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ABSTRACT 

In this paper, we consider the general linear hypothesis testing (GLHT) problem in heteroscedastic one-way MANOVA. 
The well-known Wald-type test statistic is used. Its null distribution is approximated by a Hotelling T2 distribution with 
one parameter estimated from the data, resulting in the so-called approximate Hotelling T2 (AHT) test. The AHT test is 
shown to be invariant under affine transformation, different choices of the contrast matrix specifying the same hypothe-
sis, and different labeling schemes of the mean vectors. The AHT test can be simply conducted using the usual 
F-distribution. Simulation studies and real data applications show that the AHT test substantially outperforms the test of 
[1] and is comparable to the parametric bootstrap (PB) test of [2] for the multivariate k-sample Behrens-Fisher problem 
which is a special case of the GLHT problem in heteroscedastic one-way MANOVA. 
 
Keywords: Approximate Hotelling T2 Test; Multivariate k-Sample Behrens-Fisher Problem; Wishart-Approximation; 

Wishart Mixture 

1. Introduction 

The problem of comparing the mean vectors of k multi-
variate populations based on k independent samples is 
referred to as multivariate analysis of variance (MANO- 
VA). If the k covariance matrices are assumed to be equal, 
Wilks’ likelihood ratio, Lawley-Hotelling trace, Bart-
lett-Nanda-Pillai’s trace and Roy’s largest root tests ([3], 
Ch. 8, Sec. 6) can be used. When k = 2, Hotelling’s T2 
test is the uniformly most powerful affine invariant test. 
These tests, however, may become seriously biased when 
the assumption of equality of covariance matrices is vio-
lated. In real data analysis, such an assumption is often 
violated and is hard to check. 

The problem for testing the difference between two 
normal mean vectors without assuming equality of co-
variance matrices is referred to as the multivariate 
Behrens-Fisher (BF) problem. This problem has been 
well addressed in the literature. Reference [4] essentially 
showed, via some intensive simulations, that when there 
is no information about the correctness of the assumption 
of the equality of the covariance matrices, it is better to 
directly proceed to make inference using some BF testing 
procedure which is robust against the violation of the 
assumption, e.g., using the modified Nel and van der 
Mere’s (MNV) test proposed by [5]. Other such testing 
procedures include those proposed by [1,6-11], among 
others. Reference [12] compared seven tests and recom-  

mended the tests of [8,9]. However, Reference [5] noted 
that both [8,9]’s tests are not affine invariant. Further 
studies by [5,10,11] indicate that the MNV test is com-
parable to, or better than, other affine invariant tests. 

When k > 2, and the covariance matrices are unknown 
and arbitrary, the problem of testing equality of the mean 
vectors is more complex, and only approximate solutions 
are available. Some of these solutions are obtained via 
generalizing the associated solutions to the univariate BF 
problem. For example, Reference [6]’s first and sec-
ond-order tests are extensions of his series solutions to 
the univariate BF problem. Reference [1] generalized 
[13]’s univariate approximate degrees of freedom solu-
tion to heteroscedastic one-way MANOVA. Both tests 
are based on an affine-invariant test statistic but used 
different approaches to approximate its null distribution. 
Reference [14] proposed a generalized F-test. Reference 
[15] compared James’s first and second-order tests, 
Johansen’s test, and Bartlett-Nanda-Pillai’s trace test and 
concluded that none of them is satisfactory for all sample 
sizes and parameter configurations. Overall, they rec-
ommended the James second-order test followed by the 
Johansen test. Reference [2] claimed, based on a pre-
liminary study, that the James second-order test is com-
putationally very involved, and is difficult to apply when 
k = 3 or more, and offered little improvement over the 
Johansen test. They then proposed a parametric bootstrap 
(PB) test to the multivariate k-sample BF problem or 
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heteroscedastic one-way MANOVA, which is an exten-
sion of their test to the univariate k sample BF problem 
(see [16]). They compared their test, via some intensive 
simulations for various sample sizes and parameter con-
figurations against the Johansen test and the generalized 
F-test of [14] and found that their PB test performed best, 
followed by the Johansen test while the generalized 
F-test performed worst. 

In this paper, we consider the general linear hypothesis 
testing (GLHT) problem in heteroscedastic one-way 
MANOVA. The well-known Wald-type test statistic is 
used. Its null distribution is approximated by a Hotelling 
T2 distribution with one parameter estimated from the 
data, resulting in the so-called approximate Hotelling T2 
(AHT) test. The AHT test can be regarded as a natural 
extension of [8]’s test and [5]’s MNV test from for the 
multivariate two-sample BF problem to for the GLHT 
problem in heteroscedastic one-way MANOVA. In view 
of the good performance of [8]’s test (see [12]), the 
MNV test (see [5]), and the AHT tests for one-way and 
two-way ANOVA (see [17,18]), we expect that the AHT 
test will also perform well for heteroscedastic one-way 
MANOVA. The AHT test is shown to be invariant under 
affine transformation, different choices of the contrast 
matrix used to specify the same hypothesis, and different 
labeling schemes of the mean vectors. It can be simply 
conducted using the usual F-distribution. Intensive sim- 
ulations are conducted to compare the AHT test against 
the Johansen test and the PB test under various sample 
sizes and parameter configurations. The simulation re-
sults show that the AHT test indeed performs well and it 
outperforms the Johansen test substantially and is com-
parable to the PB test of [2]. 

The rest of the paper is organized as follows. In Sec-
tion 2, the AHT test is developed. Simulation studies are 
presented in Section 3. An application to a real data set is 
given in Section 4. Technical proofs of the main results 
are outlined in Section 5. 

