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ABSTRACT 

The use of prediction error to optimize the number of splitting rules in a tree model does not control the probability of 
the emergence of splitting rules with a predictor that has no functional relationship with the target variable. To solve 
this problem, a new optimization method is proposed. Using this method, the probability that the predictors used in 
splitting rules in the optimized tree model have no functional relationships with the target variable is confined to less 
than 0.05. It is fairly convincing that the tree model given by the new method represents knowledge contained in the 
data. 
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1. Introduction 

In constructing a tree model (e.g., Breiman et al. [1], 
Takezawa [2], Chapter 9 of Chambers and Hastie [3]), 
the optimization of the number of decision rules is cru- 
cial; it is equivalent to the selection of predictors in mul- 
tiple regression and to the optimization of smoothing 
parameters in nonparametric regression. 10-fold cross- 
validation is a well-known technique among diverse me- 
thods of optimizing the number of decision rules. 10-fold 
cross-validation partitions the sample into 10 groups at 
random. Then, nine groups are used as the training data 
for creating a model and the remaining group is used as 
the validation data for estimating the predictive error of 
the model. This procedure is repeated several times and 
the predictive errors are averaged; it yields a reliable 
predictive error. Minimization of the prediction error 
leads to the optimal value of the cost complexity measure 
(hereafter, it is called  ). The optimal value of   
gives the optimal number of decision rules. 

However, experience with real data shows that the 
number of decision rules optimized by 10-fold cross- 
validation tends to be slightly larger than the optimal one 
in terms of prediction error. Thus, the One-SE rule（e.g., 
p. 78 in Breiman et al. [1]）is widely used to derive a 
number of decision rules somewhat smaller than that 
given by 10-fold cross-validation. The One-SE rule em- 
ploys the smallest number of decision rules in the range 
of the standard error of the number of decision rules 
optimized by 10-fold cross-validation. Although this  

method is based on an intuitive idea that, since the num- 
ber of decision rules yielded by 10-fold cross-validation 
is too large, the reduction in the number should be per- 
mitted in the range of the standard error of the number of 
decision rules; the large number of real examples of tree 
models demonstrate the efficacy of this method.  

On the other hand, a tree model is widely applied as a 
tool for extracting beneficial knowledge from mul- 
tidimensional data. That is, the use of a tree model is a 
typical method of data mining. This is because it is pre- 
sumed that each decision rule in a tree model sum- 
marizes information contained in data in simple form. 
However, the contents of a tree model optimized solely 
by 10-fold cross-validation or 10-fold cross-validation 
using the One-SE rule are not always regarded as a series 
of knowledge given by data because a tree model pro- 
duced with the intention to reduce prediction error may 
contain erroneous knowledge. Optimization methods 
centering on prediction error do not consider this possi- 
bility explicitly at least. Since a tree model is derived 
using a finite number of data sets, the possibility that 
erroneous knowledge is contained in a tree model cannot 
be 0. However, if we can estimate this possibility, we can 
quantify the usefulness of a tree model from a point of 
view different from that of prediction error. 

In this paper, we present a method of optimizing a tree 
model using the possibility that the model contains 
apparently inappropriate decision rules; the method does 
not utilize prediction error. It is an application of the 
method of selecting predictors that almost certainly have 
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linear relationships with the target variable in multiple 
regression (Takezawa [4]). In the subsequent section, we 
show using real data that the relationship between the 
prediction error of a tree model and the appropriateness 
of decision rules is not simple. We therefore suggest a 
method of optimizing the number of decision rules using 
the probability that a tree model contains inappropriate 
decision rules in the following section. In the end, a 
numerical simulation of this method and the application 
of this method to the analysis of the real data are shown. 

2. Definition of the Problem Using Real Data 

We employ the first 200 sets of “HousePrices” data 
contained in the R package “AER”. The data consisting 
of 12 variables is about the sale prices of houses sold in 
the city of Windsor, Canada in 1987. Applicants for the 
predictors ( 1 2 3 4, , ,x x x x ) and the target variable (y), 
listed below, are selected from the 12 variables. These 
predictors and target variables are the same as those 
adopted in the multiple linear regression on p. 68 in 
Verbeek [5]. 

x1: Logarithmically transformed lot size of a property 
in square feet. 

x2: Number of bedrooms. 
x3: Number of full bathrooms. 
x4: Is there central air conditioning? (“Yes” = 1, “No” 

