter space is compact and the true 
value 0  is in the interior of the parameter space. 

(C3): The design matrices iX  and iH  in the joint 
models are all bounded, meaning that all the elements of 
the matrices are bounded by a single finite real number. 

Theorem 1 Assume  1 2a O n 0b 
0

n p , n  and 

n  n 

ˆ

 as . Under the conditions (C1)-(C3), 
with probability tending to 1 there must exist a local 
maximizer n  of the penalized likelihood function 

n̂ L   in (2) such that   is a n -consistent estimator 
of 0 .  

The following theorem gives the asymptotic normality 
property of n̂ . Let 
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where 0 j  is the jth component of .    1 1 j s   0 1

Denote the Fisher information matrix of  nI  by  . 
 Theorem 2 Assume that the penalty function 

n
p t

 

 
satisfies 

0
liminf liminf 0n

n t n

p t
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definite matrix  0I   as . Under the same mild 
conditions as these given in Theorem 1, if n

n 
0   and 

nn    as , then the n  n -consistent esti-  

mator  in Theorem 1 must sat- 

isfy 

  1ˆ ˆ ,n n 

0

  ̂
TT T

2
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L
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 , 

where “  ” stands for the convergence in distribu- 
tion;  1

nI  is the 1 1 s s  submatrix of nI  corre- 
sponding to the nonzero components  1

0  and 
1s

I  is 
the  1 1s s

 L

 identity matrix.  
Remark: The proofs of the Theorems 1 and 2 are simi- 

lar to [11]. To save space, the proofs are omitted. 

4. Computation 

4.1. Algorithm 

Because   is irregular at the origin, the commonly 
used gradient method is not applicable. Now, we develop 
an iterative algorithm based on the local quadratic ap- 
proximation of the penalty function  as in [11].  p 
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Finally, by using the Fisher information matrix to ap- 
proximate the observed information matrix, the following 
algorithm summarizes the computation of penalized 
maximum likelihood estimators of the parameters in 
JMVGLRM. 

I I 

Algorithm: 
Step 1. Take the ordinary maximum likelihood esti- 

mators (without penalty)  , 0 , 0  of  ,  ,   as 
their initial values. 

Step 2. Given the current values 
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Step 3. Repeat Step 2 above until certain convergence 
criteria are satisfied. 

4.2. Choosing the Tuning Parameters 

The penalty function l
 involves the tuning pa- 

rameters  that controls the amount of 
penalty. Many selection criteria, such as CV, GCV, AIC 
and BIC selection can be used to select the tuning pa- 
rameters. Wang et al. [16] suggested using the BIC for 
the SCAD estimator in linear models and partially linear 

models, and proved its model selection consistency prop- 
erty, i.e., the optimal parameter chosen by BIC can iden- 
tify the true model with probability tending to one. Hence, 
we use their suggestion throughout this paper. So the 
BIC will be used to choose the optimal   

 l l 

which is equal to either 1 , 1, ,i i p  
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i  is challenging. To 
bypass this difficulty, we follow the idea of [12,16,17], 
and simplify the tuning parameters as 
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in the numerical studies followed, where i
 0, j 0

 and 

k 0
 are respectively the ith element, jth element and kth 

element of the unpenalized estimate  0,  0 and 

i

. 
Consequently, the original s dimensional problem about 
  becomes a three dimensional problem about  

1 2 3   T
, , .     can be selected according to the fol- 

lowing BIC-type criterion  

   log2 ˆ ˆˆBIC , ,
n

df
n n      

0 df s

. 


ˆ

 is simply the number of nonzero co-  where 
 . efficients of 

From our simulation study, we found that this method 
works well. 

5. Simulation Studies 

In this section we conduct simulation studies to assess 
the small sample performance of the proposed proce- 
dures. We consider the sample size n = 100, 200, and 400 
respectively. Each subject is supposed to be measured by 

i  times with i . In the simu- 
lation study, 1000 repetitions of random samples are 
generated by using the above data generation procedure. 
For each simulated data set, the proposed variable selec- 
tion procedures for finding out penalized maximum like- 
lihood estimators with SCAD and adaptive lasso 
(ALASSO) penalty functions [17] are considered. The 
unknown tuning parameters 

m  1 Binomial 11,0.8m  

 l ,  for the 
penalty functions are chosen by BIC criterion in the 
simulation. The performance of estimator 

 1, 2,3l 

ˆ ˆ ,   and 
̂  will be assessed by the mean square error (MSE), 
defined as 
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5.1. Example 1: Linear Mean Model for 
JMVGLRM 