2. Main Results 

2.1. The Wald-Type Test Statistic 

Given k independent normal samples   

 , = 1, 2, , , ,lj l p l lj n N  x  = 1, 2, , ,l k

 ,N V
or

   (1) 

where and throughout, p  denotes a p-dimen- 
sional normal distribution with mean vect    and 
covariance matrix V, we want to test whether the k mean 
vectors are equal:  

0 1 2 1: , versus :kH H   0 is not true,H    (2) 

without assuming the equality of the covariance matrices 

l . The above problem is usually referred 
to as the multivariate k-sample BF problem or the overall 

heteroscedastic one-way MANOVA test, which is a spe-
cial case of the following GLHT problem in heterosce-
dastic one-way MANOVA:  

, = 1,2, ,l k

0 1: , vs : ,H H



 C c C c 

, , ,
TT T T

         (3) 

where 1 2 k     is a long mean vector 
obtained via stacking all the population mean vectors of 
the k samples together into a single column vector, 

   

 : q kpC  is a known coefficient matrix with  
Rank   qC : 1q, and c  is a known constant vector. 
In fact, the GLHT problem (3) reduces to the mul- 
tivariate k-sample BF problem (2) when we set  0c  
and set  1 1k k p  , a contrast matrix whose 
rows sum up to 0, where r  and r1  denote the identity 
matrix of size 

, 1  C I I
I

r r  and a r-dimensional vector of ones, 
and   is the usual Kronecker product operator. 

Remark 1 The contrast matrix C for the null hypothesis 
in (2) is not unique. For example,  1 1k k p   
is also a contrast matrix for the null hypothesis in (2). 
However, it will be showed that the AHT test proposed in 
this paper will not depend on the choice of the contrast 
matrices specifying the same hypothesis.  

,  1C I I

2

The GLHT problem (3) is very general. It includes not 
only the overall heteroscedastic one-way MANOVA test 
(2) but also various post hoc and contrast tests as special 
cases since any post hoc and contrast tests can be written 
in the form of (3). For example, when the overall hetero-
scedastic one-way MANOVA test is rejected, it is of 
interest to further test if 1 2 

4 3 0
 or if a contrast is zero, 

e.g., 1 2 3     . In fact, these two testing prob-
lems can be written in the form of (3) with  0c  and  

 1, 2,2
T

k ke e p C I  1, 2, 3,4 3
T

k k k pe e e   

e

 and C I   

respectively where and throughout ,r k  denotes a unit 
vector of length k with r-th entry being 1 and others 0. 

Remark 2 From the above various definitions of C, we 
have 0 p C C I

q k
 where 0C  is a full rank matrix of 

size 0   so that we always have . If  is 
a contrast matrix, so is C.  

0q q p 0C

To construct the test statistic for the GLHT problem  

(3), let 1
1

ˆ nl
l l l ljj

x n x


    and  

   1

=1
ˆ ˆ ˆ= 1

Tnl
l l lj l lj lj

n x x
    μ μ  be the sample  

mean vector and sample covariance matrix of the l-th  

1 2ˆ ˆ ˆ ˆ= , , ,
TT T T

k sample. Set       which is an unbiased  

 . Then  where   ˆ ,kpN  estimator of 

1 2

1 2

diag , , , k

kn n n

  
   

 
 . It follows that  

 ˆ , .TN  C c C c C C 

 

q  This suggests that a 
Wald-type test statistic can be constructed as   

   
1ˆˆ ˆ ,

T TT


   C c C C C c         (4) 
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where 1 2

1 2

ˆˆ ˆ
, , , k

kn n n

  
  
 



̂

 

ˆ diag  . Notice that the distri- 

bution of T is very complicated and its closed-form 
distribution is generally not tractable in the context of 
heteroscedastic one-way MANOVA. 

Remark 3 When the covariance matrix homogeneity is 
valid and the sample covariance matrices l  are re-
placed by their pooled sample covariance matrix  

 =1 l ll
 where 

=1 ll
 denotes the 

total sample size of the k samples, it is easy to show that 

ˆn   =
k

N n



1
k



N k

T N k  follows the distribution of the well-known 
Lawley-Hotelling trace test statistic ([3], Ch. 8, Sec. 6) 
with 0  and  degrees of freedom where  is 
defined in Remark 2.  

q N 0q

̂

1 ,TT 

k

Remark 4 When the covariance matrix homogeneity is 
actually valid, we still can apply the AHT test proposed 
in this paper, pretending that the k sample covariance 
matrices l  were not the same. We will see that the 
AHT test is simpler than the Lawley-Hotelling trace test 
which in general does not have a closed-form formula for 
its null distribution; see [3] (Ch. 8, Sec. 6). The simula-
tion results presented in Section 3 show that the AHT test 
works reasonably well for those covariance matrix ho-
mogeneity cases.  

To construct the AHT test based on T, following [5] 
and [10], we re-express T as  

z W z

 
1/2

ˆ


 

               (5) 

where  = Tz C C
1/2

C c

  1/2
.T 

C C

 ,q z qN

 and  

   ˆ= T T
 W C C C C  Notice that the 

above re-expression theoretically helps the development 
of the AHT test but in practice we still use (4) to com-
pute the value of T. We have z I

1min min k
l l

=n n

 where  

  
1/2T 

= . C c 
2

z C C
k

 Let n n  and  

=1max l l . Let max q  denote a 2 -distribution with 
q degrees of freedom. 

Remark 5 Assume that the sample sizes  
tend to infinity proportionally. That is,  

1 2, , , kn n n

min < , = 1,2, , min, asl ln n r l k n  

n 
2

.    (6) 

Then it is easy to show that as min , T asymp-
totically follows q . However, we can show that the 
convergence rate of T to 2

q  is of order minn  which is 
rather slow. Thus, the resulting 

1/2

2 -test is hardly useful 
for the heteroscedastic GLHT problem (3).  

Remark 6 When the assumption (6) is not satisfied, 
the ratio max n will tend to  as minn  so that 
the limit of  is not a full rank matrix and hence 
the limit of min  is not invertible. In this case, the 
test statistic T is not well defined so that the AHT test 
proposed in this paper will not perform well.  

min n 
minn 

Tn

 ,rW m V

: r r



C C

Let  denote a Wishart distribution of m de-

grees of freedom and with covariance matrix V . 
We first show that W is a Wishart mixture, i.e., a linear 
combination of several independent Wishart random ma-
trices. For this purpose, we decompose C into k blocks of 
size q p  so that 1 2  with 1C  con-
sisting of the first p columns of C,  the second p- 
columns of C, and so on. 