= 0) 
y: Logarithmically transformed sale price of a house. 
R package “mvpart” (version 1.6-0) was used to 

produce tree models using this data. By assigning “xv = 
‘min’” and “xvmult = 50” in the command “mvpart()”, 
which is contained in the mvpart package, 10-fold cross- 
validation is carried out 50 times to obtain 

the tree model (Figure 1) is constructed. This tree model 
is composed of 10 decision rules. Such a tree model is 
equivalent to a partition of feature space of by recursive 
binary partitions using decision rules; refer to Figure on 
Figure 9.2 on page 268 in Hastie et al. [6] and Figure 8.3 
on page 398 in Duda [7]. Since x1 stands for the size of a 
house, y should increase when x1 is large. However, the 
third decision rule from the left shows that y is smaller 
when x1 is larger than or equal to 8.175 when compared 
with a smaller x1. On the other hand, when “xv = ‘1se’” 
is set instead of “xv = ‘min’”,   obtained by 10-fold 
cross-validation using the One-SE rule results in the tree 
model shown in Figure 2. It consists of two decision 
rules. The tree model produced by a naive 10-fold 
cross-validation is considerably different from that 
produced by 10-fold cross-validation using the One-SE 
rule. 

Next, the fifth predictor (x5), which takes random 
values, is added and simulation is carried out. When the 
values of x5 are unrelated to y and a tree model is 
produced, for the tree model to be appropriate, it should 
have no decision rules with x5; it is a necessary condition. 

Firstly, a uniform random number that takes values 
between 0 and 1 is used as x5. Simulation with this x5 was 
conducted 500 times while varying the initial value of 
each pseudo-random number. Then, when a naive 10- 
fold cross-validation is used, the tree models produced 
contain decision rules with x5 in 143 simulations. Since 
some tree models contain plural decision rules with x5, 
the total number of decision rules with x5 appearing in 
143 simulations is 261. When 10-fold cross-validation 
using the One-SE rule is adopted, the number of tree 
models containing decision rules with x5 is 2, and the 
total number of decision rules with x5 in the two tree 
models is 4. 

  which 
yields a minimal prediction error. Using the resultant  , 
 

 x3 ≥ 1.5x3 < 1.5

x1 ≥ 8.292 x1 < 8.292x1 ≥ 8.196x1 < 8.196 

x4 ≥ 1.5 x1 < 8.175 x4 < 1.5 x4 ≥ 1.5 x1 ≥ 8.175x4 < 1.5 x2 < 3.5 x2 ≥ 3.5

x1 < 8.012 x2 ≥ 2.5 x1 < 8.656 x1 ≥ 8.656x2 < 2.5x1 ≥ 8.012 

11.813
n = 3

10.979
n = 10

10.493 
n = 22 

10.67 
n = 28 

10.814
n = 37

10.956
n = 47

10.802
n = 6

11.126
n = 12

10.866 
n = 11 

11.206 
n = 14 

11.47 
n = 10 

 

Figure 1. Tree model produced by the first 200 sets of “HousePrices” data. A set of values of predictors is put at the top of the 
model and goes down following the decision rules to reach the terminal node where the estimate of the target value is shown. 
“n=” at the terminal node indicates the number of data sets arriving at the terminal node. α is optimized by 10-fold 
cross-validation. 
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x3 < 1.5 x3 ≥ 1.5 

x1 < 8.196 x1 ≥ 8.196 

11.188

n = 42

10.641 

n = 61 

10.931 

n = 97  

Figure 2. Tree model produced by the first 200 sets of 
“HousePrices” data. “n=” indicates the number of data sets 
arriving at the terminal node. α is optimized by 10-fold 
cross-validation using the One-SE rule. 
 

Next, x5 is set at either 0 or 5 and the probabilities of 
taking both values are equal. This simulation is repeated 
500 times while varying the initial value of each pseudo- 
random number. When a naive 10-fold cross-validation 
is used, 90 simulations resulted in tree models containing 
decision rules with x5. The total number of decision rules 
with x5 in those tree models is 105. When 10-fold cross- 
validation using the One-SE rule is used, only one tree 
model contains a decision rule with x5; the total number 
of decision rules with x5 is 1. 