In this example, we first consider the linear model for 
mean parameters as a special JMVGLRM. We choose 
the true values of the mean parameters, moving average 
parameters and log-innovation variances to be  

 with   , 2 0.5   4 0.5,   ,  

 T

7,1 2, ,    0.  with 2 5  , 3 0.4  , and  

 T
,1 2 7, ,      with 1 0.3   , 2 0.3  , respec- 

tively, while the remaining coefficients, corresponding to 
the irrelevant variables, are given by zeros. In the models  

 TT
11,ij ijx x 1ij with x  is generated from a multivariate 

normal distribution with mean zero, marginal variance 1 

and all correlations 0.5. We take  and   7

1ij ijt t
h x




  T2 6
, ij ikt t



 ,t t t  1, ,ijk ij ik ij ikz t 

t

 

and the measurement times ij  are generated from the 
uniform distribution 0, 2U . Using these values, the 
mean i  and covariance matrix i  are constructed 
through the modified Cholesky decomposition described 
in Section 2. The responses i  are then drawn from the 
multivariate normal distribution  

y
 , , 1, , .N i n   

ˆ

i i

The average number of the estimated zero coefficients 
for the parametric components, with 1000 simulation 
runs, is reported in Table 1. Note that “Correct” in Table 

1 means the average number of zero regression coeffi- 
cients that are correctly estimated as zero, and “Incor- 
rect” depicts the average number of non-zero regression 
coefficients that are erroneously set to zero. 

From Table 1, we can make the following observa- 
tions. Firstly, the performances of variable selection pro- 
cedures with different penalty functions become better 
and better as n increases. For example, the values in the 
column labeled “Correct” become more and more closer 
to the true number of zero regression coefficients in the 
models. Secondly, the SCAD and ALASSO penalty 
methods perform similarly in the sense of correct vari- 
able selection rate, which significantly reduces the model 
uncertainty and complexity. Thirdly, for the designed 
settings, the overall performance of the variable selection 
procedure is satisfactory. 

Next, we compare the two decomposition methods 
under two data generating processes, autoregressive (AR) 
decomposition [1] and moving average (MA) decompo- 
sition [6]. The main measurements for comparison are 
differences between the fitted mean i  and the true 
mean i , and the fitted covariance matrix î  to the 
true i . In particular, we define two relative errors as 

   
1 1

ˆˆ1 1ˆˆRERR , RERR .
n n

i ii i

i ii in n

 


 

 
  

   

Here A  denotes the largest singular value of A. We 
compute the averages of these two relative errors for 
1000 replications with n = 100 and 200. Table 2 gives 
the averages of relative errors for the MA decomposition 
and AR decomposition, when the data are generated from 
our model under different true covariance matrix. In Ta- 
ble 2, “MA.data” (“AR.data”) means that the true co- 
variance matrix follows the moving average structure 
(autoregressive structure). “MA.fit” (“AR.fit”) means we  

 
Table 1. Variable selection for JMVGLRM (linear mean model) using different penalties and sample size. 

SCAD ALASSO 
Model n 

MSE Correct Incorrect MSE Correct Incorrect 

100 0.0012 6.9340 0 0.0012 7.0000 0 

200 7.8107e−004 6.9870 0 8.3486e−004 7.0000 0   

400 0.0005 6.9990 0 0.0006 7.0000 0 

100 1.3369e−004 4.9080 0 1.2259e−004 4.9880 0 

200 6.5800e−005 4.9850 0 7.4626e−005 5.0000 0   

400 4.6587e−005 4.9980 0 5.3295e−005 5.0000 0 

100 0.0417 4.8700 0.0010 0.0356 4.9750 0.0010 

200 0.0254 4.9380 0 0.0246 4.9970 0   

400 0.0218 4.9940 0 0.0190 5.0000 0 
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Table 2. Average of relative errors using different methods and sample size. 

MA.fit AR.fit 
True Method n 

 ˆRERR    ˆRR  ˆRERRRE    ˆRERR     

100 0.0159 0.1999 0.0609 0.8528 
SCAD 

200 0.0127 0.1719 0.0554 0.8245 

100 0.0161 0.1548 0.0696 0.8158 
MA.data 

ALASSO 
200 0.0131 0.1442 0.0646 0.8047 

100 0.0495 0.6636 0.0404 0.3061 
SCAD 

200 0.0427 0.6527 0.0356 0.2639 

100 0.0541 0.6960 0.0400 0.2370 
AR.data 

ALASSO 
200 0.0436 0.6473 0.0362 0.2253 

 
decompose the covariance matrix by MA decomposition 
(AR decomposition) to fit data. We see that when the 
true covariance matrix follows the moving average 
structure, the errors in estimating   and  both in- 
crease when incorrectly decomposing the covariance 
matrix using the autoregressive structure, and vice versa. 
However, for this simulation study, model misspecifica- 
tion seems to affect the MA decomposition less than AR 
decomposition. 