, , , k C C C C

2C

Remark 7 When 0 p C C I  where  
 2 0, , , : q k0 1 k C c c c lc

0C , 1, 2, ,l l p l k
 with  being the l-th col-

umn of , we have    C c I

  1/2
, 1, 2, ,T

l l l k


   H C C C

   1/2
, , ,T 

   

.  

Set . Then  

H 1 2 kC C H H H
  :ij

. Define the total 
variation of a random matrix x m m X
     2

= Etr E = Var
m m

V x  X X X

1

ˆ ,
k

T
l

l

   W H H W

 as 

=1 =1 iji j
, i.e., the 

sum of the variances of all the entries of X. 
Theorem 1 We have  

            (7) 

where 1 ˆ= 1, , = 1,2, ,
1

T l
l l l l l q l

l

n W n l k
n

  
   

W H H  
Ω

1= T
l l l l ln 

  

Hare independent with H

 

       

=1

1 2 2

=1

,

1 .

k

l q
l

k

l l l
l

E

V n tr tr


 

    





W I

W



 

. Furthermore,  

    (8) 

Theorem 1 is important for the AHT test. It says that 
W is a Wishart mixture and it gives the mean matrix and 
the total variation of W. 

2.2. The AHT Test 

When ,W d dW I d q
2T

q q  were valid with , the 
random variable T given in (5) would follow ,q d , a Ho-
telling T2-distribution with parameters q and d. Theorem 
1 shows that W is in general a Wishart mixture instead of 
a single Wishart random matrix. To overcome this diffi-
culty, we may approximate the distribution of W by that 
of a single Wishart random matrix, say,  ,W dR q   
where the unknown parameters d and  are deter-
mined via matching the mean matrices and total varia-
tions of W and R. That is, we solve the following two 
equations for d and 



 :  

       , .E E V V W R W R         (9) 

The solution is given in Theorem 2 below together 
with the range of d. 

Theorem 2 The solution of (9) is given by   

 

     1 2 2

1

1
, .

1
q k

l l l
l

q q
d d

n tr tr





 

   
I

 
  (10) 
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Moreover, d satisfies the following inequalities:   

   
   

1
.

1 1
N k

p




 

1d q 
2n p 

2

n

nn d 2

2

min

1
1

p qq
n d

p q


        (11) 

Remark 8 Theorem 2 indicates that  pro-
vided min . This guarantees that the distribution 
of the test statistic T defined in (5) can be approximated 
by ,q d . That is why the test proposed here is called the 
AHT (approximate Hotelling T2) test.  

T

Remark 9 From (10), it is seen that when min  be-
comes large, d generally becomes large; and when 

mi , we have  so that ,q dT  weakly tends 
to q

 
 , the limit distribution of T as pointed out in Re-

mark 5.  
Remark 10 The technique used to approximate a 

Wishart mixture W by a single Wishart random matrix 

q  may be referred to as the Wishart-ap- 
proximation method. The original version of the Wishart- 
approximation method is due to [8] who determined the 
unknown parameters d and 

 ,W d R

  via matching the first 
two moments of W and R. The article obtained a number 
different solutions to d, with the simplest one being the 
same as the one presented in Theorem 2.  

Remark 11 The key idea of the Wishart-approxima- 
tion method is very similar to that of the well-known 

2 -approximation method developed by [19] who ap-
proximated the distribution of a 2 -mixture (see [20]) 
using that of a 2 -random variable multiplied by a con-
stant via matching the first two moments.  

Remark 12 The first application of the Wishart-ap- 
proximation method may be due to [8] who obtained an 
approximate test for the multivariate two-sample BF 
problem. The resulting test is not affine-invariant, as 
pointed out by [5]. The authors of [5] then modified Nel 
and van der Merwe’s test, resulting in the so-called MNV 
test. Recent applications of the Wishart-approximation 
method were given by [17,18] who studied tests of linear 
hypotheses in heteroscedastic one-way and two-way 
ANOVA. The AHT test proposed in this paper is a new 
application of the Wishart-approximation method.  

In real data application, the parameter d has to be es-
timated based on the data. A natural estimator of d is 
obtained via replacing  by their estima-
tors:  

, = 1,2, ,l k

, 1, 2, , ,n l k 

   

l

   1/2 1/2
1ˆ ˆ ˆ ˆT T T

l l l l l

    C C C C C C  

(12) 

so that  

 

  1

=1

1ˆ =
2 2ˆ ˆ1

k

l l l
l

q q
d

n tr tr




     

=1
ˆk

l ql
 I

d̂

minn  d̂ d

.      (13) 

Notice that  so that the range of d given 

in (11) is also the range of . 
Remark 13 Under the assumption (6), it is standard to 

show that as , we have . In addition,  

     2 2
ˆ min,

= 1
q d

E T E T O n    and  we can show that 

     2 1
ˆ min,

= 1
q d

Var T Var T O n  

2T 2n

2T 1n

. That is, the means of 

T  
and ˆ,q d

 are matched up to order min  while the vari-
ances of T and ˆ,q d

 are matched only up to order min
 . 

This is not bad since here we only use one tuning pa-
rameter  and the distribution of  is easy to use.  d̂ 2T

2T

ˆ,q d
In summary, the AHT test is based on approximating 

the distribution of the Wald-type test statistic T (4) by 

ˆ,q d
. It can be conducted using the usual F-distribution 

since 

2
ˆ ˆ, , 1

ˆ
= ,

ˆ 1

d

q d q d q

qd
T F

d q   
d

           (14) 

Y  means “X  Xwhere and throughout, the expression 
and Y have the same distribution”. In other words, the 
critical value of the AHT test can be specified as  

 ˆ, 1

ˆ
1

ˆ 1 q d q

qd
F

d q
 for the nominal significance  

  
level  . We reject the null hypothesis in (3) when this 
critical value is exceeded by the observed test statistic T. 
The AHT test can also be conducted via computing the 
P-value based on the approximate distribution specified 
in (14). 