The above simulations indicate that when is opti- 
mized using prediction error given by 10-fold cross- 
validation to produce a tree model and some of the pre- 
dictors are not related to the target variable, the pro- 
bability of constructing decision rules with a predictor 
not associated with the target variable is not constant. 
This probability depends on the characteristics of the pre- 
dictor that has no relationship with the target variable. 
Hence, when a tree model is constructed using real data 
by 10-fold cross-validation, it is difficult to determine the 
probability that a predictor used in a decision rule in the 
tree model is not associated with the target variable. 
Furthermore, if 10-fold cross-validation using the One- 
SE rule is adopted, this probability is reduced markedly. 
This tendency, however, may prevent the construction of 
beneficial decision rules. 

The simulations thus far show that a naive 10-fold 
cross-validation and 10-fold cross-validation using the 
One-SE rule do not ensure probability that a tree model 
contains decision rules with an inappropriate predictor. 
Therefore, when we aim to obtain decision rules that give 
sound knowledge, optimization methods based on pre- 
diction error are not appropriate. We need a method that 
controls the probability of obtaining meaningless deci- 
sion rules. 

3. A New Method of Optimizing a Tree 
Model 

To control the probability of producing meaningless 

decision rules in a tree model, we suggest a method of 
investigating a tree model yielded using data in which the 
data of some predictors are unrelated to the target vari- 
able. That is, when the data of predictors are repre- 
sented as   , , , 11 2 3 4i i i ix x x x i n   (n is the number of 
data) and the data of the target variable are represented as 
 iy , we carry out the procedure below to optimize   
to be used in the construction of a tree model. 

1) n data are sampled at random with replacement 
from     11ix . The sample is named 5ix i n  . 

2) n data are sampled at random with replacement 
from     12ix . The sample is named 6ix i n  . 

3) n data are sampled at random with replacement 
from     13ix . The sample is named 7ix i n  . 

4) n data are sampled at random with replacement 
from  4i   8 1ix . The sample is named x i n  . 

5) m values (  1 2j m     ) are prepared  

 .  as applicants for 

 6) Using one value in j , a tree mode is produced  

using eight predictors and  iy . Since the values of 
       , , and5 6 7 8i i i ix x x x

, , and

 depend on the initial value 
of the random numbers, 500 data sets are produced while 
varying the initial value of the pseudo random number, 
and a tree model for each data set is constructed. 

7) Tree models that have no decision rules with 

5 6 7 8i i i ix x x x  are chosen from 500 tree models and 
such tree models are counted for each j . The number 
of such tree models is denoted gj. 

8) The procedures from (1) to (7) using each  j  
result in  jg . The value closest to 475 is selected from 
 jg . j corresponding to the chosen gj is denoted 

best . 
9) Using best , a tree model is produced using 

   , , , and1 2 3 4i i i i ix x x x y

 

.  
The adoption of a decision rule with a predictor not 

related to the target variable is equivalent to the rejection 
of the null hypothesis in the test of simple regression; the 
null hypothesis states that the gradient is 0 despite the 
values of the predictor being random and not related to 
the target variable. Hence, 500 500g j  yielded us- 
ing this algorithm is called the risk rate. In this example, 
when the risk rate given by j is roughly 0.05, j  is 
denoted best . Then, the probability that a tree model 
contains decision rules with a predictor that has no fun- 
ctional relationship with the target variable is less than 
0.05. 

The condition that the probability of using a random 
predictor in a tree model is less than 0.05 is a necessary 
condition for constructing a tree model that represents a 
series of knowledge contained in the data. However, 
other necessary conditions along this line are possible. 
For example, if the data of all predictors are replaced 
with data given by bootstrapping the data of respective 
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predictors, the resultant tree model should have no deci- 
sion rules. Hence, the probability of obtaining a tree 
model with one or more decision rules should be small.  
Then, making this probability less than 0.05 will be a 
necessary condition for constructing a tree model for the 
purpose of knowledge acquisition. However, if all pre- 
dictors are random, we determine whether a decision rule 
should be set for each predictor, and no decision rule is 
created if we conclude that a decision rule cannot be 
constructed for all predictors. On the other hand, the 
algorithm suggested above considers the possibility of 
obtaining decision rules with either one of x5, x6, x7, or x8 
beyond the decision rules with x1, x2, x3, and x4 as well as 
the decision rule with either one of x5, x6, x7, or x8 as the 
first decision rule. Therefore, the Algorithms (1)-(9) de- 
scribed above give stricter conditions than the algo- 
rithm performed by making all predictors random. 