  T
ij ijit x

5.2. Example 2: Generalized Linear Mean Model 
for JMVGLRM 

Consider the following logistic link function to model the 
mean component in the JMVGLRM, then we have 

log  

   T T 2 T
0 ,ij ijh

. 

We use the settings in example 1 to assess the per- 
formance of the proposed variable selection procedures, 
and the simulation results are reported in Table 3. 

The results in Table 3 show that under different sam- 
ple size, the proposed variable selection methods have 
the desired performance, which is substantively similar 
to the previous example. 

5.3. Example 3: High-Dimensional Setup for 
JMVGLRM 

In this example, we discuss how the proposed variable 
selection procedures can be applied to the “large n, di- 
verging s” setup for JMVGLRM. We consider the fol- 
lowing high-dimensional logistic mean model in 
JMVGLRM:  

0 0log , , logij ij ijk ijkit x l z        

where 0  is a p-dimensional vector of parameters with 
1 34 4p n    u for n = 100, 200 and 400, and  

0

 

  is a q-dimensional vector of parameters with 


denotes the largest integer not greater than u. In addition, 

1 32 2q n    0  is a d-dimensional vector of   and 

parameters with  T1 3 T
13 3 1,ij ijd n x x      1ijx    with 

is generated from a multivariate normal distribution with 
mean zero, marginal variance 1 and all correlations 0.5. 
We take  

 
1

d

ij ijt t
h x




   

 

 T2 1
1, , , ,

q

ijk ij ik ij ik ij ikz t t t t t t


   

ijt

, 

where the measurement times  are generated from the 
uniform distribution  0, 2U . 

The true coefficient vectors are  

 T

0 31, 0.5,0.5,0 p  -

 T

0 20.4, 0.4,0d  -

 

 

 T

0 20.6,0.6,0 ,q  -

0

 

and, where m  denotes a m-vector of 0’s. Using these 
values, the mean i  and covariance matrix i  are 
constructed through the modified Cholesky decomposi- 
tion described in Section 2. Then, the responses i  are 
then drawn from the multivariate normal distribution 

y

 , , 1, , .N i n   

11261025); Funding Project of Science and Technology 

i i  The summary of simulation re- 
sults are reported in Table 4. 

It is easy to see from Table 4 that, the proposed vari- 
able selection method is able to correctly identify the true 
submodel, and works remarkably well, even if it is the 
“large n, diverging s” setup for JMVGLRM. 
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Table 3. Variable selection for JMVGLRM (generalized li

 
near mean model) using different penalties and sample size. 

SCAD ALASSO 
Model n 

MSE Correct Incorrect MSE Co Incorrect rrect 

100 0.1346 0.1591 6.9580 6.8820 0.0300 0.0700 

200 0.1028 6.9920 0 0.0886 6.9980 0.0010   

04 4.8480 1.4948e 04 4.9900 

400 0.0838 7.0000 0 0.0727 7.0000 0 

100 1.2997e−0 0 −0 0 

200 7.2503e−005 4.9720 0 8.3386e−005 5.0000 0  

0.0030 

400 2.5737e−005 4.9820 0 5.9863e−005 5.0000 0 

100 0.0149 4.9270 0 0.0297 4.9980 

200 0.0086 4.9940 0 0.0178 5.0000 0 



 

400 0.0059 5.0000 0 0.0135 5.0000 0 



 
able 4. Variable selection for high-dimensional JMVGLRM (generalized linear mean model) using different penalties and 

SCAD ALASSO 

T
sample size. 

Model (n, p/q/d) 
MSE Correct Incorrect MSE Co Incorrect rrect 

(100, 14) 0.0053 10.7840 0.0090 0.0063 11.0000 0.0090 

(200, 18) 0.0004 14.9900 0 0.0011 15.0000 0   

0.0060 0.0022 

6.2065e 06 6.8200 5.4613e 06 6.9820 

(400, 24) 0.0002 20.9980 0 0.0005 21.0000 0 

(100, 7) 0.0022 4.8690 4.9990 0.0060 

(200, 9) −0 0 −0 0  

(

0.0060 0.0276 

11.926 12.000

400, 12) 1.8671e−005 9.7170 0 3.1547e−006 9.8960 0 

(100, 10) 0.0151 7.8060 7.9910 0.0060 

(200, 14) 0.0117 0 0 0.0225 0 0 



 

(400, 18) 0.0071 15.9880 0 0.0105 16.0000 0 
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