2.3. Minimum Sample Size Determination 

 a  denote the integer part of a. When ,q vXLet F , it 
is easy to show that X has up to   2 1v   finite 
moments:  

    
     

 

2 2 1
= ,

2 4 2

= 1,2, , 2 1.

r
r

r

v q q q r
E X

q v v v r

r v

  

  








2T

2T

    

 

In general, T has some finite moments. If its approxi-
mate Hotelling T2-distribution ˆ,q d

 is good, it should 
also have the same number of finite moments. To assure 
that ˆ,q d

 has up to r finite moments, by (14), the mini-
mum sample size must satisfy   

min

2 1 1
> 2

1

p r
n p

q

 
 



d̂

,         (15) 

which is obtained via using the lower bound of d (and  
as well) given in (11). The required minimum sample 
size may be defined as   1a   where a is the quantity 
given in the right-hand side of (15). It is seen that when p 
or r is large or when q is small, the required minimum 
sample size is also large. By Remark 2, we have  
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0 . Thus, a sufficient condition to guarantee 
that the approximate Hotelling T2-distribution 

q d
 (14) 

has up to r finite moments is that . 

q q p p 
2

ˆ,
T

> 2n p r

2n

1,2, , ,

min

Remark 14 When min  is too small, e.g.,  

min , the AHT test may not perform well since in 
this case, the first moment of 

,q d
 is not finite although 

the first moment of T is usually finite.  

n

T

ljx

, 1,2, ,

< p 
2

ˆ

;l

2.4. Properties of the AHT Test 

In practice, the observed response vectors in (1) are often 
re-centered or rescaled before any inference is conducted. 
It is desirable that the inference is invariant under the 
recentering or rescale transformation. They are two spe-
cial cases of the following affine transformation of the 
observed response vectors :  

lj ljx b j 

d̂

C

and C PC

n l

PC

c P

k 

C

, c

, = 1,2, ,l k

 x B     (16) 

where B is any nonsingular matrix and b is any constant 
vector. The proposed AHT test is affine-invariant as 
stated in the theorem below. 

Theorem 3 The proposed AHT test is affine-invariant 
in the sense that both T and  are invariant under the 
affine-transformation (16).  

Remark 1 mentions that the contrast matrix C used to 
write (2) into the form of the GLHT problem (3) is not 
unique and the AHT test is invariant to various choices 
of the contrast matrix. This result follows from Theorem 
4 below immediately if we notice a result from [21] (Ch. 
5, Sec. 4), which states that for any two contrast matrices 

 and C defining the same hypothesis, there is a non-
singular matrix P such that . 

Theorem 4 The AHT test is invariant when the coeffi-
cient matrix C and the constant vector c in (3) are re-
placed with   

           (17) 

respectively where P is any nonsingular matrix.  
Finally, we have the following result. 
Theorem 5 The AHT test is invariant under different 

labeling schemes of the mean vectors l .  

3. Simulation Studies 

In this section, intensive simulations are conducted to 
compare the AHT test against the test of [1] and the PB 
test of [2]. All the three tests are affine-invariant. Refer-
ence [2] demonstrated that the PB test generally outper-
forms the test of [1] and the generalized F-test of [14] in 
terms of size controlling. The generalized F-test are gen-
erally very liberal and time consuming. Therefore, we 
shall not include it for comparison against the AHT test. 

Following [2], for simplicity, we set  

1 2 1 g , ,, diap pI       and l  to 
be some positive definite matrices, where p, 

, = 3,4, ,l k
1, , k


 

and other tuning parameters are specified later. Let 
 , , ,n n n n

, = 1,2, ,l k 
ˆ , = 1, ,l l k

1 2 k  denote the vector consisting of the k 
sample sizes. For given n and l , we first 
generated k sample mean vectors   and k 
sample covariance matrices  by  ˆ , = 1, ,l l k 

 
 

 

 
ˆ , ,

ˆ 1, 1 , = 1,2, ,

l p l l l

l p l l l

N n

W n n l k

 

   



 

μ

, 2, ,l u l k

 

where the population mean vectors  

1l    μ μ  with 1μ  being the first popu-
lation mean vector, u a constant unit vector specifying 
the direction of the population mean differences, and   
a tuning parameter controlling the amount of the popula-
tion mean differences. Without loss of generality, we 
specified 1μ  as 0 and u as 0  where  

0  for any p and 
0u u

 1,2, ,
T

p u 0  denotes the usual 
L2-norm of u0. We then applied the Johansen, PB, and 
AHT tests to the generated sample mean vectors and the 
sample covariance matrices, and recorded their P-values. 
The empirical sizes and powers of the Johansen, PB, and 
AHT tests were computed based on 10000 runs and the 
number of inner loops for the PB test is 1000. In all the 
simulations conducted, the significance level was speci-
fied as 5% for simplicity. 

u

= 0The empirical sizes (associated with  ) and pow-
ers (associated with > 0 ) of the Johansen, PB, and 
AHT tests for the multivariate k-sample BF problem (2), 
together with the associated tuning parameters, are pre-
sented in Tables 1-3, in the columns labeled with “Joh”, 
“PB”, and “AHT” respectively. As seen from the three 
tables, three sets of the tuning parameters for population 
covariance matrices are examined, with the first set 
specifying the homogeneous cases and seven sets of 
sample sizes are specified, with the first three sets speci-
fying the balanced sample size cases. To measure the 
overall performance of a test in terms of maintaining the 
nominal size  , we define the average relative error as 

1 ˆARE = 100
M

M      ˆ
=1 jj

 where j  denotes the 
j-th empirical size for , = 1, 2, ,j M = 0.05  and M 
is the number of empirical sizes under consideration. The 
smaller ARE value indicates the better overall perform-
ance of the associated test. Usually, when ARE ≤ 10, the 
test performs very well; when , the test 
performs reasonably well; and when , the test 
does not perform well since its empirical sizes are either 
too liberal or too conservative. Notice that for a good 
test, the larger the sample sizes, the smaller the ARE 
values. Notice that for simplicity, in the specification of 
the covariance and sample size tuning parameters, we 
often use r  to denote “a repeats r times”, e.g., (30)2 = 
(30, 30) and (23, 4, 12) = (2, 2, 2, 4, 1, 1). Tables 1-3 
show the empirical sizes and powers of the Johansen, 
PB, and AHT tests for a bivariate case with , a  

10 <ARE 20
ARE > 20

a

= 2k  
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= 2k 1 2

  
Table 1. Empirical sizes and powers of the Johansen, PB, and AHT tests for bivariate one-way MANOVA. 