4. Numerical Simulation 

f four data sets of pre- The simulation data consists o
dictors   1 2 3 4, , , 1 200i i i ix x x x i   and one data set of  

the targ   et variable        3 4,  and i ix x,   1 2i i iy x x ,

are all uniform random numbers betwee and 1. n 0  iy  
are obtained using 

1 22 3 .i iy x x                 (1) 

 i  are realizations of  20,0.5N
butio 2 varianc

 (a normal distri- 
n with 0 mean and 0.5 . Therefore, e)  3ix  

and  4ix  have no functional relationships with th  
get v le. 

400 sets o

e tar-
ariab

f the simulation data were produced. Tree 
m

 
ei

th a risk rate of 0.2 in- 
st

odels are constructed using the method suggested in the 
previous section. Ten tree models contain decision rules 
with x3 but not those with x4, and four tree models 
contain decision rules with x4 but not those with x3. No 
tree models contain decision rules with x3 and those with 
x4. That is, the probability that tree models contain 
decision rules with a random predictor is less than 0.05. 

In this simulation, tree models are constructed using
ght predictors of which six, i.e., from x3 through x8, are 

uniform random numbers between 0 and 1. Then, since 
the probability that a tree model contains decision rules 
with one of the four variables from x5 through x8 is 
roughly 0.05, we can infer that the probability that a tree 
model contains decision rules with either x3 or x4 is 
roughly 0.025. In fact, the number of random predictors 
with the same statistical characteristics is not necessarily 
exactly proportional to the probability that a tree model 
contains decision rules with those predictors because a 
decision rule with x3, for example, is constructed beyond 
that with x5; this means that a decision rule with x3 is not 
constructed if that with x5 does not exist. However, the 
probability that a decision rule with a random predictor is  

constructed beyond another decision rule with another 
random predictor is considered to be small. Hence, let us 
assume that four predictors are uniform random numbers 
between 0 and 1, and that the probability that a tree 
model contains decision rules with those predictors is 
controlled to be 0.05. Then, if two predictors are uniform 
random numbers between 0 and 1, the probability that a 
tree model contains decision rules with one of the two 
predictors will be about 0.025.  

Next, the same simulation wi
ead of 0.05 is carried out. As a result, 31 tree models 

contain decision rules with x3 but not those with x4. On 
the other hand, 28 tree models contain decision rules 
with x4 but not those with x3. One tree model contains 
decision rules with x3 and those with x4. That is, the 
probability that a tree model contains decision rules with 
a random predictor is less than 0.2. 

This time, both  3ix  and  4ix  are replaced with a 
ra th a ndom variable that takes 0 wi 0.5 probability and 5 
with a 0.5 probability. Using this data, the same simu- 
lation is carried out. The result is that two tree models 
contain decision rules with x3 but not those with x4, and 
one tree model contains decision rules with x4 but not 
those with x3. No tree models contain decision rules with 
x3 and those with x4. Although the probability of obtain- 
ing decision rules with a random predictor is changed by 
changing the characteristics of  3ix  and  4ix , the 
probability remains less than 0.05. 

Then, risk rate was shifted from 0.0
 

5 to 0.2, and the 
sa

 
m

5. Real Data Example 

 to the 

me simulation was carried out. Eight tree models con- 
tain decision rules with x3 but not those with x4, and four 
tree models contain decision rules with x4 but do not 
contain those with x3. No tree models contain decision 
rules with x3 and those with x4. This simulation also 
shows that the probability that a tree model contains 
decision rules with a random predictor is less than 0.2.  

All of the above simulations indicate that, using the
ethod suggested in the previous section, if some of the 

predictors are random, the probability that a tree model 
contains a decision rule with one of those predictors falls 
below the assigned risk rate. Therefore, we find that 
when some of the predictors of data are not associated 
with the target variable, the probability that a tree model 
contains decision rules with one of those predictors is 
controlled to be less than the risk rate defined in the 
previous section. 

The method suggested in Section 3 was applied
analysis of the real data treated in Section 2. For this 
purpose,   is fixed at one of the 21 values of  

      exp 5.00 , exp 4.85 , , exp 2.00   . The values  

of the predictors from  5i  through  8i x x  were gene- 
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rated by bootstrapping values from 1i the   x  through 
 4ix , respectively. The simulation usin ese data 

d the results shown in Table 1. This table shows 
the number of tree models that contain no decision rules 
with a random predictor when a value is given as 

 log

g th
yielde

  and when the data of predictors from x5 through 
random. Since 500 simulations with respective 

conditions are conducted, 500 given by −2.00 as 
x8 are 

 log  , 
for example, indicates that none of the tree mo - 
tained contain decision rules with one of the predictors 
from x5 through x8. 

