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ABSTRACT 

Conventional Akaike’s Information Criterion (AIC) for normal error models uses the maximum-likelihood estimator of 
error variance. Other estimators of error variance, however, can be employed for defining AIC for normal error models. 
The maximization of the log-likelihood using an adjustable error variance in light of future data yields a revised version 
of AIC for normal error models. It also gives a new estimator of error variance, which will be called the “third variance”. 
If the model is described as a constant plus normal error, which is equivalent to fitting a normal distribution to 
one-dimensional data, the approximated value of the third variance is obtained by replacing (n − 1) (n is the number of 
data) of the unbiased estimator of error variance with (n − 4). The existence of the third variance is confirmed by a sim-
ple numerical simulation. 
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1. Introduction 

Akaike’s Information Criterion (AIC) for multiple linear 
models with normal i.i.d. errors is defined as (e.g., [1,2]) 
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where n is the number of data and q is the number of 
predictors of the multiple linear model. Hence, the num-
ber of regression coefficients in this model is (q + 1) 
when the error variance is regarded as a regression coef-
ficient. X is a design matrix composed of the predictor 
values in the data. y is the vector composed of values of 
the target variable in the data. RSS stands for the residual 
sum of squares: 

0
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where  are the estimators of regression 
coefficients of a multiple linear model. xij(1 ≤ i ≤ n, 1 ≤ j 
≤ q) is an element of X. 
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 is the log-likeli- hood of the regression  

model in light of the data at hand. It is defined as 
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The multiple linear model for obtaining Equations (1) 
and (3) contains 0 1  given by the least squares 
method (also called the maximum likelihood method for 

normal errors), and the error variance (

ˆ, qa

 ) given by the 
maximum likelihood method. 2̂  is derived using 

2ˆ .RSS n                  (4) 
2̂  defined above is used as the error variance in AIC 

because AIC is a statistic based on the maximum-likeli- 
hood estimator. However, the unbiased error variance 
shown below rather than the maximum-likelihood esti-
mator of error variance is utilized in most statistical cal-
culations. 

 2ˆ 1ub RSS n q .              (5) 

The maximum-likelihood estimator of error variance may 
not be the only choice for the error variance for AIC. 
Hence, in this paper, we discusses the adjustment of error 
variance to calculate AIC for normal error models after 
recalling the derivation of conventional AIC for normal 
error models. Then, this consideration leads to a new 
estimator of error variance, which will be called the 
“third variance”. Finally, the existence of the third vari- 
ance is shown by a simple numerical simulation. 

2. Derivation of AIC for Normal Error  
Models 

Conventional AIC for normal error models is easily de-
rived when the multiple linear model with normal error 
assumed by an analyst contains the real equation pro-
ducing the data as a special case. AIC based on these 
assumption is an approximation of 

Copyright © 2012 SciRes.                                                                                  OJS 



K. TAKEZAWA 310 

  
   

* 2ˆ ˆ2 , ,

log 2π log RSS

jE l a

E n n n

    
 

X y

*RSS ,n RSS  
*y

*RSS

2

1 1

ˆ ˆ ,
q

i j ij
i j

a x
 

 
 

 


 

  (6) 

where  is a vector comprising the values of the target 
variable in future data. The design matrix of future data 
is identical to that of the data at hand (X).  is the 
residual sum of squares when future data are employed: 
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 is an element of . 
The expectation of RSS is given by 
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where H is the symmetric matrix ( H H
2 

) and idem-
potent ( H H y

 

). Furthermore, it is assumed that if  
(the values of the target variable with no errors) is em-
ployed, Hy y

ε
2

 holds because it is assumed that the 
regression equation adopted here contains the real equa-
tion producing the data as a special case. 

Since  is a normal error (the mean is 0 and the 
variance is  ), the following equation is obtained: 
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The following equation is also derived: 
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where H  is the trace of H . Hence, Equations 
(8)-(10) give 

    21n q .E RSS              (11) 

Therefore, 2RSS   obeys the 2  distribution with (n – 
q – 1) degrees of freedom. A similar calculation yields 
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Hence, * 2RSS 2 obeys the    distribution with (n + 
q + 1) degrees of freedom.  

Considering Equations (11) and (12), the  content 
in the third term on the right-hand side of Equation (6) is 
transformed into 
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2where 1n q   is a random variable that obeys the   
distribution with  1n q  2 degrees of freedom. 1n q   
is a random variable that obeys the 2  distribution with 
 1n q  1F  degrees of freedom, and 1,n q n q    is an F 
distribution. The first degrees of freedom is  1n q 

 1n q 
 

and the second degrees of freedom is . Hence, 
the expectation of the random variable given by Equation 
(13) is 
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By substituting this equation into Equation (6) and using 
Equation (3), the following equation is obtained: 
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This is AICc for normal error models ([1,3,4]). 
When n is large, the approximation below holds: 
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By substituting this equation into Equation (6) and using 
Equation (3), the following equation is obtained: 
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This is conventional AIC for normal error models. 

3. Adjustment of Error Variance of AIC for  
Normal Error Models 

The estimator of error variance is assumed to be adjust-
able. That is, error variance ( ) is defined as 
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where   is a constant for adjusting error variance. The 
use of AIC

2  in A cIC a
c (Equation (15)) yields AIC  

(AIC-adjustable): 
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Hence, the following AIC  is different from the unbi-
ased estimator of error variance: 
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            (21) 

AIC  will be called the “third variance” because the dis-
covery of this variance follows those of the maximum- 
likelihood estimator of error variance and the unbiased 
estimator of error variance. In particular, when 0q   
which indicates the fitting of a normal distribution to one- 
dimensional data. Although 0   or 1   is adopted 
conventionally, 4   is preferable in terms of log-like- 
lihood in light of future data. 

The substitution of Equations (20) and (21) to Equa-
tion (15) leads to 
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where cAIC

u
c

 denotes the “ultimate AIC”. Simulation 
studies show that the model selection characteristics of 
AIC  falls somewhere between AIC  and cAIC
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4. Numerical Simulation 

The simulation data consists of  (reali-  i
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expressed as follows: 
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Figure 1. Relationship between   and average  

  ˆ ˆ* 2
02 ,il y a  . A circle indicates the minimum point of 

each line. Ten lines reflect 10 repeats of the simulations. 
 

100nwhere  . By altering the seed of random values, 
5000 sets of  iy  and  *

iy  are obtained. Then, 5000  

  * 2
0ˆ ˆ2 ,il y avalues of  are obtained and averaged.   

This procedure is carried out using one of the values 
 9.8, 9.6, 9.4, ,10     as  . 

Figure 1 shows the result of this simulation. Ten lines 
show that the simulation is repeated 10 times by chang-
ing the seed of random values. Each minimum point is 
located around the  4  point; these ten points appar-
ently deviate from the  1  and  0

4
 points. This 

shows that    gives a better log-likelihood in light 
of future data and that the third variance should be con-
sidered. 

5. Conclusion 

AThe error variance for IC
u

 is adjustable. The optimiza-
tion of the errror variance yields cAIC  in which the 
third variance is adopted as the error variance. The third 
variance is different from both the unbiased estimator of 
error variance and the maximum-likelihood estimator of 
error variance. The features and usage of the third vari-
ance remains to be elucidated. 
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