 2 = diagI          

= 0  = 0.7  = 1.4  = 2.1  
 n 

Joh PB AHT Joh PB AHT Joh PB AHT Joh PB AHT 


 1
n  0.049 0.044 0.046 0.504 0.520 0.492 0.984 0.984 0.982 1.000 1.000 1.000

 2
n

 3
n

 4
n

 5
n

 6
n

 1

 0.050 0.050 0.050 0.724 0.716 0.721 0.999 0.999 0.999 1.000 1.000 1.000

 0.049 0.046 0.049 0.903 0.901 0.902 1.000 1.000 1.000 1.000 1.000 1.000

 0.047 0.048 0.045 0.606 0.592 0.597 0.994 0.992 0.994 1.000 1.000 1.000

 0.046 0.044 0.046 0.972 0.965 0.972 1.000 1.000 1.000 1.000 1.000 1.000

 0.050 0.049 0.049 0.599 0.587 0.592 0.995 0.995 0.994 1.000 1.000 1.000

  

 7
n

 1
n

 2
n

 3
n

 4
n

 5
n

 6
n

 2

 0.047 0.045 0.047 0.967 0.974 0.967 1.000 1.000 1.000 1.000 1.000 1.000

 0.047 0.054 0.044 0.263 0.255 0.252 0.784 0.769 0.771 0.985 0.984 0.984

 0.047 0.049 0.046 0.386 0.381 0.382 0.939 0.943 0.938 0.999 0.999 0.999

 0.050 0.046 0.050 0.586 0.583 0.585 0.995 0.996 0.995 1.000 1.000 1.000

 0.048 0.044 0.047 0.335 0.321 0.329 0.901 0.895 0.898 0.999 0.999 0.998

 0.053 0.055 0.053 0.801 0.812 0.801 0.999 1.000 0.999 1.000 1.000 1.000

 0.052 0.055 0.049 0.285 0.279 0.276 0.827 0.811 0.816 0.990 0.991 0.988

  

 7
n

 1
n

 2
n

 3
n

 4
n

 5
n

 6
n

 3

 0.052 0.054 0.051 0.667 0.643 0.665 0.998 0.999 0.998 1.000 1.000 1.000

 0.050 0.050 0.047 0.201 0.190 0.192 0.639 0.654 0.625 0.948 0.941 0.943

 0.047 0.055 0.047 0.290 0.298 0.286 0.850 0.865 0.847 0.996 0.994 0.996

 0.047 0.050 0.047 0.454 0.455 0.454 0.970 0.972 0.970 0.999 1.000 0.999

 0.051 0.055 0.050 0.255 0.243 0.250 0.787 0.784 0.781 0.988 0.989 0.988

 0.044 0.050 0.044 0.668 0.666 0.668 0.999 1.000 0.999 1.000 1.000 1.000

 0.053 0.053 0.050 0.228 0.223 0.218 0.689 0.685 0.674 0.962 0.969 0.957

  

 7
n  0.054 0.059 0.053 0.523 0.526 0.522 0.989 0.989 0.989 1.000 1.000 1.000

  ARE 4.48 7.14 5.14         

 1
  2= 1  2

= 1, , , , ,  ,5  3
= 1  ,10  1

n  2= 7  2
= 1n  20    25  3

= 1n ,    4
7,10n  ,  0

5
= 15,3n ,    6

= 10,7n  and n .      7
= 30,15

= 3k
= 5k

1

 
4. Application to the Egyptian Skull Data 3-variate case with  and a 5-variate case with 

, respectively. 
The Egyptian skull data set was recently analyzed by [2]. 
It can be downloaded freely at Statlib (http://lib.stat.cmu. 
edu/DASL/Stories/EgyptianSkullDevelopment.html).  

From Table 1, it is seen that for the two-sample BF 
problem, the Johansen, PB, and AHT tests performed 
very similarly with the Johansen test slightly outper-
forming the other two tests. However, from Tables 2 and 
3, it is seen that with k increasing to 3 and 5, the 
Johansen test performed much worse than the PB and 
AHT tests. The later two tests were generally comparable 
for various sample sizes and parameter configurations. 
Since the PB test is much more computationally inten-
sive, it is less attractive in real data analysis. The AHT 
test is then a nice alternative, especially when k is mod-
erate or large. 

There are five samples of 30 skulls from the early 
pre-dynastic period (circa 4000 BC), the late pre-dynastic 
period (circa 3300 BC), the 12-th and 13-th dynasties 
(circa 1850 BC), the Ptolemaic period (circa 200 BC), 
and the Roman period (circa AD 150). Four measure-
ments are available on each skull, namely, x  = maxi-
mum breadth, 2x  = borborygmatic height, 3x  = den-
toalveolar length, and 4x  = nasal height (all in mm). To 
compare the AHT test with the test of [1] and the PB test 
of [2] in various cases, we applied these three tests to      
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Table 2. Empirical sizes and powers of the Johansen, PB, and AHT tests for trivariate one-way MANOVA. 

  = 3k 1 3= I   2 = diag  3

1

= 1

1

 

 
 
 

 
 
 
 
 

  

= 0 = 0.4 = 0.8 = 1.2    
 ,   n 

Joh PB AHT Joh PB AHT Joh PB AHT Joh PB AHT 

 1
n  0.069 0.040 0.037 0.272 0.188 0.178 0.796 0.721 0.683 0.989 0.975 0.972

 2
n

 3
n

 4
n

 5
n

 6
n

   

 0.058 0.037 0.045 0.388 0.350 0.345 0.956 0.939 0.946 0.999 0.999 0.999

 0.049 0.041 0.046 0.603 0.596 0.590 0.998 0.997 0.998 1.000 1.000 1.000

 0.069 0.053 0.056 0.419 0.375 0.365 0.950 0.935 0.932 0.999 0.999 0.999

 0.063 0.064 0.059 0.644 0.637 0.627 0.998 0.998 0.998 1.000 1.000 1.000

 0.067 0.052 0.052 0.477 0.432 0.422 0.986 0.984 0.976 1.000 0.999 1.000

1 1
,   

 7
n

 1
n

 2
n

 3
n

 4
n

 5
n

 6
n

   