Table 1 shows t

dels ob

hat the by −3.2 as  risk rate given 
 glo   is   0.052 500 474 500  , which is close to 

nce, odel given by this 
condition is 0.05. The resultant tree model is shown in 
Figure 3. This tree model consists of four decision rules. 
Meanwhile, since the risk rate yielded using −3.65 as 

 log

0.05. He  the risk rate of the tree m

  is   0.19 500 405 500  , which is close to 
ndition is shown in 

Figure 4. This tree model is composed of six decision 
rules. The decision rules in these two tree models are 
reasonable. They are better than that shown in Figure 1 
in this regard. 
 

0.2. The tree model given by this

able 1. Number of tree models th ntain no decision 

 co

at coT
rules with a random predictor. 

 log j  −5.00 −4.85 −4. 55 −4.40 70 −4.

jg  0 0 0 3 18 

 log j  −4. −4. −3. −

j

25 10 95 −3.80 3.65 

g  44 98 220 335 405 

 log j  − − − −

j

3.50 3.35 3.20 −3.05 2.90 

g  437 453 474 489 495 

 log j  − − − −

j

2.75 2.60 2.45 −2.30 2.15 

g  498 499 500 500 500 

 log j   

j

−2.00     

g  500     

 
 x3 < 1.5 x3 ≥ 1.5 

x1 < 8.196 x1 ≥ 8.196 

x2 ≥ 3.5 

x1 < 8.656 

x2 < 3.5 

x1 ≥ 8.656

11.188
n = 42

10.641 
n = 61 

10.979 
n = 10 

11.813
n = 3

10.893 
n = 84 

x3 < 1.5 x3 ≥ 1.5 

x1 < 8.196 x1 ≥ 8.196 x1 < 8.292 x1 ≥ 8.292

x2 < 3.5x4 < 1.5 x2 ≥ 3.5 x4 ≥ 1.5 

 

Figure 3. Tree model obtained using the first 200 sets of 
“HousePrices” data. Risk rate is set at 0.05. 

11.018 
n = 18 

10.316
n = 24

x1 < 8.656 

10.979 
n = 10 

11.813 
n = 3 

10.893
n = 84

10.592
n = 50

10.866
n = 11

x1 ≥ 8.656 

 

Figure 4. Tree model obtained using the first 200 sets of 
“HousePrices” data. Risk rate is set at 0.2. 

t produced the 
e

ns 

ethods, rules and the func- 
 contained in a model constructed by a 

g in 
th

 
However, although the procedure tha

tr e models shown in Figures 3 and 4 satisfies the neces- 
sary conditions for a method of constructing a tree model, 
it may not satisfy sufficient conditions. Even if a satis- 
factory tree model construction method has to satisfy 
other conditions, it does not result in a tree model that 
has a larger number of decision rules than the tree model 
shown in Figure 3 or Figure 4. In this respect, the tree 
model shown in Figure 1 does not satisfy the necessary 
conditions that a tree model for knowledge acquisition 
has to satisfy. 

6. Conclusio

In conventional modelling m
tional relationships
model selection method based on prediction error are 
viewed to be a series of knowledge extracted from data. 
The background of this philosophy is instrumentalism. 
That is, if an obtained model has superior ability in terms 
of prediction, the rules and functional relationships con- 
tained in it (i.e., knowledge used in the model) are con- 
sidered dependable. This appears to be an appropriate 
product of the pragmatic methodology of data analysis. 
However, if the probability that some of the rules or 
functional relationships contained in a model that is use- 
ful in terms of prediction are generated only by accident 
is not negligible, we cannot consider that a tree model 
optimized on the basis of prediction error represents un- 
equivocal knowledge. Therefore, prediction error should 
not be used in modelling for the purpose of knowledge 
acquisition. Instead, a tree model, for example, should be 
optimized by controlling the probability that inappro- 
priate rules or functional relationships are obtained. 

Decision rules in a tree model are often considered to 
instinctively represent a series of knowledge existin

e data. Hence, if some decision rules contradict the 
findings on the phenomenon that generates the data, the 
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tion error given by 10-fold 
cr

tio
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