 0.062 0.052 0.057 0.775 0.751 0.762 1.000 1.000 1.000 1.000 1.000 1.000

 0.074 0.050 0.042 0.285 0.206 0.193 0.798 0.710 0.693 0.988 0.971 0.968

 0.058 0.039 0.045 0.397 0.338 0.352 0.956 0.948 0.944 0.999 1.000 0.999

 0.051 0.049 0.047 0.605 0.591 0.592 0.998 0.998 0.998 1.000 1.000 1.000

 0.072 0.059 0.057 0.414 0.360 0.363 0.943 0.922 0.922 0.999 0.999 0.999

 0.067 0.056 0.063 0.640 0.612 0.625 0.999 0.998 0.998 1.000 1.000 1.000

 0.070 0.050 0.054 0.516 0.440 0.454 0.995 0.990 0.991 1.000 1.000 1.000

 2 2
, 

 7
n

 1
n

 2
n

 3
n

 4
n

 5
n

 6
n

    3 3
,

 

 0.068 0.065 0.063 0.865 0.836 0.854 1.000 1.000 1.000 1.000 1.000 1.000

 0.075 0.044 0.043 0.284 0.205 0.192 0.800 0.715 0.684 0.987 0.967 0.965

 0.060 0.046 0.049 0.386 0.353 0.344 0.954 0.945 0.939 0.999 0.999 0.999

 0.050 0.053 0.046 0.605 0.599 0.589 0.997 0.996 0.997 1.000 1.000 1.000

 0.075 0.062 0.060 0.406 0.346 0.354 0.945 0.915 0.925 0.999 1.000 0.999

 0.060 0.052 0.056 0.623 0.589 0.607 0.998 0.998 0.997 1.000 1.000 1.000

 0.076 0.067 0.059 0.518 0.447 0.457 0.994 0.986 0.989 1.000 1.000 1.000

   

 7
n  0.061 0.058 0.056 0.866 0.851 0.856 1.000 1.000 1.000 1.000 1.000 1.000

 ARE 29.14 14.00 13.52          

      31 1
, = 1 ,0      2 2

, , , ,  = 1,5,0.1,0.05     3 3
,   9  = 1,3,0.1,0.0  3  1

= 7n ,  30  2
= 1n ,  33

= 15n , ,    4
= 7,10,20n   5

= 10,20,40n

 1 2, , ,n n n n
10n 

, 

 and .      6
= 20,10,7n  7

= 4n  0,20,10

 
check the significance of the mean vector differences of 
the first k samples, using only the first k  
observations for  and  k  for k = 2, 
3, 4 and 5. There are totally 12 cases under consideration. 
The number of bootstrap replications in the PB test is 
10000 and hence the time spent by the PB test is about 
10000 times of that spent by the other two tests. The 
P-values of the three tests for various cases are presented 
in Table 4. 

   , 20k k 30

From Table 4, it is seen that the P-values of the three 
tests are close to each other with the P-values of the 

Johansen test slightly smaller in almost all the cases. 
Reference [2] showed via intensive simulations that the 
PB test performed well for various parameter configura-
tions. Therefore, we may use the P-values of the PB test 
as benchmark to compare the AHT test with the Johansen 
test. It is seen from Table 4 that the P-values of the AHT 
tests are closer to the P-values of the PB test than those 
of the Johansen test. In this sense, the AHT test performed 
similar to the PB test and outperformed the Johansen test. 
This is in agreement with the conclusions drawn from the 
simulation results presented in the previous section.   

Copyright © 2012 SciRes.                                                                                  OJS 
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Table 3. Empirical sizes and powers of the Johansen, PB, and AHT tests for 5-variate one-way MANOVA. 

2 = diag       5 = diag v  = 5k  1 5= I  4 = diag u    3 = diag   

= 0 = 0.15 = 0.30 = 0.45    
 , , ,u v   n 

Joh PB AHT Joh PB AHT Joh PB AHT Joh PB AHT

 1
n  0.087 0.047 0.046 0.218 0.132 0.136 0.692 0.568 0.572 0.974 0.948 0.946

 2
n

 3
n

 4
n  

 5
n

 6
n

    1 1
, , ,u v

 7
n

 1
n

 2
n

 3
n

 4
n  0.059 

 5
n

 6
n

    2 2
, , ,u v

 7
n

 1
n

 2
n

 3
n

 4
n  0.056 

 5
n

 6
n

    3 3
, , ,u v

 7
n

 0.057 0.054 0.049 0.299 0.259 0.270 0.930 0.914 0.919 0.999 0.999 0.999

 0.049 0.042 0.048 0.625 0.623 0.624 1.000 1.000 1.000 1.000 1.000 1.000

0.061 0.052 0.055 0.358 0.320 0.339 0.966 0.960 0.962 1.000 1.000 1.000

 0.055 0.045 0.053 0.521 0.487 0.514 0.998 0.999 0.998 1.000 1.000 1.000

 0.066 0.057 0.060 0.411 0.374 0.391 0.988 0.980 0.986 1.000 1.000 1.000

 

    1 1
 

 0.056 0.049 0.054 0.596 0.573 0.589 1.000 1.000 0.999 1.000 1.000 1.000

 0.096 0.047 0.055 0.128 0.068 0.072 0.230 0.137 0.143 0.458 0.300 0.325

 0.059 0.046 0.049 0.103 0.085 0.086 0.332 0.281 0.298 0.705 0.680 0.672

 0.053 0.054 0.052 0.168 0.156 0.166 0.674 0.684 0.672 0.984 0.981 0.984

0.049 0.055 0.117 0.112 0.108 0.382 0.371 0.367 0.797 0.780 0.785

 0.054 0.049 0.053 0.135 0.128 0.131 0.537 0.519 0.532 0.937 0.935 0.936

 0.069 0.048 0.060 0.135 0.106 0.119 0.473 0.411 0.441 0.897 0.870 0.884

 

    2 2
 

 0.053 0.042 0.049 0.159 0.142 0.154 0.657 0.642 0.646 0.983 0.981 0.981

 0.101 0.051 0.053 0.119 0.051 0.064 0.188 0.111 0.108 0.331 0.194 0.213

 0.066 0.053 0.056 0.093 0.072 0.077 0.221 0.178 0.191 0.503 0.469 0.464

 0.052 0.050 0.050 0.121 0.111 0.119 0.454 0.438 0.452 0.893 0.885 0.891

0.044 0.052 0.101 0.086 0.094 0.273 0.256 0.260 0.646 0.608 0.631

 0.052 0.043 0.051 0.107 0.100 0.103 0.401 0.390 0.395 0.825 0.796 0.822

 0.064 0.048 0.055 0.107 0.085 0.094 0.283 0.236 0.256 0.624 0.581 0.591

   3 3
   

 0.053 0.049 0.049 0.113 0.101 0.107 0.381 0.359 0.368 0.800 0.778 0.791

 ARE 25.71 6.95 7.05          

 1
  5= 1  1

, , , , ,  5= 1
1

u   5= 1    51
= 1v    22

= 12 ,1,24,1    2
= 1,0.1,2,24,21 ,    ,2

= 1,39,10u ,    22
= 5,15 ,45,50v ,    23

= 1,3,9 ,5 ,    33
= 5,15,45 , 

   2= 1,3 ,9
3

u ,30  3
=v, , , ,  25,15 ,45,100  1

n  5= 15    52
= 25n    53

= 50n ,    = 20,25,35,40,50
4

n ,    40,50,70  6
=n

5
= 30,35,n ,  

and .  

 50,40,35,25,20

 7
= 7n  ,300,50,40,35

 
Table 4. P-values of the Johansen, PB, and AHT tests for the Egyptian skull data example. 

Null hypothesis Joh PB AHT Joh PB AHT Joh PB AHT 

0 1 2: =H   0.6213 0.6412 0.6448 0.7156 0.7194 0.7227 0.8109 0.8182 0.8142  

0 1 2 3: = =H   

0 1 2 3 4: = = =

  0.5531 0.6107 0.6234 0.1948 0.2063 0.2071 0.0300 0.0326 0.0298 

H    

2 3 4 5= = =

  0.0574 0.1050 0.1105 0.0202 0.0225 0.0227 0.0002 0.0002 0.0002 

0 1: =H        0.0173 0.0502 0.0532 0.0021 0.0021 0.0025 0.0000 0.0000 0.0000 
     

Copyright © 2012 SciRes.                                                                                  OJS 
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It is also seen that the first null hypothesis in Table 4 

is not significant, with the P-values of the three tests lar-
ger than 60% and increasing with increasing the sample 
sizes; the other three null hypotheses are significant, with 
the P-values of the three tests decreasing to less than 5% 
with increasing the sample sizes. These results suggest 
that the Egyptian skulls had little change in the early and 
late pre-dynastic periods but experienced a significant 
change over the later three periods. 

5. Technical Proofs 

Proof of Theorem 1 Notice first that if  ,pW nY V
  =E nY

, 
then we have  and  V
      2 2tr trV   V

= 1,2, ,l k

2
= =E n YV EtrY Y   . In addi-

tion, it is well known that for , we have  

ˆ
l pW n  1,

1
l

l
ln

 
  

. Thus  

1 ˆ T
l l l l ln W W H H= 1,

1
l

q l
l

n
n

 
   



1 T
l l l lE n W H H

  =l lE W

 

where  

= =l l . 

Therefore, we have   and  

       2 2 .l ltr    

lW

= = ,l qH H H I

   2 21 ,ltr

1
= 1l lV n tr


W  

Since  are independent, we have  

  1

=1 =1
= =

k k T
l l l ll l

E n  W H  

and  

   
 

=1

1

=1

k

ll

k

l ll

V V

n tr




     

  = qE W I

   2 2
ltr




W W
 

as desired. The theorem is proved. 
Proof of Theorem 2 By Theorem 1,  and  

   =1
= 1

k

l ll
V n tr

1     

  =E dR

W . 

By the proof of Theorem 1, we have   and  

  =V d trR    2 2tr   

 E

. 

Equating  and  leads to E W  R = q dI


. It 
follows that   =V q 1q dR . Equating  V W

= 1 1/2 1/2=l l l ln B H q p

 and 
 then leads to (10) as desired. V R

We first find the lower bound of d. This is equivalent 
to finding the upper bound of the denominator of d. For 

, set  which is a , 2, ,l k   
full rank matrix. Then . It follows that = T

l lB B ll   
are nonnegative, so are their eigenvalues. In addition, the 
matrix  and the matrix  have the 
same non-zero eigenvalues. Thus,  has at most p 

nonzero eigenvalues. Denote the largest p eigenvalues of 

l

l

  by ,l r , = 1, 2, ,r p 
l

 which include all the nonzero 
eigenvalues of  . By Theorem 1, 

=1

k

ll
. This 

leads to 
=1,

k

q l rr r l

= q I
= I   , which implies that  

q rI   is nonnegative. By singular value decomposi-
tion of l , 1, = 1, 2, ,l r r p , it is easy to show that   

  ,
=1

=
p

l l r
r

tr p 

   2 2
, ,

=1 =1

= = .
p p

l l r l r l
r r

tr tr  

. 
It follows that  

,  

and  

=l l p:T
l pB B

l


 

     

     

     

     

   

1 2 2

=1

1 2 2
min

=1

1

min
=1

1

min
=1

1

min

1

1

1

1 1

= 1 1 .

k

l l l
l

k

l l
l

k

l l
l

k

l
l

n tr tr

n tr tr

n tr ptr

n p tr

n q p











   

 

Therefore,   

    

    

  

 









 

 

 



 

It follows that  min

1
1

1

q
d n

p


 



l

. The first inequality 

in (11) is proved. 
We now find the upper bound for d. This is equivalent 

to finding the minimum value of the denominator of d. 
Using the eigenvalues of   defined above, we have  

   
2

2 2 12 2
, ,=1 =1

= = .
p p

l l r l r lr r
tr p p p tr       

     

     

1 2 2
=1

11 2
=1

1

1 1 .

k

l l ll

k

l ll

n tr tr

p n tr





 

It follows that  

   

  




 



  , 1, 2, ,l ltr l k   
 1 1

.
k k

l ll l
tr q

 
   

    1 2
1 2 =1
, , , = 1

k

k l ll
g n

 

For convenience, we now set . 
Then by Theorem 1, we have   

   1 1, , k where Set  
1

=1
=

k

k ll
q

  

are linear independent but 
, = 1, 2, , 1l l k

. Taking the 
partial derivatives of g with respect to    
and setting them to 0 lead to the following normal equa-
tion system:  

 1

1
22

0, 1,2, , 1.
1 1

k

rrl

l l k

qg
l k

n n









    
  


  

Solving the above equation system with respect to 
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, =l 1, 2, , 1l k  1

=1
=

k

k ll
q, together with the fact  ˆ ˆT T T   C C P C C P

d̂

. The invariance of T under (17) 
follows immediately. 

 , 
leads to   

1
= ,l

l

n
q l

N k





= 1, 2, , ,k

=1
=

k

l
N n

1,2, , 1k 

         (18) 

where l  as defined before. Since for  
, we have  , =r l

  
 

2 2 1 2
=

2 1

l k

l r k

n ng

 

     


  

1 1

1

1 , if = ,

, if ,

r l

n r l
 

 1, , kg

 

the associated Hessian matrix of g is positive definite. 
Thus, the function    has minimum value 

 2 , = 1, 2, ,l kq N k l when  
 
 

 take the values in (18).  

It follows that the upper bound of d is  
1

1
N k

p q

q p



  

as desired. The theorem is proved. 
Proof of Theorem 3 Since lμ  and  denote the 

mean vector and covariance matrix of lj

l
x , we let lμ  

and l  denote the mean vector and covariance matrix 
of the affine-transformed responses 



ljx  given by (16). 
Then we have =l l μ B b

= ,
 and l  It fol-

lows that l l . As we defined 
the long mean vector 

= .T B B
= 1 ,k

l
, 2,  b1 μ lμ B

  and the big covariance matrix 
 in Section 2, we define  


b

 and   similarly. Then 
we have  and   where  

 and kb . It follows that the GLHT 
problem (3) can be equivalently expressed as  


B B

0 1vs : ,    c H Cμ c

 1=  c CB b c

l

 μ
= 1

1


= μ B

= k B I B

b


ˆ = T 

: = ,H Cμ  

where  and . 1= C CB
ˆSince μ  and l  denote the unbiased estimators of 

l

̂
μ  and   for the original responses l = 1,2, , l,ljx j n

̂
, 

we define lμ  and l  as the unbiased estimators of ̂ lμ  
and  for the affine-transformed responses  

lj l

l
=, 1,2, ,x j n

ˆ ˆ= T B B
 . Then by the affine-transformation (16), 

it is easy to see that , and ll l   
Therefore,  and 

ˆ ˆ=l l μ Bμ b
ˆ ˆ= T

ll l  ˆ ˆ=l l  μ Bμ b B B
ˆ= c Cμ c ̂

. Using the 
above, we have l l  and C C . 
The affine-invariance of T follows immediately. 

ˆ Cμ ˆT T    C C

d̂

 2
ltr 

, = 1,2, ,ln l kC
 

To show that  is affine-invariant, by (13), it is suf-
ficient to show that  and  are af-
fine-invariant. Let  and 

. Then we have 
=1

 and  

l . It follows that 

 ltr 
1 ˆ

l l
 G C

= 
T

l l
ˆ k

l
G G

1/2

TC
1/2

l
 G G G

lG C
=

l

 ̂  1= tr G G

,k

ˆtr 

1, 2,l

l l  
and l  . Since G is affine-invariant, 
we only need to show that  are af-
fine-invariant. Since 

  2 =l tr 21 

lG
1=

ˆ G G
, =

tr


1,2,l k

C CB
, ˆ =

 implies  
 and 1= , =Bl l

C C ˆ T   B B  implies  

ll l , the affine-invariance of G  
follows immediately. The theorem is then proved. 

̂ ˆ = 1,2,  B B= ,T l ,k  l

Proof of Theorem 4 First of all, under the transforma-
tion (17), we have 

To show that  is invariant under the transformation 
(17), by (13), it is sufficient to show that  tr l  and 
 2tr 

l  are invariant under (17). The transformation (17) 
implies that . Then we have 

l l  and 
=1 ll

G G . It 
follows that 

= , = 1, 2, ,l l l k C PC
= , = 1,2, ,T l k G PG P = =

k T PGP
1 1 1=l l

   G G PG G P  so that  

   
   

1 1 1

1

ˆ = ( ) =

= = .

l l l

l l

tr tr tr

tr tr

  



 G G PG G P

G G





   2 2= tr 
d̂

, , ,l l l
1,2, , k

=1 =1

1 2 1 2

=1 =1

ˆ ˆ= ,

ˆ ˆ= = ,

k k

l l l lu u
l ul l

k k
T T

l l l l l l l l lu u u u
l u

n n  

 

 

C μ C μ

G C C C C

ˆ ˆ=
k

l l μ C

 

Similarly, we can show that l ltr . This 
proves that  is invariant under the transformation (17). 
The theorem is then proved. 

Proof of Theorem 5 Let 1 2 k  be any permuta-
tion of . Then it is easy to see that  

 

showing that 
=1 l ll

C μ , l , and 

=1 ll
 are invariant under different la-

beling schemes of the mean vectors and so is the 
Wald-type test statistic T. 

, = 1, ,l kG
ˆ= =

kT G G C C

d̂

d̂

d̂

     

     
   

1 2 2

=1

21 2 1 1

=1

2
1 2

2 1 1

=1

1

= 1

= 1 .

k

l l l
l

k

l l l
l

k

l l lu u u
u

n tr tr

n tr tr

n tr tr



  


 

   

       

To show that  is invariant under different labeling 
schemes of the group mean vectors, by (13), it is suffi-
cient to show that the denominator of  has such a 
property. This is actually the case by noticing that the 
denominator of   

 ˆ ˆ= c P Cμ c Cμ  and  

          







G G G G

G G G G

 

 

This completes the proof of the theorem. 
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